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Calcolo delle variazioni. — The mean curvature of a Lipschitz continuous mani-
fold. Nota di ELisaBerTA BAROZZI, EDUARDO GONZALEZ ¢ UMBERTO MASSARI, presen-
tata (*) dal Socio M. Miranda.

AsstraCT. — The paper is devoted to the description of some connections between the mean curva-
ture in a distributional sense and the mean curvature in a variational sense for several classes of non-
smooth sets. We prove the existence of the mean curvature measure of JE by using a technique introdu-
ced in [4] and based on the concept of variational mean curvature. More precisely we prove that, under
suitable assumptions, the mean curvature measure of JF is the weak limit (in the sense of distributions)
of the mean curvatures of a sequence of regular n-dimensional manifolds M; convergent to 8E. The mani-
folds M; are closely related to the level surfaces of the variational mean curvature Hy; of E.

Key worps: Calculus of Variations; Geometric Measure Theory; Functions of Bounded Variation;
Mean Curvature.

RiassuNTO. — La curvatura media di una varieta Lipschitziana. L'articolo ¢ dedicato allo studio di al-
cuni legami tra la curvatura media nel senso delle distribuzioni e la curvatura media in senso variazionale
di alcune classi di insiemi non regolari. Si dimostra l'esistenza di curvatura media misura per 9E usando
tecniche introdotte in [4] e basate sul concetto di curvatura media variazionale. Pit precisamente, si di-
mostra, sotto opportune ipotesi, che la curvatura media misura della frontiera di E ¢ il limite debole (nel
senso delle distribuzioni) delle curvature medie di una successione di varietd n-dimensionali M, regolari
convergenti alla frontiera di E . Le varieta M; sono legate alle superfici di livello della curvatura media va-
riazionale Hy di E.

0. INTRODUCTION

A function He L' (U) (U an open set of R”*!) is said to be a variational mean
curvature of a given set Ec U if E locally minimizes the functional

0.1) Ty (F) = j |Dg | + j H(x) dx
U UNF
(see § 1).

By computing the first variation of (0.1), it can be easily seen that if H is a varia-
tional mean curvature of E, JE is a smooth manifold in a neighbourhood of a point
x € dE N U and H is a continuous function at x, then H(x) is (up a constant factor) the
classical mean curvature of OFE at x. This is the reason why minimizers of (0.1) are
called «sets of variational mean curvature H».

It is well known that if H is a variational mean curvature of E and H € L?(U) with
p>n+1, then we have the decomposition

ENU=3,UZ3,,

(*) Nella seduta del 19 giugno 2003.
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where X, (the so-called regular subset) is an n-dimensional C'** manifold and X, (the
so-called singular subset) is a closed subset of OE N U, and

() =0 Yk>n—7

(see [14, 15]).

However, the existence of a variational mean curvature H € L' (U) does not imply,
in general, any smoothness of JE. As a matter of fact, a variational mean curvature
Hpe L' (U) can be constructed for every set Ec U of finite perimeter (see [4, 5]). We
refer to [13] for a more detailed account.

On the other hand, the mean curvature of non regular manifolds can be defined in
a different way by using the methods of Geometric Measure Theory (see, for example,
[1]). In particular, assume that M c U is an n-dimensional Lipschitz-continuous mani-
fold, and that exists a positive constant K such that

(0.2) <K|X|. VXeClU,R"*Y).

j divy, Xd9C,
M

By (0.2) and by the Riesz Representation Theorem, it follows the existence of an
(n+1)-dimensional vector valued Radon measure on M, which we denote by

—

H=®H,,.. ,H, H,,,,
such that

— n+1
(03)  [divyXdd(, =~ [XedH = = 3 [X,dH; ¥XeC}(U,R"*").
M M Y

o
The measure H will be called the mean curvature measure of M in U.

An interesting case is when the Radon measure H is absolutely continuous with re-
spect to the Hausdorff measure ¢, ). Then we have

FI = H‘:)‘CnlM

where the density H: M—R”*"! belongs to [L'(M)]”*!. In this case (0.3) be-
comes

(0.4) [ divyXdoc,= — [HeXdd, VXeCl(U,R"™).
M M

The connection between the two definitions of mean curvature does not seem to
be evident even when (0.4) holds. A variational mean curvature is defined as an ele-
ment of L'(U) which is typically discontinuous at points x € E N U. Instead mean
curvature measures (or more simply density functions) are defined only over the mani-
fold M = JE.

In this paper, we prove the existence of a mean curvature measure of JF
by using a technique introduced in [4] and based on the concept of variational
mean curvature. More precisely, we prove that, under suitable assumptions, the
mean curvature measure of OF N U is the weak limit (in the sense of measures)
of the mean curvatures of a sequence of n-dimensional manifolds M; convergent
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to OE. The manifolds M; are closely related to the level surfaces of the variational
mean curvature Hp.
The main Theorem is the following:

Tueorem 0.1. Suppose that OE N U s locally the graph of a function fe C** that is
a weak supersolution of the minimal surface equation or that E is a convex set. Then
there exists a (n + 1)-dimensional vector valued Radon measure H such that

jdeXd% = —ondH VXeClU,R"Y),
M

where M = 3E.

1. THE VARIATIONAL MEAN CURVATURE

The notion of variational mean curvature H is a generalization of the definition of
minimal boundary introduced by E. De Giorgi in the fifties (see [6, 71), in the context
of sets of finite perimeter or Caccioppoli sets (see for example [11, 16]).

We now recall some basic definitions and results that will be used in the
sequel.

If UcR""! is an open set and E is a subset of U, we denote by f|D¢E| the
perimeter of E in U, that is

(1.1) J|D¢E| = sup{ Jdivg(x) dx, ge CH(U,R" ™), ||l < 1}.
U U
For He L' (U) and Fc U, define
(1.2) HE, U) = [ | Do | +jH
U

A set E is said to have variational mean curvature H in U if

[IDps| < +o vVeeU,

(1.3) v
7)) HE,V)<HF,V) V¥VccU, VFcU
such that (E—F)U (F—E)ccV.

The next theorem, due to E. De Giorgi [6], U. Massari [14, 15], is probably the
most important result concerning the variational mean curvature:

Tueorem 1.1, If E bhas variational mean curvature H in U and He L?(U)
with p>n+1, then

(1.4) JENU=2,UZX,

where X, (the regular part of OE) is a n-dimensional C““ manifold and X,
(the singular part of OE) is a closed subset of OE such that

(1.5) I(Z)=0 Vs>n-—17,
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where IC, is the Hausdorff measure of dimension ke R. In particular, for n<6
we have X, =10.

Theorem 1.1 and decomposition (1.4) cannot be extended to the case p=#n+1
(see [13]).

Finally, for He L?(U) with 1 < p <z + 1, no regularity result may be expected. In
fact, in [5], Barozzi, Gonzalez and Tamanini have proved that every set E of finite
perimeter has a variational mean curvature Hy e L' (U). For the critical case p =7 + 1
see [12].

For the reader’s convenience, we outline the construction of Hp.

Let 5 :R""'—R be a non negative, measurable function such that f/y )dx< + oo,
Moreover suppose that

FCE, jb(x) dx=0 < |F| =0,
F

where |- | denotes the Lebesgue measure in R”*!. For 4 =0 and FC E, consider the
functional
(1.6) B, (F j |Dg x| + A j

R” +1

By well known results of Calculus of Variations, for every A = 0 there exists a solution
E, of the minimum problem

7)) B,(F)—min,
(1.7) N

i) Feé&,={F,FcE}.
Moreover,

) if 0si<u= E,cE
(1.8) o S

i) U{E;,A>0}=E.
By defining

(1.9) Hg(x) = —inf{1h(x), xe E;, A=0} VxeE
we obtain a function Hg: E— R with the following two properties:
(1.10) j|HE J|ds= [ D]
Rﬂ+1
(1.11) [ 1Dy | +jHE(x ydx< [ Doyl +jHE x) dx VFCE.
Rn+l Rﬂ+l

Arguing in the same way with E replaced by R”*! — E, we can define Hin R"*' — E
too. In [4, 5] it is proved that the function Hp obtained above is a variational mean
curvature for E in R”*!. Moreover, we have

(1.12) [ 1He(o |dx=2 [ D]

Rn+1 Rn+1
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Whenever E is a bounded set, two interesting choices for the function 4 in the
above construction of Hg (see (1.6)) are given by

(1.13) h(x)=1 VxeE
(1.14) h(x) =dist(x, OE) VxekE.

E. Barozzi in [4] has used (1.13) to prove a minimality property of the L?-norm of
Hy. Almgren, Taylor and Wang in [2] have used (1.14) to introduce a variational ap-
proach to the motion by the mean curvature. In the second case we remark that
2, ,NInt(E) (Int (E) = the interior of E, X', , the regular part of JE;, see (1.4)) is a
smooth n-dimensional C%* manifold with classical mean curvature H; given by

(1.15) H;(x) =Ah(x) v(x) VxeZX; ,NInt(E)

(where v(x) is the outer normal vector to X', , at x). Moreover, if we assume that E is a
convex set, we can use the strong maximum principle to conclude that E; cc Int (E).
Then X, ,e C*“ and we can write (0.4) in the form

(1.16) j divy, Xd9C, = — A j h(x) X®vdIC, YXeCl(U,R"1)
M; M;
where M}. = 8E,1

The main purpose of this paper is to study the behaviour of (1.16) when A — + «
or, equivalently, the behaviour of the family of measures

(1.17) v, (A) =2 j h(x) d3C, AcU.

M;NA

Exampre 1.2. Let E = Br(0) and 5 given by (1.14). By a straightforward computa-

. . 4(n+1) . . .
tion we obtain that for AR? > — 5 the unique solution E; of the minimum
n

problem (1.7) is the sphere Bg,(0), where

_R_ R _n
Ri= 2 +W/4 2.

In this case

4(n+1)° ] (n+2)R
—(H+2)R2(R—|x|) 1f0$|x|$—2(”+1)
Hg(x) =Y  (#+2)R
L 0 if |x|>R.

Remark 1.3. If 5 is given by (1.14), then we can estimate the distance between JE;
and OE. Precisely, we have:



262 E. BAROZZI ET AL.

n+

dist (x, 9E) <2 /11 for x e 8E; N Int (E).

In fact, by applying the inequality (see Tamanini [17], formula (1.10))

n+1
r

(1.18) [(-gnar.< [1Dpe + ZE 1BF],
B

3B
(which holds for any ball Bc R”*! with radius ) with B = Bg/,, R = dist (x, dE) and
F=E;, we obtain

(n +

f(l—qs ) doC <J|D¢ 2D g gy
E; p = E; R il

3B B

On the other hand, from the minimality of E;, we have

J|D¢EA|SJ(1—¢5A)d<‘}Cﬂ—i j dist (z, OF) dz
B

3B B-E,
and therefore

2(n+1
%W_Eﬂ?l J dist (z, 9E)dz?i§|B—EA|

B-E
and the desired inequality follows.

) if E satisfies an internal sphere condition (that is, if there exists R > 0 and, for
every point yedE, a ball of radius R such that BcE and BNOE = {y}), if

4n+1)
AR? > (;1—2) and x e 9E, N Int (E), then

n+
. R R? 7 2n
s -4 =-2<Z2
dist (x, OE) 2 y pl < i

In fact, if E,CcE, and E, ;, E, ; are solutions of the minimum problem (1.7) with
E; and E, respectively, then E; ;CE, ;. It follows that the ball B, of Example 1.2 is
contained in E; and the desired inequality follows.

Therefore, in this case we obtain

Ab(x) = A dist (x, 3E) < %” Vx € 9, N Int (E).

We conclude this section with some further remarks about the non parametric
case.

We assume that U= 2 X R (2 an open subset of R”) and E = {x = (y, 2) e 2 X
X R, 2<f(y)}, where f: 2— R is a given function. For fe C*(Q), we set:

D
Tf(y) = SV yeQ

V1+ D) P
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and
) n D;f(y)
(1.19)  H(y, 2) =div(T/)») = 2 D}| ———=—=1|, (y,2)€U.
7=1 1+ |Df(y) |
It is easy to see that
(1.20) fdivMde}an - JHXOVdDCﬂ VXeCHU,R"Y).
M M
Here M=0E N U and v is the outer normal to dEN U.
In this case we can write

n+1
(1.21) divyX= 2 0,X;

=1
where 0;,7=1,..., 7+ 1 are the tangential derivatives, that is,

n+1

6/:D]’_V/ZVbDb, ]:1,,ﬂ+1
h=1

The function H (given by (1.19)) is a variational mean curvature for E in U.
Sometimes a formula like (1.20) may be true with a given function He L'(M)
without the assumption fe C?. In such a case we shall say that He L' (M) is a weak
mean curvature of M.
For example, we can consider a symmetric surface M, z.e.,

(1.22) fy)=gle), o=]y|e(0,R)
with ge C?(0, R). In this case (1.19) becomes

g"(e) L nm1g'le)
(1+¢%()"?  e(l+g2(e)"?

Now, denoting by M,=M —B, xR, (0<r<R, B,={yeR": |y|<r}), we ob-
tain

(1.23) H(y, z) =

0e(0,R).

(1.24) f divy X d9C, = — f HX @ vd ¢, +
M, M,

+

1_+ f ZX/&dD‘Cnfl_g—L fXﬂ+1dSCn,1
(1+g?)7? ) ) A7 Vitg® ()
3B, & \1)sp,
VXeCi(U,R"*1).
We study the behaviour of (1.24) when »— 0 with the choice
(1.25) 2(o) = co?, c>0, ae(0,1]

(a cusp when a € (0, 1), a cone when a =1). Whenever #» = 2, the last two integrals
in the right side of (1.24) go to zero as »—0 and then (1.20) is true with H given by

caly|*la+n—=2+n—1)c%a’|y|**?)

(1.26) H(y, z) =
y (1+62a2|y|2a72)3/2



264 E. BAROZZI ET AL.

For n =1, from (1.24) when »— 0, we obtain

g'(r)

r—0

(1.27) fdivMXd:)q: - fHXovdsq—z}(z(o, 0) lim
M M 1+g"%(r)

and the value of the limit is

1 if ae(0,1)
(1.28) Lla)=9 ¢ ifag=1.

In this case (1.20) fails to be true. In fact, (1.27) implies that the Radon measure which
represents the linear functional

X—>jdivMXd3q, XeCl(U,R?)
M

has a singular component with respect to the Hausdorff measure ¢, |y, given by the
«Dirac measure»

(129) U= (0, -2 o@(a)é(o,o)).

2. VARIATIONAL MEAN CURVATURE OF A PSEUDOCONVEX SET

In this section we construct a variational mean curvature of a subgraph E of a Lips-
chitz continuous function f, by following the method introduced in [4, 5].

Let Ac R” be an open bounded set. Let f: A— R be a Lipschitz continuous
function. Let 2 c A be an open set with 92 € C? and mean curvature of 32 nonnega-
tive. Let E= {(y, 2) e 2 X R: ye 2, 2 < f(y)} be the subgraph of /. In the following
we shall suppose that E is a pseudoconvex set, ze.

@1 [VI+ DA< [Vi+[DoP VoeBV(Q), sptlv—flcc®, v=/,
Q Q

or, in other words, that f is a weak supersolution of the minimal surface equation,
ie.,

(2.2) ijqu)dyzo VpeCl(R), $=0.
Q
For each 1 =0, we define the funcional B;: BV(Q) — R by setting
23) B0 = f\/1+ Do) + %J(f—v)%ier [ 17-oldac, ..
Q o 30
Then we can state the following (see for example [10]).

TraeoreM 2.1. The functional By has a unique minimizer u; € BV(Q). Moreover
u; €C**(Q)NCQ) Yae (0,1) and u;(y) = f(y) VyedQ.
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Remark 2.2. The function #; is a solution of the Euler equation associated to the
functional &,, ze.

(2.4) Muy (y) = div (Tu;)(y) = —A(f(y) —u;(y)) VyeQ.

Remark 2.3. From the inequality B, («;) < B;(f) and the lower-semicontinuity of
the area functional (with respect to the Ll(Q)—convergence), we obtain
(2.5) ) , lim 2 —fHdy=0
— + P
(in particular, #,—f in L?(R))

(2.5) i) im j\/1+ | Du; |? = j\/1+ |Df|2.
Moreover,
(2.5) 1) Du,—Df in LY(Q).

In fact, from (2.5) 7) and (2.5) #), we have that D, weakly converges as distributions
to Df and that {Du; }; is bounded in L' (), and (2.5) #) follows (see [3, Exercise
1.20]).

ProrosiTioN 2.4.
(2.6) O0sA<u= u(y) <u,y) <fly) ae yef.

Proor. From (2.1) it follows that #, /\ f is also a minimum for $,. Thus, by the
uniqueness of #, it follows that u, \f=u,, i.e. u,<f.
Now, let v=wu; ANu,, w=wu;\Nu,, G={xeQ:u;(y) >u,(y)}. Adding the
inequalities
B (u,) < B, (w);  By(uy) < B, (v),

u u
and recalling that

[Vi+ Do+ [Vi+ [DwP< [Vi+ [Du [+ [V1+ Dy, |?
Q Q Q Q
we obtain

a| J(F= w7 = = w?) dy| <a] [((F=mP = (= wr) ).

G

On the other hand
(f— Z'f,u)z - (f= M)z =(2f- Uy — wy ) ay — uﬂ) >0 inG.
Hence |G| =0, that is u; <u, ae. in Q.

REMARK 2.5. Suppose now that there exists a function Mfe LiL.(£) such that

2.7) JTfoD(pdyz - j(Mf) pdy VoeCl(Q),
Q Q
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Df

Z.e. suppose that the distributional divergence of the vector Tf= ——— is a

function Mfe LL.(). V1+ |Df|?

If MfeL?(Q), 1 <p< + o, then the family
(2.8) Yi(p) =Af(y) —u;(y)) VyeQ VA>0
is bounded in L?(£) and the estimate
(2.9) b2 ll, < IM7ll, 2 >0
holds. Moreover we have
(2.10) Mu; — Mf weakly in L?(Q).
In fact, multiplying (2.4) by (f—#;)? ! and integrating by parts, we obtain

A[(f=wydy=[Tu, ®DI(f =)~ dy
Q Q

Recalling that
(Tf = Tu;) @ (Df — Du;) 2 0,
from (2.7) and Holder’s inequality, we obtain

A[(f=u)dy= [ Tu, @D(f =~ dy < fT/“D(f—%z)p_ldy:
0 (o]

= —fo — ) dy <M I f =l
and (2.9) follows.
We now prove (2.10). Observe that (2.5) iii) implies
2.11) lim f | Tu () = Tf(y) | dy = 0.

Then we have, Vo e Ci ()
[Mfpdy= ~ [TfeDpdy=~ lim [Tu;, @Dpdy= lim [Mu,,gdy,
which proves (2.10).

Exampre 2.6. Let g:[0, 2] = R be the function defined by
0 fosr<i
t) =
&0 { —(—=1)* if1<sr=<2
where a e (1, 2) and let £/(y) = g(|y|), ye R?, |y| <2. It is easy to see that (2.7) is
verified and Mfe L?(B,) if and only if p(2 — a) < 1. In particular, if a > % , then we
have MfeL?(B,).

We now proceed to the construction of the variational mean curvature of the
set

E={(y,20e 2 xR, z<f(y)}.
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Let
E,={(y, 200 e 2 xR, z<u;(y)},
where #; is the unique minimizer of B, and define
—inf {2 —2),(y, E,, A=0 , E
212 Hiy. 2 = inf {A(f(y) — 2),(y, 2) € E, }ose (y,2)e
0 se(y,2)e(2xR)-E.

We claim that the function H, just defined, is a variational mean curvature of E in
Q2 xR.

From (2.1) and a standard symmetrization argument, it is sufficient to prove
(2.13) TFu(f) < Fylv) VYoeBV(Q) spt(f—v)ccQ, v<f
where Jy: BV(2) — R is the functional

(2.14) Fu(w) = [V1+ Do + |
Q Q

From (2.6) and (2.12), we get that if 0 <A <u and (y, 2) € E, — E;, then

v(y)
j H(y, 2) dz| dv.

(2.15) —u(f(y) —2) SH(y, 2) < —A(f(y) —2).
For £e N, put

,1]:%,]':0,1,2,3,..., w=u, E=E,
and define

—A;(fly)—=2) if (y,2)eE,~E,_;,jeN
0 if (7,2 eE,UL(QxR)—E)l.

We prove now the following

(2.16) H,(y, 2) ={

TraeorEM 2.7. He L' (2 X R) and

(2.17) TFu(f) < Fylv) VoeBV(Q) spt(f—v)ccQ, v<f
(i.e., H is a variational mean curvature for E). Moreover
(2.18) Il 0 = [V1+ DA = [ V1 + [Dug|?.

Q Q

=1
Proor. From (2.15) whith A = ]? S U= % we obtain
7—1

(f(y) —2) <H(y,2) < — pr

(2.19) —é (fp) =2) V(y,2)eE—E

and therefore

(2.20) o< 2 2 j j (f) —2) de|dy VkeN.

Q Ui

7
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Now, from B;  (#,_,) < B, _ (u,), we obtain

“

]'—’1J j(f(y)—z) dz dysgf\/l+|pu]_|2_gf\/m,

zk
Q

i1

and therefore

u;

> 1 > /1
=S| Juw-na|or 35

j(f(y)—z)dz dy <

;:12k9 o g \u
%f J(f ) —2)dz|dy + Z[J\/1+|Du|2 J\/1+|Du] n ]:
f
-4 [r) =2 22 dy+U\/1+|Df|2—j\/1+|puo|2].
Q Uy Q Q

Letting £— + o we obtain

(2.21) IHI| 0 r) < f\/1+|Df|2 j\/1+|Duo|2

Q

and therefore He L'(2 X R).
Let

(2.22) Fo(v) = Ty (0) = [V1+ Do + |
Q Q

We now prove that

(2.23) F(u;) < Fp(v) YoeBV(Q), sptu;—v)ccQ, v<u,.

j Hy(y, 2) dz) dy .

— o

We argue by induction on 7. If j=1, then (2.23) follows from the inequality
By, () < B; (v) of Theorem 2.1. Suppose now that (2.23) holds for some ;. If
veBV(Q) is such that spt (., —v)ccQ and v <u,;,,, then we can write

T(u;) < F(u;Av)  (inductive assumption)
B, ) < By, (u\Vv)  (by Theorem 2.1).
From these inequalities, we obtain

Telt1) < Ty (v).
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Indeed

Uiy 1

Flu ) = [ VIH 1D +j( [ 16,2 dz) dy =
Q o \-w»

= f\/1+ |Du]|2+f( fu]Hk(y,z) dz) dy +
Q Q \-=

Ui+

+f 1+ |Du].+1|2—JV1+ |Duj|2+j JHk(y,z) dz |dy <
Q Q Q

U

ui \v
sj\/u |D<M,/\v>|2+j me,z) dz | dy +
Q Q - ®

Ui+ 1

f L+ Doy - J\/1+|Du|2 f ijy 2) dz | dy =
=$/-+1(uj+1)+jv1+|D(u/-/\v J\/l+|Du|2
Q

ui \v

f
+1
f fH,ey 0 de|dy 15 j<f<y>—z>dz dy<
Q Q uj
< B0,V o) + f\/l D Ao P — f\/1 T |Day|? +
Q Q
ui\v f
'+ 1
+f fHk(y,z)dz dy—] J’ J’(f(y)—z)dz dy <
o o \u
f\/1+|Dv|2 ]+1 JZ (;V 0)) dy —
ui \v
'+ 1
- l(f—u/)zdy%—.l’ fHk(y,z)dz dy =
Q — o0
u;\V v ui \v

=f‘\/1+|Du|2+J’ ij(y,z) dz dy+J’ ij(y,z)dz dy =
Q o \ 4 Q \-=

:J’\/l—l— |Dv|2+f( J’Hk(y,z) dz) dy = J,(v).
Q g \-=

Hence, (2.23) follows.
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Now, letting j/— + % in (2.23), we obtain
(2.24) F(f) < F(v) YveBV(Q), spt(f—v)ccQ, v<f
Hence H, is a mean variational curvature for the set E.

From (2.19) it follows that Hk—>H in L'(2 X R) and we obtain immediately that
also H is a mean variational curvature for E.

Finally, from JF(f) < Jyy(u,), we obtain

[Vi+ |Df|2+j( jH(y,z>dz)dysj\/1+ | Dy |2,
Q Q \~= e
ie.

(2.25) [V1+ DA = [V + Do |2 < [Hlp 0 -
Q Q

By (2.25) and (2.21) we obtain (2.18).
Hence, the proof of Theorem 2.7 is complete.
We can repeat the preceding construction all over again replacing the function
h(y, 2) =[f(y) =21V O by an arbitrary measurable function /: Q2 X R — R such
that h(y, z) =0 a.e. (y, 2) e 2 X R, and Ff/o(x) dx=0 = |F| =0. The relevance of

the choice A(y, z) = |f(y) — z| becomes clear from the following.

THEOREM 2.8. 1 addiction to the bypotheses of Theorem 2.7 suppose that f is not a
solution of the minimal surface equation in Q. Then:

a) u;(y) <fly) VyeQ VA=0
b) 0si<u= u(y) <u,(y) VyeQ
¢) u;eC>4(Q) VA=0.

Proor. The inequalities z;(y) < u,(y) <f(y) Vye Q were already proved in
Proposition 2.4. Now we set g(p) = V1+ |p|?, pe R" and
1

0s(y) = afjgp (Df(y) + Du ) — DFO)) k.
Then we have
1= £ 4D,
and accordingly,
(2.26) (1w, = 1) Oandy—l; f,, (= ) Dy dy.
g

Therefore, if peCi(R2), ¢ =0, then we have

”2 f )D(pdy\—J’MuAgady /'Lj —u;) @dy.
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We obtain

227 3 j/ ) )D(pdy-i-/lj ) gdy<0 VYpeCl(Q), ¢=0.
i,j=1
Then, from the strong maximum pr1nc1ple applied to «; — f (see [9, Theorem 8.191), a)
follows.
In the same way we can prove that

1 J a;D;(u; — u,) D, pdy = I(Tul—Tu‘u)Oqudyz J[/l(f— u;) — u(f—u,)] @dy
b= 9 2
and observmg that

Mf=wy) —u(f—u,) = =My — w,) + (u— ), — f) < = Muy — u,),

we obtain
228 Z Ja,/D/( )D,‘(pdyﬂ—lj(ul—uﬂ)gudySO VoeCi(R), ¢=0.
- 0

Then we can apply the strong maximum principle and 4) follows.
Statement ¢) is a straightforward consequence of 4) and the classical regularity the-
ory (see [14, 15]).

Remark 2.9.

i) If 2;7 A, then u%T u; uniformly.

i) If uy(y) <z <f(y), then there exists A >0 such that «,(y) =z (ye Q).
Then we easily conclude that H is continuous in E.

3. A GRADIENT ESTIMATE

In this section, we prove a global gradient estimate for the family of functions
{4; } >0 that is independent of 1. Such a gradient bound is obtained in the following
two cases:

/) when fe CV“(A) and (2.1) is verified;

/7)) when fis a concave function.

Each case needs a suitable choice of Q.

At first, we prove the following

Lemma 3.1 Let fe C1*(8) and the function | Dz, (y) | has a relative maximum at
a point y,e€ Q. Then

(3.1) | Dety (o) | < | Df (o) |

Proor. For simplicity, we set # = #;. Then we can write (2.4) in the form

7

(3.2) > a;(Du) Dyu= —A(f—u),

i,j=1
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where

(14 |p|®) 0, —pip;
a;(p) = VpeR”.
i\P (1+|p|2)3/2 p

The assumption fe C'“(£2) implies that # e C*>“(£2). Let w = % | Du|?. Differentiat-

ing equation (3.2) with respect to y,, multiplying by D), # and summing with respect to
b, we obtain

63 3 aDw-

7,j=1 4,7

n n
2}} a;DyuDjyu + zk: D,,a;DyuDyw =

1 i j 1

=-1 2 D;?beu— Z DbquM
h=1 h=1

Recalling now that
Dyw(yy) =0

n

a;(Du(yy)) Dyw(yy) <0

i,j=1

~
Il

M=

az](DZ’l(yO)) leu(yo)D]}]Zl(yo)Bo V})=1,2,,n,

i,7=1

~
Il

from (3.3) we deduce

| Du(ys) |* < Df(y5) @ Duulyy) < | Df () |[Des(y5) |
and (3.1) is proved.

THEOREM 3.2. Assume that 3 € C?, that the mean curvature of 9 be non negative
(take for example Q= a sphere) and assume that fe C**(Q) and (2.2) holds. Then
there exists a constant k>0 (k=k(n, Q, |fllcr.ce))) such that

(3.4) |Du;(y) | <k Vyef, VAz=0.

Proor. By Proposition 2.4, we have
(3.5) uy(y) S uy(y) <fly) Yyel VA=0.

Now u, is a solution of the minimal surface equation in  and then, by Theorem 2.1 of
[8], we have

(3.6) |uo()’1)_uo()’z)|$k1|y1_3’2| Vy1,y25§

Where kl = kl(n> 'Q7 ||f||C1’a(3.Q))'
Now, if there exists y,e £ such that

| Det (y) | < [Du(30) | VyeL,
from Lemma 3.1, we obtain

|Du;(y) | < |Df(yo) | SL VyeQ.
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On the other hand, from (3.5) it follows that
—k |y1 —y2| Sug(y)) —uo(y:) S f91) =) ¥y, €2 Vy,e0Q
(because #,(y,) = f(y,)).
We deduce that
|Du; | < max {4, L}
and Theorem 3.2 is proved.

Remark 3.3. If £is supposed to be only Lipschitz-continuous, we may no more use
the results of [8] to obtain the estimate (3.6) and then it fails to exist (in general) an
inferior Lipschitz-continuous barrier. For example, the function u(y;, y,) =

_ 2+1V3

n
Vot +92+Voi+ri-1
Q={(y;,y)eR? y>1+y7}, u(l+y3,y,) is Lipschitz-continuous but |Dz| is
not bounded at all.
Now, let’s consider the case 7/) in which # is a concave function.

is a solution of the minimal surface equation in

LetyoeA,0<p < %dist (9, 0A), and L be the Lipschitz constant of /in By, (yp).
Let

(3.7) v(y) =f(yo) —40L+3L|y — 5| VyeR".
Clearly,
v(y) = f(y)  VyeBy,(9) — By ()
v(y) <fly)  VYyeB,(y).
Now we choose
(3.8) Q= {yeB,(y): vly) <f(»)}.
Clearly, £ is an open convex subset of A such that
By (y9) € ¢ By, (99).
Since v is a convex function, we have
(3.9) v(y) Suy(y) <f(y) VyeQ.

We are now ready to state the following

THEOREM 3.5. Let Q be defined by (3.8). We have
(3.10) |Du;(y) | S3L VyeQ.

Proor. We have to slightly modify the proof of Lemma 3.1. Indeed, in general
u; ¢ C>(Q). We sketch the proof.
Let

A0 = [ fo-274() dz,
By (90)

where {7,}, is a standard sequence of nonnegative mollifiers. Then {/f,}, is a se-
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quence of concave functions in C® such that
|Dfy ()| SL  VyeBy,(y)
and which converges uniformly to f on compact subsets of By, (yy). Let
() = £y (90) —4oL +3 L[y — 5|
Q,= {yEBzg(yo) cop(9) <fh(y)}

and denote by #/ the unique minimizer of
Bl () = J\/1+ | Do|’dy + % j(f;]—v)zdw— f 1 — o] dC, .
Q) Q) 52,

We have that #{ e C?(2,) and
v (y) Suf(y) <f,(y) VyeQ, Vi=0.
We can then conclude that
|Duf(y)| S3L VyeQ, VA=0.
If h— 4+ o, the last inequality implies (3.10).

4. MEAN CURVATURE MEASURES

In this Section, using the Riesz Representation Theorem and the #;’s functions, we
shall define the mean curvature of some classes of manifolds that are the graph of non-
smooth functions.

We denote by M; and M the graphs of #; and f respectively and by divy,, and divy
the tangential divergence with respect to M, and M. For example, if X e Cj (2 x
xR, R"*1), then

n+1 n+1

divy X = ;,E 80,X"= > (D,X"—v,(veDX")),
=1

h=1
is the unit normal vector to M:

(=Df, 1)

Vi+ D

where v = (v!, ..., v"t1)

Denoting by

(4.1) Hi(y, 1) = Muy(9) vy, ;(5),  yeQ
the following formula of integration by parts holds:

4.2) fdilede)Cﬂ = - jPL e Xd), VYXeCl(@XR,R"").
M; M;

We state the following

ThaeoreM 4.1. VX e Ci (2 X R, R"*1) we have
(4.3) lim j divy, Xd9C, = j divy, Xd9C, .
M

A— +
M;
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Proor. Let {4} be an increasing sequence with lim 4;= + «. Weset M;=M; ,

Jj—= + o

uy=uy, v;=v, . By Remark 2.3, we have

(4.4) lim f | Du;(y) — Df(y) | dy = 0.

j—=>+ oo

Recalling that

n+1
[ divyxdoc, = | 2 (D, X"~ (veDX") V1 + [Dfdy,
=1
M Q

J'divMde)C 2 (D, X" — v (v, @DX") \/1 + | Du;|?dy,
M Q

where X = (X', ..., X", X"" "), v,= (v}, ...,v}, v

1
J Jovith

774, we obtain

UdivM/ 1\/1+| D, [P — V1 +| DA dy+
M7

n+1
sj | > D, X"
P h=1

ﬂ+1

j (DX" ®v,) v2\/1+ | Du;|? — (DX" ®v) v*\/1 + | Df?| dy

Now (4.3) easily follows from (4.4).

THEOREM 4.2. Suppose that i) or ii) in the beginning of Section 3 holds. Then there
exists an (n + 1)-dimensional vector valued Radon measure

FI = (HI)H27 )Hn+1)
such that

4.5) jdivMXd:)c”: - fx-dﬁ VXeCl(Q xR, R"" ).

Q Q

N
Such a measure H will be called the mean curvature measure of M.

Proor. We have
Mu;(y) = =A(f(9) —u;(9) <O VyeQ

and therefore (4.1) implies that

| H, (v, 4;9)) | = —Mu(y) VyeQ.
By the results of Section 3 we may suppose that

(4.6) |Du;(y) | <k VyefQ Vi=0.



276 E. BAROZZI ET AL.
Then (4.2) implies that

‘ j divy;, Xd 9,
M;

<IXIL [ |H: | V1 + [Duy Py <
Q
<[Xll. V1 + 22 [ | Hy|dy < X)L V14 &2
Q
= X V1 + &2

where v, is the outer normal to d2. Then Theorem 4.1 implies:

= ‘ fﬁl ® X4,
M;

J —Mu; dy ‘ =
e

<V1+£29¢,_ ,62)|X]..,

j T%l .Ved‘?{ﬂ—l
QR

4.7)

jdivMXd.‘)C” <V1+£29C,_ ,069Q)|X]. VXeCl(@xR,R"*').
M

Theorem 4.2 is then a consequence of the Riesz Representation Theorem.
Remark 4.3. From (4.2) and Theorems 4.1, 4.2 we immediately obtain that

(4.8) jx-dﬁ:ll@ jﬁloxgzscﬂ VXeCl(QXR,R"*1).
M M;
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