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Luits CAFFARELLI

SOME LIOUVILLE THEOREMS FOR PDE PROBLEMS
IN PERIODIC MEDIA

AsstraCT. — Liouville problems in periodic media (z.c. the study of properties of global solutions to
PDE) arise both in homogenization and dynamical systems. We discuss some recent results for minimal
surfaces and free boundaries.

Key worbps: Periodic Media; Liouville; Homogenization.

For second order PDE’s, specially those of geometric type, like minimal surfaces
and free boundary problems, the classification of global solutions is often linked to
the local regularity properties of solutions of the equation under consideration.

The most classical example, is perhaps, the classification of minimal cones, and its
consequences on the local regularity of minimal surfaces. Similar considerations apply
to the regularity theory of free boundaries,singular perturbation problems and one
may also argue that the regularity theory of fully non linear equations, depends in so-
me sense of this classification.

In fact, blow up arguments, that reduce the problem of local behavior of solutions
to a Liouville type problem, often have the advantage of freeing the discussion of the
need to consider the effect of lower order, less important aspects of the problem, and
reveal the essential features of the solution.

Although of a more complex nature, another instance of this connection between
global and local, arises in the context of homogenization theory.

In that case, we are given a highly oscillatory equation, at a very small (epsilon) sca-
le, and as the scale of the oscillations, epsilon, goes to zero, one tries to determine if
the solutions of the epsilon problem, will necessarily converge to a solution of some
now translation invariant problem (equation, or set of inequalities).

Perhaps the most classical example is to consider an equation in divergence form
(for instance from the calculus of variations)

DZVF,(Vu, %)

F; periodic in X

and ask if the limit of solutions, #,, as epsilon goes to zero, will converge to a solution,
uy, of an equation that does not depend on x, anymore.
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A classical way to approach this problem, is to make the ansatz that the solution,
u,, will consist of the limiting solution, #,, plus an oscillatory term, w,, of period epsi-
lon, whose gradient will compensate for the oscillatory character of the equation. It is
natural then to dilate the solution #,, by epsilon, homogeneously of degree one:

U, = %ug(sX)

and try to classify the limiting configuration. Since #, is expected to be smooth, 7, will
become under such dialations, a linear funtion, p and w, an associated periodic term w
of order one.

This periodic term is called a corrector, p + w is a «plane like solution» of the glo-
bal periodic problem, and its average energy gives us the «effective» energy functional
that the limiting solution must minimize. In case the oscillation depends on the inde-
pendent variables, the theory is extensively developed. Much less so, when our sol-
ution consists of a surface (a minimal surface or a free boundary) embedded in a peri-
odic configuration.

This is because periodicity is lost when the surface under consideration must be
asymptotically an irrational plane.

Perhaps the most influential results in this case are those due to Moser.

In this context, we would like to discuss issues of existence of global solutions to
several problems in periodic media that share common ideas and techniques:

® Plane like minimal surfaces.

® Phase transition problems where the transition takes place on a given
strip.

® Free boundary problems of both stationary and of traveling wave type (arising
for instance in flame propagation, or the geometry of a capillary drop sitting on a non
homogeneous plane).

The common themes of all theses problems are:

® Techniques based on elementary geometric properties of the solutions (uniform
density properties of surfaces and sets).

® Regularity of constrained problems.

® Appropriate choice of solutions to obtain the desired invariance (supersolution
type methods are used).

We first discuss Moser’s problem of constructing plane like minimal surfaces in
periodic media:

Given a generalized area functional F(X, v), periodic in X, and a plane P, in R”,
find a global F-minimal surface, S, that remains at a fixed distance from P.

This problem arises in dynamical systems (foliations of the torus by minimal surfa-
ces), and in homogenization (shape of a capillary drop in a periodic media).

MaiN THeOREM (in collaboration with R de la Llave, CPAM 2001).
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Fig. 1 — Minimal surface stays inside a «strip» in a petiodic media.

1. Indeed such a surface exists.

2. The distance to the plain depends only on the ellipticity of F.

3. As we slide the plain, the corresponding surfaces laminate the torus.
4. The effective area is convex.

Fig. 2. — A mimimal array of spins, with interphase inside a spin.
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Fig. 3. — u is asymptotically =1 and # =0 stays in a strip.

—
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Fig. 4. — Au=0 for u>0; u,=f(x, v) periodic in x.

L. CAFFARELLI
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Fig. 5. — Constrained (double obstacle) minimal surface.

For geodesics in the plane, this is due to Morse, for geodesics in R, this is not true.
This shows that codimension one is essential, and will show up in our construction.
There is related work by Bangert.

Phase transition (in collaboration with R de la Llave):

The typical, simplest, problem would be, given the lattice, Z”, we have arrays of
«spins», i.e., functions, «, that take values 1 or —1.

We define an energy, based on near neighborhood interactions:

E= X |u(x; —x)|.
b, — xll < 1
Given a hyperplane P, find a local minimizer, in R, that changes phase at a finite di-
stance from P.

(The theorem is true under very general interaction rules, as long as they preserve
order in a strict way (maximum principle).)

A bridge between the two problems is the construction of solutions to periodic
Landau Ginzburg type equations (E. Valdinocci):

Given a hyperplane, P, we can construct a solution of the periodic Landau Gin-
zburg equation, div # a local minimizer of

f(Vu)Ta,v/(x) Vu+ F(u, x)

with periodic X dependance whose zero level surface stays at a finite distance from P.
Finally, for free boundary problems, we have a stationary, and a dynamic version.

In the stationary, the free boundary problem under consideration would be: (work
in collaboration with Ki Ahm Lee) Given a hyperplane, P, in R, find a non negative
function #, harmonic in 2 = {X/u > 0} that satisfies, along the free boundary, 99,
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Fig. 6. — F-Area(9(D, U D,)) + F-Area(9(D, N D)2)) < F-Area(dD,) + F-Area (dD,).

the extra condition:
u,=f(X), f periodic
and that stays at a finite distance from P.

This problem is related to flame propagation, or the contact angle condition when
a drop sits on a plane with periodic structure.

At infinity, in €, « has linear behavior, that supposedly describes the effective free
boundary condition (contact angle).

Finally, the evolution case corresponds to global traveling wave solution to the as-
sociated singular perturbation problem,and its free boundary limit This is work in col-
laboration with K.A. Lee and A. Mellet and in the construction, we use ideas from the
work of Berestycki and Hamel.

Given the singular perturbation equation

X X
Au—u,=q(? Vu—ps\u, 5
there exists a solution, unique up to time translation, trapped between the two «travel-
ing wave» type profiles:
[1 _ e*(v,X)JrB,].
We would like now to discuss the main steps in the construction of plane like mi-
nimal surfaces:
general area functional is of the form

JF(x, v) dH" !
S

where F(x, v), when extended in v, as a homogeneous function of degree one, beco-
mes a convex cone, bounded by above and below by multiples of |v|;
Alv| S F(x, v) < B|v|
A and B are the ellipticity constants referred to above
We will work in the context of boundaries of sets of finite perimeter: this has the
effect of ordering the surfaces, by inclusion of the sets of which they are boundaries,
and allow us to treat them almost as graphs.
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Fig. 7. — The integer translation by # raises the strip, thus, D+ 2 2 D.

F(x, v) will be uniformly elliptic and periodic in X. It could be, for instance the
differential of area induced by a Riemann metric on the torus.

g (X)vv,.

The main steps in our construction are the following: When the slope of the plane
under consideration is rational,one expects a periodic surface.

Thus, given a rational plane, we construct a periodic surface, S = 3D, of minimal
«area» among those trapped between two parallel planes (we solve a double obstacle
problem).

Next, we note that if two different sets, D; and D,, have boundaries that are mini-
mizers, so do the intersection, D; N D, and the union, D; U D,.

We thus can talk of the minimal minimizer, Ze., the boundary, § of the intersection
of all minimizers, (the least supersolution). This boundary has an important monoto-
nicity property, the Birkhoff property, that establishes that if we translate the whole
configuration by an integer vector 7 that «raises» the strip constraining S, D is then
contained in its own translation.

This is due to the fact that D, UD is admissible for the translated strip, and
Dt N D is admissible for the original strip, so they must coincide with D, and D,
respectively.

We contend now, that if we can find just one «clean» period, in the «middle» of

. . . . . d . . . .
the strip, contained in €D, all integer translations v, as above, will map this period in-
side CD:
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Fig. 8. — The v translations, map Q into CD.

and thus D stays away from the upper constraint. That will automatically make it an
unconstrained minimizer, since we may then translate it up one unit, and the transla-
ted surface would be a minimizer that does not touch neither the top nor the
bottom.

The remaining fact, that there is at least one clean cube, is the combination of two
properties. The uniform density of minimal surfaces:

If a ball, B, is centered on the surface, S, then the area of S N B is proportional to
the area of B.

And a simple counting argument: how many cubes can touch S§?

If we take a strip with base a large cube of sides L, and height, M, such that M cu-
bes are stacked on top of each other, since the bottom of the strip is always a compari-
son surface, the total area of § must be less that C;L” !, where C, is a constant that
depends only on ellipticity.

On the other hand, if § touches all cubes in the central third of the strip, the total
area of S, is at least, C,L” "' M, where C, depends only on the area estimate above,
that in turns, depends itself on ellipticity. We have a contradiction, if L is large enough
(depending only on ellipticity and dimension).

This shows that some cube in the middle strip must be disjoint with S. But if such a
cube is contained in D, the bottom third of the strip will be contained in D. This is im-
possible, because then, we could lower § by one unit, contradicting minimality.

Thus the top third of the strip is contained in CD. Still, § may touch the bottom of
the strip, but now, we can translate it one unit up, without touching the top. Thus, this
translation is still a constrained minimizer, but it stays away from the top and bottom
of the strip. Thus it is a local, unconstrained minimizer.
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Fig. 9. — C, X Number of intersected cubes < F-Area § < F-Area of Bottom < C;L"™".

To close, two interesting directions we are pursuing

Homogenization limits: To show that actually the effective area or free boundary
condition defined by these global solutions is the one that determines the limiting
configuration in a homogenization process is a highly non trivial matter mainly becau-
se of the very week continuity properties of the effective parameters. In the case of free
boundary problems, like flame propagation, or of the contact angle condition for a ca-
pillary drop, the limits can be completely different if one looks at solutions construc-
ted variationally (the limit is in this case trivial) or as least supersolution. The limit in
this case is very complex, it satisfies free boundary inequalities, and is the relevant one
for evolution problems.

The second direction concerns the fact that our construction does not really requi-
re the existence of a dense family of «rational» foliations.

For instance, an interesting case is the following media in R:

We have the standard lattice, Z

In the horizontal directions we have invariance under integer translations, but
translations in the vertical direction are coupled with a horizontal deformation given
by the transformation

’

(x,9,2)—>(x", 9", 2") with z'=z+1,

In this case, invariant surfaces are of the form:
51:{X3:C}, SZZ{x1=AlX3}, S;Z{XZZBlixs}

(with 4, =47, the eigenvalues of the matrix M, above and x;, x, coordinates on the
eigenvectors.
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We then construct (in collaboration with A. Candel and R. de la Llave) «plane li-
ke minimal surfaces» around each such «plane» by basically the same method. The
main difference is that periodic approximations must be substituted by monotone sol-
utions of «Dirichlet like » problems in increasing domains.
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