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TADEUSZ IWANIEC - CARLO SBORDONE

CACCIOPPOLI ESTIMATES AND VERY WEAK SOLUTIONS
OF ELLIPTIC EQUATIONS

ABSTRACT. — Caccioppoli estimates are instrumental in virtually all analytic aspects of the theory of
partial differential equations, linear and nonlinear. And there is always something new to add to these
estimates. We emphasize the fundamental role of the natural domain of definition of a given differential
operator and the associated weak solutions. However, we depart from this usual setting (energy estima-
tes) and move into the realm of the so-called very weak solutions where important new applications lie.
We carry out this task deliberately with a restricted generality in interest of readability, and we hope it
pays off handsomely in mathematical insights.

KEY WORDS: Caccioppoli inequality; Very weak solutions; Elliptic equations.

INTRODUCTION

One might possibly say that R. Caccioppoli was one of the finest analysts of his
time. To whom we should compare him: C.B. Morrey, J. Leray, J. Schauder, L. Niren-
berg, L. Bers, A. Lavrentiev, E. De Giorgi? With this impressive list of names, we now
face truly fascinating questions, related not so much to the well known results of Cac-
cioppoli as to the possible generalizations, their substance and universality. There are
many admirers of Caccioppoli’s ideas, but few know the full complexity and advan-
tage behind his estimates for elliptic partial differential equations, PDEs in
short.

These estimates are worth quoting extensively, for they are a rich resource for fur-
ther exploration in both linear and nonlinear equations (existence, uniqueness and
regularity). Among all a priori estimates in PDEs the Caccioppoli estimates are the
ones that most strongly emphasize the reverse form of the Poincarè - Sobolev inequali-
ty. Indeed, they have been widely noted as

�
V

NW(x) ˜u(x)Np dx b�
V

Nu(x) ˜W(x)Np dx(1)

where u is a solution to a given PDE and W is an arbitrary test function of class
C0

Q (V). Here and subsequently, the notation b is being used for inequalities in
which the implied constant does not depend on functions involved therein. Our goal
is to present these estimates together with various generalizations as sensitively as pos-
sible, to capture their fundamental role in analysis.

There is such a thing as the natural Sobolev exponent 1EpEQ for the deriva-
tives of solutions to a given PDE, see the next section for details. It is relatively simple
to derive Caccioppoli type estimates with this natural exponent, nothing deeper than
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integration by parts. In this natural setting we refer to them as the energy estimates.
They are largely responsible for establishing the regularity properties of the solutions,
just to mention the property of higher integrability of the gradient. In this category of
useful implications we must certainly include the reverse Hölder inequalities:

u �–
B

N˜uNpv
1
p

GCp �–
2B

N˜uN ,(2)

where the integral averages are taken over all concentric balls B%2B%V. The phe-
nomenon of selfimprovement is that we obtain from (2) a new set of inequali-
ties

u �–
B

N˜uNsv
1
s

GCs �–
2B

N˜uN(3)

with some exponent sDp and constant Cs , depending only on p , Cp and the dimen-
sion n. This fact was first brought to light in the celebrated paper by F.W. Gehring
[23] and then profitably extended by many researchers [11, 10, 18, 21, 25, 22, 66,
56, 24].

Almost half of a century has gone to the development of Caccioppoli’s ideas, but
only recently we became fully aware of the estimates with exponents below the natural
one. They became essential ingredients to nonlinear PDEs [34, 35, 45]. Thus we sub-
scribe to these estimates here, leading to what we call the theory of very weak solu-
tions. The general underlying advantage is that when we lower the exponent for the
gradient of the solution we, automatically, lower the exponent for the test function in
the right hand side of (1), say

�
V

NW(x) ˜u(x)Ns dx b�
V

Nu(x) ˜W(x)Ns dx(4)

for some 1G sEp , as needed for a specific problem. Considering the matter in all its
bearings mention should be made of the removability of singularities [35, 41, 43], in-
tegrability of the Jacobian determinant [15, 27, 44, 55, 57, 28, 12, 29, 49], the study of
equations with measure data [30, 20, 46, 47, 17], and much more [61, 59], R .
Chiefly, the questions we are going to discuss here originated from our studies of the
geometric function theory [40] and the calculus of variations [63].

For many interesting details concerning life of Renato Caccioppoli we refer to
[1, 32].

1. EXAMPLES OF THE NATURAL SETTING

The natural domain of definition of a given PDE is usually determined from an in-
terpretation of its solutions, sometimes as an analytic description of a geometric ob-
ject, sometimes as a mathematical model of certain physical or mechanical entity. It is
not necessary to formulate a rigorous definition of the natural domain in this rather
early stage of development. Precise treatment would be dry and would work against
the ideas about to be discussed here. Throughout this text the term natural domain, or
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natural setting, of a given PDE pertains to the situation when its eloquent interpreta-
tion is clear from the context. Of course for every PDE (linear or nonlinear) the natu-
ral setting ought to be in a complete function space. That is why we must work with
weakly differentiable functions whose derivatives possess certain degree of integrabili-
ty. Orlicz-Sobolev classes will also emerge, as the so-called weak domains. It is illumi-
nating and rewarding to begin with some classical examples.

1.1. The Harmonic Equation:

div˜u4div F , in V%Rn .(1.1)

The well known and perhaps most natural is the setting in the Sobolev space
W 1, 2 (V), where the given vector field F4(F 1 , R , F n ) lies in L 2 (V , Rn ). Such solu-
tions are stationary points of the energy functional

E[u]4�
V

N˜uN212aF , ˜ub ,(1.2)

usually subjected to the boundary condition: u�u01W0
1, 2 (V) with given Dirichlet

data u0�W 1, 2 (V).
A prototype for many nonlinear PDEs is furnished by

1.2. The p-Harmonic Equation:

div N˜uNp22 ˜u4div F , in V%Rn .(1.3)

The p-harmonic equation is naturally defined for u�W 1, p (V), 1EpEQ , where
F�L q (V , Rn ), and q is Hölder conjugate to p; that is, p1q4pq. The reason for this
setting is that this equation arises naturally from the energy integral

E[u]4�
V

N˜uNp1paF , ˜ub .(1.4)

Recent developments of the theory of quasiconformal mappings [40] rely on paral-
lel advances in the study of even more general equations

1.3. A-harmonic Equation:

div A(x , ˜u)4div F(1.5)

where A : V3RnKRn satisfies, among other conditions, the following ellipticity
bounds

aA(x , j), jb 4
def

NjNA
p Fr(x)NjNp(1.6)

aA(x , j), zbGNjNA
p21 NzNA , 1EpEQ(1.7)

with some measurable function 0Er(x)EQ and all j , z�Rn. In general r(x) need
not be constant; consequently, the uniform ellipticity is lost when r(x) approaches
zero, a legitimate reason for calling r(x) the distortion coefficient. The natural setting
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for such degenerate elliptic PDEs is in the space of functions having finite
energy

E[u]4�
V

aA(x , ˜u), ˜ub dx4�
V

N˜uNp
A dxEQ .(1.8)

This does not necessarily mean that N˜uN�L p (V), as the distortion coefficient r4
4r(x) may assume arbitrarily small values. Also L p-integrability of the gradient is insuf-
ficient for the energy to be finite, as r may approach infinity.

Degenerate elliptic PDEs have begun to emerge primarily as a consequence of
studies in the geometric function theory and parallel advances in nonlinear elasticity.
The category of functions that those theories consider consists of mappings f4

4( f 1 , R , f n ): VKRn whose differential matrix Df(x)4k ¯f i

¯xj
l has finite distortion

1.4. The Distortion Inequality:

NDf(x)NnGK(x) det Df(x)(1.9)

where 1GK(x)EQ is a given measurable (outer distortion) function. The regularity
and the geometric properties of these mappings are issues of fundamental importance
[11, 40]. To get the subject of the ground one must integrate the Jacobian determinant
J(x , f )4det Df(x). Then, in quest of the Caccioppoli type estimates, we are faced
with rather delicate problems regarding integration by parts

�
V

W(x) J(x , f ) dx4�
V

W df 1RRRdf n42�
V

f 1 dWRdf 2RRRdf n(1.10)

against an arbitrary test function W�C0
Q (V). The relevance of the Sobolev space

Wloc
1 , n (V , Rn ) as a natural domain in which one looks for the solutions of the distor-

tion inequality (1.9) is evident. Note, on the side, that such solutions are continuous
[26]. However, somewhat weaker and more natural initial regularity assumptions suffice
if the distortion function K4K(x) is exponentially integrable; that is, whenever

�
V

e gK(x) dxEQ , for some gD0 .(1.11)

On the analogy of the finite energy solutions to the second order PDEs we obtain a vi-
able theory of deformations having finite volume integral

�
V

J(x , f ) dxEQ(1.12)

see [36-38, 40, 51, 52], and the references given there. The role of this assumption as a
natural one can be further motivated by the fact that (1.12) always holds for weakly
differentiable homeomorphisms, a case intensively studied in nonlinear elasticity.

Let us close our list of examples of the natural domains with

1.5. The Complex Beltrami System:

¯F
¯z

4m(z) ¯F
¯z

, in V%C(1.13)
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for the mapping F4 (F 1 , F 2 , R , F n ) : VKCn. Here, the Beltrami coefficient m4
4m(z) is a measurable function valued in the space Cn3n of n3n matrices with complex
entries, such that

Nm(z) jNGkNjN , with kE1, for all j�Cn .

Note that the planar mappings of bounded distortion are governed by this linear
equation, where n41. The natural domain for (1.13) remains the same; that is, the
Sobolev space W 1, 2

loc (V , Cn ). One feature that makes the equations of type (1.13) spe-
cial ones is that they belong to the same homotopy class of elliptic PDEs as the uncou-
pled system of the Cauchy-Riemann equations,

¯F
¯z

4 g ¯F 1

¯z
, R , ¯F n

¯z
h40 �Cn .(1.14)

Indeed, the following one parameter family of elliptic operators

¯

¯z
2 tm(z) ¯

¯z
, 0G tG1(1.15)

defines a path between (1.14) and (1.13). In spite of this homotopy equivalence the
equations at (1.13) exhibit different geometric properties. For instance, the unique
continuation property fails (even for Lipschitz solutions) when k is far from zero, see
[50]. This remains in sharp contrast with the holomorphic solutions of the Cauchy-
Riemann system, k40.

2. CACCIOPPOLI ESTIMATES IN THE NATURAL SETTING

We shall use the examples of the previous section to briefly review the Caccioppoli
estimates for homogeneous equations in their natural setting. Hopefully these exam-
ples contain sufficient degree of generality to grasp a more global perspective. Perhaps
the most familiar is the Caccioppoli estimate for the harmonic equation, div˜u40.
Integration by parts yields

VW˜uV2b Vu˜WV2 , W�C0
Q (V)(2.1)

We refer the reader to [14] for more general results. However, the failure of this esti-
mate for exponents sc2 is less noted in the literature. With the aid of singular inte-
grals we inevitably obtain additional term in the right hand side

VW˜uVsb Vu˜WVs1V˜u7˜WV ns
n1 s

,(2.2)

for all sF n
n21

.

Similarly, for the p-harmonic equation, div N˜uNp22 ˜u40, 1EpEQ , the ana-
logue of (2.1) reads as

VW˜uVpb Vu˜WVp , W�C0
Q (V) .(2.3)

Here as well, the natural exponent p cannot be replaced by any other exponent. We
still have an estimate like (2.2), but only with s sufficiently close to p , see [13].

More generally, the Caccioppoli estimates in the natural setting for the degenerate



T. IWANIEC - C. SBORDONE194

A-harmonic equation take the form

VWN˜uNA Vp b VuN˜WNA Vp , W�C0
Q (V)(2.4)

for every finite energy solution. As before (because the equation is of second order)
there are no analogous estimates beyond the natural exponent p.

Matters are quite different for the first order systems of PDEs. First we take on
stage the distortion inequality (1.9) with 1GK(x)GK a.e.

In the natural Sobolev class of mappings f�W 1, n (V , Rn ) we have

VWDf VnGnKV f7˜WVn , W�C0
Q (V) .(2.5)

One of the major recent advances in the geometric function theory [35], [40, 41] are
the Caccioppoli inequalities with exponents slightly below and slightly above the di-
mension n. Precise statements are given latter on. It is the case of unbounded distor-
tion that drives us into truly new investigations. Let us assume that the distortion
function K4K(x) is exponentially integrable; that is,

�
V

e gK(x) dxEQ .(2.6)

If g4g(n) is sufficiently large then the solutions of the distortion inequality (1.9)
(those having finite volume integral) belong to the Sobolev class W 1, n

loc (V , Rn ), and
we have

VWDf Vn b VKf7˜WVn , W�C Q
0 (V) .(2.7)

Analogous estimates beyond this natural setting will be discussed a little further on.
We shall now look more closely at the elliptic system (1.13). The first question we

wish to address concerns the class of elliptic operators in which the complex dimen-
sion of the target space equals 1. There are two components in this class, each repre-
sented by one of the two Cauchy-Riemann operators

¯

¯z
4 1

2 g ¯

¯x
1 i ¯

¯y h and ¯

¯z
4 1

2 g ¯

¯x
2 i ¯

¯y h .(2.8)

The point of a distinction between these two components is that the solutions to a sys-

tem represented by ¯

¯z
are orientation preserving (Jacobian is nonnegative), whereas

those which solve a system represented by ¯

¯z
are orientation reversing. The funda-

mental link between these two components is established via a singular integral
operator

S : L p (C)KL p (C) , 1EpEQ .(2.9)

This operator, which we dignify with the name Beurling-Ahlfors transform, is com-
pletely characterized by the identity

S i
¯

¯z
4 ¯

¯z
: W 1, p (C)KL p (C) .(2.10)

The relevance of this operator to the elliptic PDEs has been evident to researchers for
about fifty years [2, 7, 9, 10]. Much creative effort has gone into establishing its p-
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norms, [33, 3-5, 58]

Sp4
def

VS : L p (C)KL p (C)V , 1EpEQ .(2.11)

Following [33] we recall one of the outstanding problems in this field

CONJECTURE 2.1.

Sp4
.
/
´

p21

1
p21

if pF2

1EpG2 .
(2.12)

Up to now we know that Sp is at most twice as large as that conjectured in (2.12),
see [58].

The operator S can also be considered on the space L p (C , Cn ), which we define
by the rule S(Fz )4Fz . A general fact, attributed to Marcinkiewicz and Zygmund, is
that the norm of this extension remains the same, see [19] for further comments and
references. In this way we arrive at the estimate

�NWNs NDFNsb�N˜WNs NFNs , W�C Q
0 (V)(2.13)

for the full range of the exponents s� (qk , pk ) in which the implied constant is inde-
pendent of n. The so-called critical exponents qk and pk are Hölder conjugate numbers
determined by the equation

Sqk
4Spk

4 1
k

, qkE2Epk .(2.14)

Although we have not yet been able to verify Conjecture 2.1, the full range of the ex-
ponents for the Caccioppoli estimate at (2.13) has already been found in case n41
[2]. Precisely, (2.13) holds for all s satisfying

11kE sE11 1
k

.(2.15)

In [50] the authors encounter related questions with nF1, 2 , R .

3. REDUCTION TO THE FIRST ORDER SYSTEMS

It is quite relevant here to bring up the second order equations again. As an
example, we begin with the linear elliptic system of Piccinini and Spagnolo [60] in
two variables

¯

¯x
kA(x , y) ¯U

¯x
l1 ¯

¯y kB(x , y) ¯U
¯y l40(3.1)

for a vector field U4 (u 1 , u 2 , R , u n )�W 1, 2
loc (V , Rn ). The coefficients A4A(x , y)

and B4B(x , y) are measurable functions valued in the space Rn3n of n3n matrices.
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Following the lead of the Cauchy-Riemann equations we write (3.1) as

.
/
´

A(x , y) ¯U
¯x

4 ¯V
¯y

B(x , y) ¯U
¯y

42 ¯V
¯x

(3.2)

where V4 (v 1 , v 2 , R , v n ) is a vector field in W 1, 2
loc (V , Rn ). This procedure results

in the first order elliptic system of type (1.13) for the complex field F4U1
1 iV�W 1, 2

loc (V , Cn ). It shows that the Caccioppoli estimates will remain valid for the
second order systems (3.1), provided that we express them in terms of both U and its
conjugate field V. Precisely, we have

�
V

NWNs (NUxN1NUyN1NVxN1NVyN)s b�
V

N˜WNs (NUN1NVN)s(3.3)

in the same range of the exponents; that is, for s� (qk , pk ).
This simple observation is at the heart of many more examples [47]. To every sol-

ution of an elliptic PDE

div A( x ) ˜u40(3.4)

K 21 (x)NjN2G aA(x) j , jbGK(x)NjN2(3.5)

there corresponds a quasiharmonic field F 4 [B , E], a pair of vector fields E4˜u
and B4A(x) ˜u , with div B40 and curl E40. They are coupled by a distortion
inequality

NBN21NEN2G (K1K 21 )aB , Eb(3.6)

where K4K(x)F1 can be constant (uniformly elliptic case) or a measurable func-
tion, finite almost everywhere. In many respects this reduction of the second order
equation to the first order system seems to be an excellent generalization of the famil-
iar Beltrami system in the complex plane; far more geometric than (3.4). Continuing
this analogy we have established dimension free Caccioppoli type estimates [47] for
the exponents s satisfying:

q4
def 14K212

7K25
E sE 14K212

7K27
4
def

p(3.7)

provided 1GK(x)EK a.e. These estimates yield the following

THEOREM 3.1 (dimension free regularity). Every very weak solution to the equation
(3.4) in the Sobolev class W 1, q

loc (V) actually belongs to W 1, p
loc (V).

4. VERY WEAK SOLUTIONS

We have used the term very weak solution of a given PDE to describe a solution
which is less regular (at least a priori) than those in the natural space. What we want to
achieve here is the extent to which the very weak solutions are in fact the natural ones.
This idea is best visualized in case of the p-harmonic equation [45]. Recall that a p-har-



CACCIOPPOLI ESTIMATES AND VERY WEAK SOLUTIONS OF ELLIPTIC EQUATIONS 197

monic function u�W 1, p (V , Rn ) is a local minimum of the energy integral

E[u]4�
V

N˜u(x)Np dx , 1EpEQ .(4.1)

This means that E[u1W]FE[u] for every test function W�C Q
0 (Rn ). Equivalently,

�
Rn

(N˜u1˜WNp2N˜uNp )F0 , W�C0
Q (V) .(4.2)

This seemingly insignificant change of definition of the variational inequality has for
reaching implications. First notice the this new inequality at (4.2) makes sense for all
u�W 1, s

loc (V), with sFmax ]1, p21(; simply because the integrand is dominated by

N˜WNgN˜uNp211N˜WNp21h�L 1 (V) .

A new class of functions, referred to as weak minima, has emerged in the calculus of
variations and PDEs. The Euler-Lagrange equation for the weak-minima

�
V

aN˜uNp22 ˜u , ˜Wb40 , W�C0
Q (V)(4.3)

is still valid, where we notice that N˜uNp22 ˜u�L 1
loc (V , Rn ).

While substantial progress has been made, the very weak solutions for nonlinear
PDEs are still in their infancy. Their development strongly depends on the Cacciop-
poli type estimates below the natural setting.

To explain the points of difficulties that occur beyond the natural domain we re-
turn to the nonhomogeneus p-harmonic equation (1.3) in the entire space Rn. Let us
begin with its integral form

�
Rn

aN˜uNp22 ˜u , ˜Wb4 �
Rn

aF , ˜Wb , W�C0
Q (Rn ) .(4.4)

This time we assume that the given vector field F : RnKRn belongs to L lq (Rn , Rn ),

for some lDmax m 1
p , 1

q n. We must look for the solutions u whose gradient lies in

L lp (Rn , Rn ), this is the only choice. Unluckily, the spaces L lq (Rn , Rn ) and
L lp (Rn , Rn ) are no longer dual to each other. That is why the existence of such
solutions cannot be deduced with the aid of the Browder-Minty theory of mono-
tone operators. As for the local estimates, the reader will observe that
N˜uNp22 ˜u�L lq (Rn , Rn ). This makes it legitimate to test the identity (4.4) with

functions W whose gradient lies in the dual space L s (Rn , Rn ), where s4

4
lq

lq21
.

Unfortunately for the case below the natural setting, when lE1 the Sobolev expo-

nent lp is smaller than s; that is lpE
lq

lq21
. The usual test functions W(x)4

4h(x)[u(x)2const ], and their more sophisticated variants that involve powers and
truncations of u , are no longer allowed; simply because ˜W is essentially proportional
to ˜u. It is natural to try the expression N˜uNlp2p ˜u in place of ˜W in order to end up
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with the integral of N˜uNlp in the left hand side of (4.4). But formally this operation is
inadmissible since N˜uNlp2p ˜u fails to be a gradient field. In this situation one might
ask: how far is N˜uNe ˜u from a gradient field in the metric of L s (Rn , Rn ),
e4 (l21) p?

4.1. Projection onto Gradient Fields.

Given sD0 and eD 1
s 21, the closest point projection of N˜vNe ˜v into the space

of gradient fields comes to the stage. Consider the inequality

inf
W�W 1, s (Rn )

VN˜vNe ˜v2˜WVsGks (n , e)V˜vV11e
s1es(4.5)

for every v�W 1, s1es (Rn ), where 0Gks (n , e)G1. This inequality is trivial with
ks (n , e)41. On the other hand, ks (n , 0 )40. More radical attempts, through an in-
terpolation argument [45], reveal that ks (n , e)E1 for e sufficiently small, positive or
negative, see also [65]. In light of these facts a search for the smallest constant ks (n , e)
in (4.5) becomes quite appealing.

CONJECTURE 4.1. The projection estimates at (4.5) hold with a constant ks (n , e)E1

for all parameters sD1 and eD 1
s 21.

The case of positive values of e has already been solved in [39] by arguments
which rely on C 1, a-regularity of the p-harmonic functions, see [34] for the seminal
ideas. Thus the problem remains unsolved only when e is away from zero on the nega-
tive side.

Returning to the p-harmonic equation, we take the minimizer W�W 1, s (Rn ) in

(4.5) to serve as a test function at (4.4), s4
lq

lq21
and e4 (l21) p. This

yields

�
Rn

aN˜uNp22 ˜u , N˜uNlp2p ˜u2˜WbGks (n , e) �
Rn

N˜uNlp

Once ks (n , e)E1, by virtue of the equation (4.4), we conclude with the desired
estimate

V˜uVp21
lp G

11ks (n , e)
12ks (n , e)

VFVlq(4.6)

4.2. A Study of Nonlinear PDEs via Conjugate Fields.

A reduction of a second order equation to the first order system can be made via
exterior algebra. We illustrate this idea by considering the p-harmonic equation

d*gNduNp22 duh40(4.7)

where d* is the Hodge star codifferential defined on 1-forms. Actually slightly more
general setting will provide us with a better framework for the discussion. In this
greater generalities, we view u as a differential form of arbitrary degree 0G lEn. The
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famous Poincaré Lemma states that there is an (l11)-form v such that

NduNp22 du4d* v(4.8)

where v is a differential form of degree l11. Equivalently,

Nd* vNq22 d* v4du .

Thanks to the identity dd40, this yields the so-called Hodge dual equation for v

d(Nd* vNq22 d* v)40 .(4.9)

We refer to the pair (u , v) as (p , q)-conjugate fields, see [35, 48, 42] and [38] for fur-
ther developments and applications.

Caccioppoli’s estimates beyond the natural exponent can be formulated for this
system of first order PDEs as follows

(4.10) �
V

NWNlpqgNduNp1Nd*vNqhl b�
V

gNuNpNWNqN˜WNp1NvNqNWNpN˜WNqhl

for all W�C0
Q (V), and lDl(n , p), where max m 1

p , 1
q nGl(n , p)E1. We conjec-

ture that (4.10) holds for all lDmax m 1
p , 1

q n.
4.3. The p-Harmonic Transform.

Returning to the scalar case, the p-harmonic equation div N˜uNp22 ˜u4div F gives
rise to a nonlinear operator

Hp : L q (Rn , Rn )KL q (Rn , Rn )

which carries a given vector field F�L q (Rn , Rn ) into N˜uNp22 ˜u�L q (Rn , Rn ). Of
course, the space L q (Rn , Rn ) serves us with the natural domain of the definition of
Hp . However, it is of great interest to know whether Hp extends continuously beyond
this domain. Because of this, the pressing question is:

QUESTION 4.2. For what exponents sD1 we have the estimate

VHp F2Hp GVs b VF2GVs
a(VFVs1VGVs)12a ,(4.11)

with F , G�L q (Rn , Rn )OL s (Rn , Rn ), and some 0Ea4a(n , p , s)G1?

This is certainly true if s4q , the natural setting. In the linear case (p42) the oper-
ator H2 reduces to the second order Riesz transforms H2 F4RaR, Fb, where R4
4 (R1 , R , Rn ). Therefore, in this case (4.11) holds with all 1E sEQ.

4.4. The Grand Lebesgue Norms.

Trying to determine how far we can go beyond the natural setting [30] without
losing continuity of Hp have led us to the spaces slightly below L q (Rn , Rn ). The so-
called grand Lebesgue space L q) (Rn , Rn ), [44, 45, 62] is worth recording. By the defi-
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nition, it consists of vector fields F� 1
1GsEq

L s (Rn , Rn ) such that

VFVq)4 sup
1GsEq

y(q2 s) �
Rn

NFNsz
1
s

EQ .(4.12)

The grand Sobolev space W 1, p) (Rn ) is furnished with the seminorm

VuV1, p)4V˜uVp) .(4.13)

These spaces together with several extensions were profitably employed in PDEs [47].
Hölder continuity of the operator Hp : L q) (Rn , Rn )KL q) (Rn , Rn ) established in
[30], follows from the estimate

VHp F2Hp GVq) b VF2GVq)
a gVFVq)1VGVq)h12a(4.14)

with 0Ea4a(p)G1.

5. WHAT DO WE GAIN FROM WEAK ESTIMATES?

There are many examples that illustrate the role of the very weak solutions in
PDEs, geometric analysis and some areas of applied mathematics. Let us sketch some
of them.

5.1. Measure in the right hand side.

Throughout this section V stands for a bounded regular domain in Rn , nF2. For
example, Lipschitz domains are regular. Let m be a Radon measure on V. The Dirich-
let problem

.
/
´

div˜v4m

v40 on ¯V
(5.1)

can be solved explicitly by means of the Green’s function for V:

˜v4�
V

˜x G(x , y) dm(y).

Elementary analysis of this integral shows that the vector field F4˜v belongs to the

grand Lebesgue space L q) (V , Rn ), with q4 n
n21

. Precisely, we have

VFVq)b�
V

NdmN .(5.2)

If, moreover, m happens to be absolutely continuous with respect to the Lebesgue
measure, then

lim
eK0

e�
V

NFNq2e40 .(5.3)

This latter condition characterizes the closure of L q (V , Rn ) in L q) (V , Rn ).
It is at this stage where the Caccioppoli estimates with exponents at (3.7) come to

play the critical role in establishing the existence and uniqueness of the solution of a
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general elliptic linear equation

div A(x) ˜u4m , u�W 1, q)
0 (V), q4 n

n21
.(5.4)

Here we assume that the distortion function at (3.5) satisfies

1GK(x)GKE 7n212
n22

.(5.5)

We thus infer from (5.2) that such solutions are uniformly controlled by the total vari-
ation of m;

V˜uV n
n21

)
b�–

V

NdmN .(5.6)

Viewing the situation in relation to the nonlinear PDEs we turn next to the Dirich-
let problem for the p-harmonic equation

.
/
´

divN˜uNp22 ˜u4m

u40 on ¯V .
(5.7)

By virtue of the earlier estimates for the Laplace equation we may express m as diver-

gence of a vector field F�L q) (V , Rn ), q4 n
n21

. The Hölder conjugate of this expo-

nent is exactly the dimension n of the domain V%Rn. That is why we can handle the
case p4n , directly by (4.14), see [30].

THEOREM 5.1. For each Radon measure m on V , the n-harmonic equation

div N˜uNn22 ˜u4m(5.8)

admits exactly one solution u�W0
1, n) (V).

As a particular consequence of the estimates slightly below the dimension [45] we
also conclude that the very weak solutions of (5.8) in the Sobolev class W0

1, n2e (V) ac-
tually belong to W0

1, n) (V) and, therefore, are unique as well. Moreover, if m is abso-
lutely continuous with respect to the Lebesgue measure, then

lim
eK0

e�
V

N˜uNn2e40(5.9)

There are of course many more possible spaces in which the n-harmonic equation
(5.8) admits unique solution [17, 6, 8, 20, 53, 16], but such spaces lay beyond the
range of this survey.

In much the same way the positive answer to the Question 4.2 would enable us to
solve (uniquely) the p-harmonic Dirichlet problem (5.7). To this effect one needs only

establish (4.11) with s slightly below n
n21

.

The Dirichlet problem explains rather convincingly why we must look for the Cac-
cioppoli estimates much below the natural exponent. There is an important place for
such estimates in the theory of nonlinear PDEs, though they remain yet to be fully
understood.
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5.2. Removability of singularities.

Rather than discussing this theme in a general context it is perhaps worthwhile to
illustrate how the very weak estimates imply removability of singularities for K-
quasiregular mappings. All that is needed for our discussion is the following extension
of the Caccioppoli estimate at (2.5):

VWDf Vsb V f7˜WVs ,(5.10)

for exponents s in a range q(n , K)G sEn , see [35] and [41].

THEOREM 5.2. Let E be a closed subset of a domain V%Rn of Hausdorff dimension
dim EEn2 s. Then every bounded K-quasiregular map f : V0EKRn extends to a
quasiregular mapping of V.

The proof of this runs as follows. Under the above hypotheses the s-capacity of E is
zero. On the other hand (5.10) gives us the estimates

VWDf Vsb V f7˜WVsb V˜WVs

for every W�C0
Q (V0E), where the implied constants do not depend on the particular

test function W. Clearly this remains true for all W�C0
Q (V); after all, E has zero s-ca-

pacity and zero Lebesgue measure. We thus infer from it that f�W 1, s
loc (V , Rn ). More-

over, f satisfies the distortion inequality

NDf(x)NnGK det Df(x)

almost everywhere in the entire domain V. All that we need to here is the higher inte-
grability of the differential of the solutions in the Sobolev class Wloc

1 , s (V , Rn ). Thus f
lies in the natural space W 1, n

loc (V , Rn ), as desired.
New phenomena [31] seem to suggest that Caccioppoli type estimates with

Sobolev exponent smaller than the dimension cannot be used so effectively for map-
pings between manifolds. However, their analytic and geometric consequences have
yet to be explored.
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[31] P. HAJLCASZ - T. IWANIEC - J. MALÝ - J. ONNINEN, Weakly differentiable mappings between manifolds.
Preprint.

[32] ISTITUTO ITALIANO PER GLI STUDI FILOSOFICI: SEMINARI DI SCIENZE, Il pensiero matematico del XX se-
colo e l’opera di Renato Caccioppoli. Atti della giornata di studi tenuta a Pisa il 10 aprile 1987 per
iniziativa dell’Istituto Italiano per gli Studi Filosofici e della Scuola Normale di Pisa, 1988.

[33] T. IWANIEC, Extremal inequalities in Sobolev spaces and quasiconformal mappings. Z. Anal. Anwen-
dungen, 1, n. 6, 1982, 1-16.

[34] T. IWANIEC, Projections onto gradient fields and L p-estimates for degenerated elliptic operators. Studia
Math., 75, n. 3, 1983, 293-312.

[35] T. IWANIEC, p-harmonic tensors and quasiregular mappings. Ann. of Math., (2) 136, n. 3, 1992,
589-624.

[36] T. IWANIEC - P. KOSKELA - J. ONNINEN, Mappings of finite distortion: monotonicity and continuity.
Invent. Math., 144, n. 3, 2001, 507-531.

[37] T. IWANIEC - P. KOSKELA - J. ONNINEN, Mappings of finite distortion: Compactness. Ann. Acad. Sci.
Fenn. Math., 27, 2002, 391-417.

[38] T. IWANIEC - P. KOSKELA - G. MARTIN - C. SBORDONE, Mappings of finite distortion: L n loga L. J. Lon-
don Math. Soc., to appear.

[39] T. IWANIEC - A. LUTOBORSKI, Integral estimates for null Lagrangians. Arch. Rational Mech. Anal.,
125, n. 1, 1993, 25-79.

[40] T. IWANIEC - G. MARTIN, Geometric function theory and non-linear analysis. Oxford Mathematical
Monographs, Oxford Univ. Press, 2001.

[41] T. IWANIEC - G. MARTIN, Quasiregular mappings in even dimensions. Acta Math., 170, n. 1, 1993,
29-81.

[42] T. IWANIEC - L. MIGLIACCIO - G. MOSCARIELLO - A. PASSARELLI DI NAPOLI, A priori estimates for
nonlinear elliptic complexes. Advances on Diff. Eq., 8 (5), 2003, 513-546.

[43] T. IWANIEC - L. MIGLIACCIO - L. NANIA - C. SBORDONE, Integrability and removability results for
quasiregular mappings in high dimensions. Math. Scand., 75, n. 2, 1994, 263-279.

[44] T. IWANIEC - C. SBORDONE, On the integrability of the Jacobian under minimal hypotheses. Arch. Ra-
tional Mech. Anal., 119, n. 2, 1992, 129-143.

[45] T. IWANIEC - C. SBORDONE, Weak minima of variational integrals. J. Reine Angew. Math., 454, 1994,
143-161.

[46] T. IWANIEC - C. SBORDONE, Div-curl fields of finite distortion. C. R. Acad. Sci. Paris Sr. I Math., 327,
n. 8, 1998, 729-734.

[47] T. IWANIEC - C. SBORDONE, Quasiharmonic fields. Ann. Inst. H. Poincaré Anal. Non Linéaire, 18,
n. 5, 2001, 519-572.

[48] T. IWANIEC - C. SCOTT - B. STROFFOLINI, Nonlinear Hodge theory on manifolds with boundary. Ann.
Mat. Pura Appl., 177 (4), 1999, 37-115.

[49] T. IWANIEC - A. VERDE, A study of Jacobians in Hardy-Orlicz spaces. Proc. Roy. Soc. Edinburgh, Sect.
A, 129, n. 3, 1999, 539-570.

[50] T. IWANIEC - G.C. VERCHOTA - A.L. VOGEL, The Failure of Rank-One Connection. Arch. Rational
Mech. Anal., 163, n. 2, 2002, 125-169.
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