ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

MARCO M. PELOSO, FULVIO RICCI

Tangential Cauchy-Riemann equations on quadratic manifolds

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 13 (2002), n.3-4, p. 285–294.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2002_9_13_3-4_285_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Marco M. Peloso - Fulvio Ricci

TANGENTIAL CAUCHY-RIEMANN EQUATIONS ON QUADRATIC CR MANIFOLDS

Abstract. — We study the tangential Cauchy-Riemann equations $\overline{\partial}_h u = \omega$ for (0, q)-forms on quadratic CR manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi

KEY WORDS: Tangential Cauchy-Riemann complex; Kohn Laplacian; CR manifolds; Global solvability; Hypoellipticity.

1. Introduction

Let V be an n-dimensional complex vector space, W an m-dimensional real vector space, $W^{\mathbb{C}}$ the complexification of W, and

$$\Phi: V \times V \longrightarrow W^{\mathbb{C}}$$

a Hermitean map (i.e. $\Phi(z,z') = \overline{\Phi(z',z)}$ for every $z,z' \in V$, where complex conjugation in $W^{\mathbb{C}}$ is referred to the real form W).

We consider the associated quadratic manifold

(1)
$$S = \{(z, t + iu) \in V \times W^{\mathbb{C}} : u = \Phi(z, z)\}$$

in n + m complex dimensions. Then S is a CR manifold of CR-dimension n and real codimension m.

We consider the $\overline{\partial}_b$ -complex on S, mapping (0, q)-forms on S into (0, q + 1)forms, for $0 \le q \le n$.

We shall consistently use the parameters $(z, t) \in V \times W$ to denote the element $(z, t + i\Phi(z, z)) \in S$. A natural Lie group structure can be introduced on $V \times W$ (as described in Section 1); this group will be denoted by G_{Φ} .

The fiber of the vector bundle $\Lambda^{0,q}(T^*S)$ over each point of S can be identified in the trivial way with the exterior product $\Lambda_q = \Lambda^{0,q}(V^*)$. Through the identification of S with $V \times W = G_{\Phi}$, we then regard (0, q)-forms on S as vector valued functions on G_{Φ} with values in Λ_a .

Depending on the integrability or regularity conditions imposed on the forms under consideration, we shall denote the different spaces of (0, q)-forms as $L^2(G_{\Phi}) \otimes \Lambda_q$, $\mathcal{S}(G_\Phi)\otimes\Lambda_q,\ \mathcal{S}'(G_\Phi)\otimes\Lambda_q,\ \text{etc.}$ We shall also need other linear bundles over G_Φ , with fibers $\operatorname{End}\,(\Lambda_q)$, $\operatorname{Hom}\,(\Lambda_q,\Lambda_{q+1})$,

etc. The corresponding spaces of sections will be denoted in a similar way.

We address the following problem: determine under which assumptions on the Hermitean form Φ , $q \geq 1$ and the $\overline{\partial}_b$ -closed form $\omega \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_q$, the equation $\overline{\partial}_b u = \omega$ has a solution $u \in \mathcal{S}'(G_{\Phi}) \otimes \Lambda_q$.

Our approach is based on the results in [7] concerning the Kohn Laplacian

$$\Box_{b}^{(q)} = \overline{\partial}_{b} \overline{\partial}_{b}^{*} + \overline{\partial}_{b}^{*} \overline{\partial}_{b}$$

acting on (0, q)-forms on S. The operator $\overline{\partial}_b^*$ is the adjoint of the L^2 -closure of $\overline{\partial}_b$ w.r. to the Haar measure $dz \, dt$ on $G_{\overline{\Phi}}$ and to a fixed inner product on V.

The answer depends on the signatures of the scalar-valued forms

$$\Phi^{\lambda}(z,z') = \lambda \big(\Phi(z,z')\big)$$
 ,

depending on $\lambda \in W^*$.

In general, W^* decomposes as the union of an open regular set, consisting of those λ for which Φ^{λ} is non-degenerate, and its complement, the singular set. We further decompose the regular set as the union of the open sets Ω_q , defined by the condition that Φ^{λ} has q positive and n-q negative eigenvalues. Some Ω_q may be empty, and it may well happen that all of them are empty, *i.e.* that Φ^{λ} is degenerate for every λ .

In general, we denote by $\Omega \subset W^*$ the set of those λ for which Φ^{λ} has maximum rank. If there are non-degenerate Φ^{λ} , then Ω is the regular set.

In [7] we proved the following theorem.

Theorem 1.1. The following are equivalent:

- (i) Ω_q is non-empty;
- (ii) $\Box_b^{(q)}$ is locally solvable, i.e. given any smooth (0, q)-form ω , the equation $\Box_b^{(q)} u = \omega$ has a solution in a fixed neighborhood of the origin;
- (iii) $\Box_b^{(q)}$ has a tempered fundamental solution, i.e. $K_q \in \mathcal{S}'(G_{\Phi}) \otimes \operatorname{End}(\Lambda_q)$ such that $\Box_b^{(q)}(\omega * K_q) = \omega$ for every $\omega \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_q$;
- (iv) the L^2 -null-space of $\square_h^{(q)}$ is trivial.

If Ω_q is non-empty, then $\square_b^{(q)}$ has a relative fundamental solution $K_{q, rel} \in \mathcal{S}'(G_\Phi) \otimes \otimes \operatorname{End}(\Lambda_q)$, i.e. such that $\square_b^{(q)}(\omega * K_{q, rel}) = (I - \mathcal{C}_q)\omega$ for every $\omega \in \mathcal{S}(G_\Phi) \otimes \Lambda_q$, where \mathcal{C}_q is the orthogonal projection of $L^2(G_\Phi) \otimes \Lambda_q$ onto the null-space of $\square_b^{(q)}$.

The notation we have used is such that, if f and g are functions on G_{Φ} with values in Λ_q and in $\operatorname{End}(\Lambda_q)$ respectively, then

$$f * g(z, t) = \int_{G_{\Phi}} g((w, u)^{-1}(z, t)) f(w, u) dw du$$

takes values in Λ_q .

We derive from this the following result.

Theorem 1.2. Let $q \geq 1$. The equation $\overline{\partial}_b u = \omega$ has a solution $u \in \mathcal{S}'(G_\Phi) \otimes \Lambda_{q-1}$ for a given $\overline{\partial}_b$ -closed form $\omega \in \mathcal{S}(G_\Phi) \otimes \Lambda_q$ if and only if $\mathcal{C}_q \omega = 0$. In particular, the equation has a solution $u \in \mathcal{S}'(G_\Phi) \otimes \Lambda_{q-1}$ for every $\omega \in \mathcal{S}(G_\Phi) \otimes \Lambda_q$ such that $\overline{\partial}_b \omega = 0$ if and only if Ω_q is empty.

The proof will require a precise description of the L^2 -null-space of $\Box_b^{(q)}$. This will be done in Section 3.

The question of solvability for the Cauchy-Riemann complex has drawn a great deal of interest since Lewy's celebrated example of a non-solvable differential operator [6]. Such question is also of interest for extension phenomena, such as Bochner's theorem, see [1-5] for historical background and references.

The relations between solvability of the $\overline{\partial}_b$ -complex and signatures of the scalar components of the Levi form for general CR manifolds have been investigated by several authors [9-11].

In the case of a quadratic CR manifold \mathcal{S} , Rossi and Vergne [8] showed that if Φ is non-degenerate, *i.e.* is there exists $\lambda \in W^*$ such that Φ^λ is non-degenerate, then condition (i) in Theorem 1.1 is necessary and sufficient for the solvability of the $\overline{\partial}_b$ -equation. The degenerate case is not included in their analysis. On the other hand, it is as an immediate consequence of our Theorem 1.2 that if Φ is degenerate, then Ω_q is empty and the $\overline{\partial}_b$ -equation $\overline{\partial}_b u = \omega$ is solvable for all $\overline{\partial}_b$ -closed, (0, q)-forms ω in the Schwartz class, for all $q \geq 1$.

2. The Lie group associated to S and its representations

We define the following product between two elements (z, t), $(z', t') \in V \times W$:

$$(z, t)(z', t') = (z + z', t + t' + 2\operatorname{Im}\Phi(z, z')),$$

which induces a step-two nilpotent Lie group structure on $V \times W$. We call G_{Φ} this group and \mathfrak{g}_{Φ} its Lie algebra.

For $v \in V$, let $\partial_u f$ denote the directional derivative of a function f in the direction v. The left-invariant vector field X_v on G_{Φ} that coincides with ∂_v at the origin is given by

$$X_{\nu}f(z,t) = \partial_{\nu}f(z,t) + 2\operatorname{Im}\Phi(z,\nu) \cdot \nabla_{t}f(z,t).$$

If J denotes the complex structure on V, we define Z_{v} , $\overline{Z}_{v} \in \mathfrak{g}_{\Phi}^{\ \ \mathbb{C}}$ as

$$Z_{v}=\frac{1}{2}(X_{v}-iX_{Jv})=\frac{1}{2}(\partial_{v}-i\partial_{Jv})+i\overline{\Phi(z,v)}\cdot\nabla_{t}$$
 ,

$$\overline{Z}_{\scriptscriptstyle \mathcal{V}} = \tfrac{1}{2} (X_{\scriptscriptstyle \mathcal{V}} + i X_{\! \mathit{I}\! \mathit{V}}) = \tfrac{1}{2} (\partial_{\scriptscriptstyle \mathcal{V}} + i \partial_{\mathit{I}\! \mathit{V}}) - i \Phi(z, \, \mathit{V}) \cdot \nabla_{\scriptscriptstyle \mathcal{V}} \, .$$

The relevance of the group G_{Φ} in our context is justified by the fact that the operators \overline{Z}_{ν} coincide with the tangential Cauchy-Riemann operators on S.

The following commutation rules hold:

$$\begin{aligned} [Z_{v},Z_{v'}] &= [\overline{Z}_{v},\overline{Z}_{v'}] = 0 , \\ [Z_{v},\overline{Z}_{v'}] &= -2i\Phi(v,v')\cdot\nabla_{e}. \end{aligned}$$

Hence G_{Φ} is step-two nilpotent.

It can be shown that the Lie algebras that arise in this way can be characterized as follows.

Proposition 2.1. A real Lie algebra $\mathfrak g$ is isomorphic to the Lie algebra $\mathfrak g_\Phi$ associated to a quadratic CR manifold if and only if $\mathfrak g=\mathfrak v\oplus\mathfrak w$, with $[\mathfrak v\,,\mathfrak v]\subseteq\mathfrak w$, $[\mathfrak g\,,\mathfrak w]=0$ and there is a complex structure J on $\mathfrak v$ such that $[Jv\,,Jv']=[v\,,v']$ for every $v\,,v'\in\mathfrak v$.

We summarize the description of the irreducible unitary representations of G_{Φ} .

For $\lambda \in W^*$, let Φ^{λ} be the scalar-valued form $\Phi^{\lambda}(v, v') = \lambda(\Phi(v, v'))$. Denote by V_0^{λ} the radical of Φ^{λ} , *i.e.* the subspace of the v such that $\Phi^{\lambda}(v, v') = 0$ for every $v' \in V$.

Let V_1^λ be the orthogonal complement of V_0^λ in V, w.r. to the fixed inner product. Let also V_r^λ be a real form of V_1^λ on which Φ^λ is real. For $z \in V$, we set z = z' + z'', with $z' \in V_1^\lambda$, $z'' \in V_0^\lambda$, and z' = x' + iy' with x', $y' \in V_r^\lambda$.

Lemma 2.2. Let $\lambda \in W^*$, and let η be a linear functional on V_0^{λ} . Define the representation $\pi_{\lambda,\eta}$ of G_{Φ} on $L^2(V_r^{\lambda})$ as

(3)
$$\left(\pi_{\lambda,\eta}(z,t)\phi\right)(\xi) = e^{i(\lambda(t)+2\operatorname{Re}\eta(z''))}e^{-2i\Phi^{\lambda}(y',\xi+x')}\phi(\xi+2x').$$

Then $\pi_{\lambda,\eta}$ is an irreducible unitary representation of G_{Φ} . Conversely, any irreducible unitary representation of G_{Φ} is equivalent to one and only one $\pi_{\lambda,\eta}$.

It is convenient to diagonalize Φ^{λ} with respect to an orthonormal basis $\{v_1^{\lambda}, \ldots, v_n^{\lambda}\}$ of V, in such a way that $v_j^{\lambda} \in V_r^{\lambda}$ for $j \leq \nu(\lambda)$ and $v_j^{\lambda} \in V_0^{\lambda}$ for $j > \nu(\lambda)$, where $0 \leq \nu(\lambda) = \operatorname{rank} \Phi^{\lambda} = \dim V_1^{\lambda} \leq n$. We set

(4)
$$\mu_j = \mu_j(\lambda) = \Phi^{\lambda}(v_j^{\lambda}, v_j^{\lambda}).$$

Calling

$$Z_j^\lambda = \frac{1}{2}(X_{v_j^\lambda} - iX_{Jv_j^\lambda})$$
 , $\overline{Z}_j^\lambda = \frac{1}{2}(X_{v_j^\lambda} + iX_{Jv_j^\lambda})$,

a standard computation gives that

(5)
$$d\pi_{\lambda,\eta}(Z_k^{\lambda}) = \begin{cases} \partial_{\xi_j} - \mu_k \xi_k & \text{if } k \leq \nu \\ i\overline{\eta}_{k-\nu(\lambda)} & \text{if } k > \nu \end{cases}$$
$$d\pi_{\lambda,\eta}(\overline{Z}_k^{\lambda}) = \begin{cases} \partial_{\xi_j} + \mu_k \xi_k & \text{if } k \leq \nu \\ i\eta_{k-\nu(\lambda)} & \text{if } k > \nu \end{cases},$$

with $\eta_{k-\nu(\lambda)} = \eta(v_k^{\lambda}) \in \mathbb{C}$.

For a function f on G_{Φ} , we define

(6)
$$\pi_{\lambda,\eta}(f) = \int f(z,t) \pi_{\lambda,\eta}(z,t)^{-1} dz dt.$$

This definition has the effect that $\pi_{\lambda,\eta}(f*g) = \pi_{\lambda,\eta}(g)\pi_{\lambda,\eta}(f)$, and that

$$\pi_{\lambda,\eta}(\mathcal{L}f) = d\pi_{\lambda,\eta}(\mathcal{L})\pi_{\lambda,\eta}(f)$$
 ,

for any left-invariant differential operator \mathcal{L} .

We denote by h_j the j-th Hermite function on the real line:

(7)
$$h_{j}(t) = (2^{j} \sqrt{\pi} j!)^{-1/2} (-1)^{j} e^{t^{2}/2} \frac{d^{j}}{dt^{j}} e^{-t^{2}},$$

and, for a given a multi-index $m \in \mathbb{N}^{\nu(\lambda)}$, we set

(8)
$$b_m^{\lambda}(\xi) = \prod_{j=1}^{\nu(\lambda)} |\mu_j|^{1/4} b_{m_j} (|\mu_j|^{1/2} \xi_j).$$

By (7) and (8) above we have that $(d_t - t)h_j = \sqrt{2(j+1)}h_{j+1}$ and $(d_t + t)h_j = -\sqrt{2j}h_{j-1}$. From these it follows that

$$(\partial_{\xi_k} + \mu_k \xi_k) h_m^{\lambda} = (-\operatorname{sgn} \mu_k) \left((2m_k + 1) |\mu_k| - \mu_k \right)^{1/2} h_{m - (\operatorname{sgn} \mu_k) e_k}^{\lambda} ,$$

where $e_k = (0, \dots, 1, \dots, 0)$ denotes the k-th element of the standard basis. Hence, for any unitary irreducible representation $\pi_{\lambda, \eta}$ of G_{Φ} ,

$$d\pi_{\lambda,\eta}(\overline{Z}_k^{\lambda})b_m^{\lambda} = \begin{cases} (-\operatorname{sgn}\mu_k)\big((2m_k+1)|\mu_k| - \mu_k\big)^{1/2}b_{m-(\operatorname{sgn}\mu_k)\epsilon_k}^{\lambda} & \text{if } k \leq \nu(\lambda) \\ i\eta_{k-\nu(\lambda)}b_m^{\lambda} & \text{if } k > \nu(\lambda) \end{cases}$$

Analogously, one gets

$$d\pi_{\lambda,\eta}(Z_k^\lambda)h_m^\lambda = \left\{ \begin{array}{ll} \operatorname{sgn} \mu_k \big((2m_k+1)|\mu_k| + \mu_k\big)^{1/2} h_{m+(\operatorname{sgn} \mu_k)e_k}^\lambda & \text{if } k \leq \nu(\lambda) \\ i\overline{\eta}_{k-\nu(\lambda)} h_m^\lambda & \text{if } k > \nu(\lambda) \,. \end{array} \right.$$

The matrix coefficient $\langle \pi_{\lambda,\eta}(f) h_m^{\lambda}, h_{m'}^{\lambda} \rangle$ will be denoted as $\widehat{f}(\lambda,\eta;m,m')$. For a (0,q)-form ω , the notation $\widehat{\omega}(\lambda,\eta;m,m') \in \Lambda_q$ will be used with the same meaning. If Φ^{λ} is non-degenerate, so that $V_0^{\lambda} = \{0\}$, we drop the parameter η .

Define

$$D(\lambda) = \prod_{j=1}^{\nu(\lambda)} |\mu_j|.$$

Lemma 2.3. The function $D(\lambda)$ is smooth on Ω , the subset of W^* where $\nu(\lambda)$ is maximum. The Plancherel formula for G_{Φ} is

(9)
$$||f||_2^2 = \int_{\Omega} \int_{(V^{\lambda})^*} ||\pi_{\lambda,\eta}(f)||_{HS}^2 d\eta D(\lambda) d\lambda ,$$

where $d\lambda$ is an appropriately normalized Lebesgue measure on W^* and $d\eta$ is the volume element on $(V_0^{\lambda})^*$ induced by the inner product on V.

Observe that the domain of integration in (9) has a natural differentiable structure, as it can be identified with $\Omega \times \mathbb{C}^{n-\nu}$, with $\nu = \max \nu(\lambda)$.

3. The
$$\overline{\partial}_b$$
-complex on G_Φ and the null space of $\Box_b^{(q)}$

Let $\{v_1,\ldots,v_n\}$ be any orthonormal basis of V with respect to the given inner product. Let (z_1,\ldots,z_n) denote the coordinates on V with respect to this basis. We denote by $d\overline{z}$ the (0,q)-form $d\overline{z}_{i_1}\wedge\cdots\wedge d\overline{z}_{i_q}$, where $I=(i_1,\ldots,i_q)$ is a strictly increasing multi-index. Given a (0,q)-form $\phi=\sum_{|I|=q}\phi_Id\overline{z}$ with smooth coefficients, we have

$$(10) \hspace{1cm} \overline{\partial}_b \phi = \sum_{|I|=q} \sum_{k=1}^n \overline{Z}_k (\phi_I) d\overline{z}_k \wedge d\overline{z} = \sum_{|I|=q+1} \sum_{k,|I|=q} \epsilon_{kI}^J \overline{Z}_k (\phi_I) d\overline{z} \; ,$$

where

$$Z_j=rac{1}{2}(X_{v_j}-iX_{Jv_j})$$
 , $\overline{Z}_j=rac{1}{2}(X_{v_j}+iX_{Jv_j})$, $j=1$, \ldots , n ,

and $\epsilon_{kI}^J=0$ if $J\neq\{k\}\cup I$ as sets, and it equals the parity of the permutation that rearranges (k, i_1 , ..., i_q) in increasing order if $J=\{k\}\cup I$.

Then $\overline{\partial}_b^*$ can be easily computed to yield that

(11)
$$\overline{\partial}_b^* \left(\sum_{|I|=q} \phi_I d\overline{z} \right) = \sum_{|J|=q-1} \left(-\sum_{k,|I|=q} \epsilon_{kJ}^I Z_k \phi_I \right) d\overline{z}.$$

The Kohn Laplacian is defined as $\Box_b^{(q)} = \overline{\partial}_b \overline{\partial}_b^* + \overline{\partial}_b^* \overline{\partial}_b$. This is explicitly computed in [7, Proposition 2.1].

We assume now that Ω_q is non-empty. Then also $\Omega_{n-q}=-\Omega_q$ is non-empty and it contains a Zariski-open subset Ω'_{n-q} where the number of distinct eigenvalues of Φ^λ is maximum. It is shown in [7] that locally on Ω'_{n-q} the eigenvalues $\mu_j(\lambda)$ and the basis elements v_j^λ in (4) are well-defined real-analytic functions of λ .

We can therefore find a locally finite open covering $\{U_j\}$ of Ω'_{n-q} such that for each j there is an orthonormal coordinate system $(z_1^\lambda,\ldots,z_n^\lambda)$ on V that varies smoothly with $\lambda\in U_j$ and diagonalizes Φ^λ as $\Phi^\lambda(z,z)=\sum_{n=1}^n\mu_k|z_k^\lambda|^2$.

For a multi-index L of length q with entries $\ell_1 < \ell_2 < \dots < \ell_q$, we denote by ω_L^{λ} the form $d\overline{z}_{\ell_1}^{\lambda} \wedge \dots \wedge d\overline{z}_{\ell_q}^{\lambda}$.

Let $\overline{L}=\overline{L}_j$ the multi-index of length q containing those k for which $\mu_k<0$. Let also $\{\rho_j\}$ be a smooth partition of unity on Ω'_{n-q} subordinated to the given covering. The following result is proven in [7, Lemma 5.1].

Lemma 3.1. Let $\omega \in L^2(G_{\Phi}) \otimes \Lambda_a$. The following are equivalent:

- (i) ω is in the null space of $\Box_b^{(q)}$;
- (ii) $\pi_{\lambda}(\omega) = 0$ a.e. outside of Ω_{n-q} and, a.e. on each U_j , $\pi_{\lambda}(\omega) = T^{\lambda} \otimes \omega_{\overline{L}}^{\lambda}$, where T^{λ} is a Hilbert-Schmidt operator on $L^2(V_r^{\lambda})$, with range in the linear span of h_0^{λ} .

Corollary 3.2. The subspace $(S(G_{\Phi}) \otimes \Lambda_q) \cap \ker \Box_b^{(q)}$ is dense in $(L^2(G_{\Phi}) \otimes \Lambda_q) \cap \ker \Box_b^{(q)}$ in the L^2 -topology. Moreover, if $\omega \in (L^2(G_{\Phi}) \otimes \Lambda_q) \cap \ker \Box_b^{(q)}$ then $\overline{\partial}_b \omega = \overline{\partial}_b^* \omega = 0$ in the sense of distributions.

PROOF. By Lemma 5.1 in [7] it follows that $\omega \in L^2(G_{\Phi}) \otimes \Lambda_q$ lies in $\ker \Box_b^{(q)}$ if and only if $\widehat{\omega}(\lambda; k, \ell) \neq 0$ implies that $\lambda \in \Omega_{n-q}$, $\ell = 0$ and $\widehat{\omega}(\lambda; k, 0) = c(\lambda, k)\omega_L^{\lambda}$ is such that

$$\|\omega\|_{L^2}^2 = \int_{\Omega_{n-q}} \sum_k |c(\lambda, k)|^2 D(\lambda) d\lambda.$$

Therefore, for any $\varepsilon>0$ it is possible to find a positive integer k_0 and Schwartz functions ψ_k with support in Ω_{n-q} , identically zero for $k>k_0$, and such that

$$\int_{\Omega_{n-q}} \sum_{k} |c(\lambda, k) - \psi_k(\lambda)|^2 D(\lambda) \, d\lambda < \varepsilon.$$

By Lemmas 3.1 and 5.2 in [7] there exists $\psi \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_q$ such that $\widehat{\psi}(\lambda; k, \ell) = \delta_{0\ell} \psi_k(\lambda) \omega_L^{\lambda}$. Hence $\psi \in \ker \Box_b^{(q)}$ and $\|\omega - \psi\| < \varepsilon$.

The second assertion is clear for Schwartz forms and follows from the density above for an L^2 -form. \Box

4. Proof of Theorem 1.2

The proof is based on the following lemma.

Lemma 4.1. There is a family $\{K_q\}_{0 \leq q \leq n}$, with $K_q \in \mathcal{S}'(G_{\Phi}) \otimes \operatorname{End}(\Lambda_q)$, satisfying the following properties

- (i) K_q is a fundamental (resp. a relative fundamental) solution of $\Box_b^{(q)}$ if Ω_q is empty (resp. non-empty);
- (ii) the following identity holds

(12)
$$\overline{\partial}_b(\omega * K_a) = (\overline{\partial}_b \omega) * K_{a+1} ,$$

for all $\omega \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_a$.

Assuming the validity of the lemma, we prove Theorem 1.2.

PROOF OF THEOREM 1.2. Given ω as in the statement, it suffices to define $u = \overline{\partial}_b^*(\omega * K_q)$. Since $\overline{\partial}_b \omega = 0$, we have

$$\overline{\partial}_b^* \overline{\partial}_b (\omega * K_{\!q}) = \overline{\partial}_b^* (\overline{\partial}_b \omega * K_{\!q+1}) = 0 \ ,$$

by (12). Then

$$\overline{\partial}_b u = \overline{\partial}_b \overline{\partial}_b^* (\omega * K_q) = \Box_b^{(q)} (\omega * K_q) = (I - \mathcal{C}_q) \omega.$$

On the other hand, notice that if $\omega \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_q$ is such that $\mathcal{C}_q \omega \neq 0$, then the equation $\overline{\partial}_b u = \omega$ cannot be solved. Indeed, using Corollary 3.2, let $\omega_k \in (\mathcal{S}(G_{\Phi}) \otimes \Lambda_q) \cap \ker \Box_b^{(q)}$ be a sequence converging to $\mathcal{C}_a \omega$ in $L^2(G_{\Phi}) \otimes \Lambda_q$. Then,

$$\|\mathcal{C}_q\omega\|_{L^2}^2 = \langle \omega \,, \mathcal{C}_q\omega \rangle = \lim_{k \to +\infty} \langle \overline{\partial}_b u \,, \, \omega_k \rangle = \lim_{k \to +\infty} \langle u \,, \, \overline{\partial}_b^*\omega_k \rangle = 0 \,\,,$$

a contradiction.

Proof of Lemma 4.1. Given $\lambda \in \Omega$ and (in case $\nu = \operatorname{rank} \Phi^{\lambda} < n$) $\eta \in (V_0^{\lambda})^*$, define the operator $A_q^{\lambda,\eta}$ on $L^2(V_r^{\lambda}) \otimes \Lambda_q$ as

$$A_q^{\lambda\,,\eta}(b_m^\lambda\otimes\omega_L^\lambda)=\left\{\begin{array}{cc} 0 & \text{if }\nu=n,\ \lambda\in\Omega_q\\ m=0\ \text{and }L=\overline{L}\\ \\ \frac{1}{\alpha_L^\lambda+|\eta|^2+\sum_{i=1}^n(2m_j+1)|\mu_j|}(b_m^\lambda\otimes\omega_L^\lambda) & \text{otherwise}\,. \end{array}\right.$$

When $\nu = n$, we simply drop η from this formula altogether. Due to its diagonal form, it is easy to check that $A_a^{\lambda,\eta}$ is a bounded operator.

The (relative) fundamental solutions K_q constructed in [7] are such that for any pair of Schwartz (0, q)-forms ω , σ on G_{Φ} ,

$$\langle \omega * K_q , \sigma \rangle = - \int_{\Omega} \int_{(V_0^{\lambda})^*} \langle A_q^{\lambda,\eta} \pi_{\lambda,\eta}(\omega) , \pi_{\lambda,\eta}(\sigma) \rangle \, d\eta \, D(\lambda) \, d\lambda \, .$$

The inner product \langle , \rangle is the ordinary Hilbert-Schmidt inner product for operators on $L^2(V_r^\lambda)\otimes \Lambda_q$. If $\nu=n-1$, the integral in $d\eta$ in (13) may not be absolutely convergent for certain values of λ , and it must be taken in a principal value sense.

We shall show below that

(14)
$$d\pi_{\lambda,\eta}(\overline{\partial}_b) \circ A_q^{\lambda,\eta} = A_{q+1}^{\lambda,\eta} \circ d\pi_{\lambda,\eta}(\overline{\partial}_b).$$

This implies that, if $\omega \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_q$ and $\sigma \in \mathcal{S}(G_{\Phi}) \otimes \Lambda_{q+1}$, then

(15)
$$\langle A_a^{\lambda,\eta} \pi_{\lambda,n}(\omega), \pi_{\lambda,n}(\overline{\partial}_b^* \sigma) \rangle = \langle A_{a+1}^{\lambda,\eta} \pi_{\lambda,n}(\overline{\partial}_b \omega), \pi_{\lambda,n}(\sigma) \rangle.$$

Hence

$$\langle \omega * K_q \,,\, \overline{\partial}_b^* \sigma \rangle = \langle (\overline{\partial}_b \omega) * K_q \,,\, \sigma \rangle \,\,,$$

which implies (12). When $\nu = n - 1$, the derivation of (16) from (15) requires some more care, but we leave the details to the interested reader.

The proof of (14) is very easy when $\nu < n$ and $\eta \neq 0$, or when $\nu = n$ and $\lambda \not\in \Omega_q \cup \Omega_{q+1}$. In both cases, in fact, $A_q^{\lambda,\eta} = -d\pi_{\lambda,\eta} (\square_b^{(q)})^{-1}$ and $A_{q+1}^{\lambda,\eta} = -d\pi_{\lambda,\eta} (\square_b^{(q+1)})^{-1}$. It is the sufficient to apply $d\pi_{\lambda,\eta}$ to both sides of the identity $\overline{\partial}_b \square_b^{(q)} = \square_b^{(q+1)} \overline{\partial}_b$.

Assume now that $\nu = n$ and $\lambda \in \Omega_a$. We recall that

$$d\pi_{_{\lambda}}(\overline{\partial}_{b})(h_{_{m}}^{\lambda}\otimes\omega_{_{L}}^{\lambda})=\sum_{|I|=q+1}\left(\sum_{k}\epsilon_{kL}^{I}d\pi_{_{\lambda}}(\overline{Z}_{k}^{\lambda})h_{_{m}}^{\lambda}
ight)\otimes\omega_{_{I}}^{\lambda}$$
 ,

and that

$$d\pi_{\lambda,\eta}(\overline{Z}_k^{\lambda}) = \sum_{|J|=q+1} \left(\sum_k \epsilon_{kL}^J (-\operatorname{sgn}\mu_k) \left((2m_k+1)|\mu_k| - \mu_k \right)^{1/2} h_{m-(\operatorname{sgn}\mu_k)e_k}^{\lambda} \right) \otimes \omega_J^{\lambda}.$$

Hence,

$$d\pi_{\lambda}(\overline{\partial}_b) \circ A_a^{\lambda}(h_m^{\lambda} \otimes \omega_L^{\lambda}) =$$

(17)
$$= \sum_{|J|=q+1} \sum_{k} \epsilon_{kL}^{J} \frac{(-\operatorname{sgn} \mu_{k}) (|\mu_{k}|(2m_{k}+1)-\mu_{k})^{1/2}}{\alpha_{L}^{\lambda} + \sum_{i=1}^{n} (2m_{i}+1)|\mu_{i}|} (h_{m-(\operatorname{sgn} \mu_{k})\epsilon_{k}}^{\lambda} \otimes \omega_{J}^{\lambda})$$

if $m \neq 0$ or $L \neq \overline{L}$ and $d\pi_{\lambda}(\overline{\partial}_b) \circ A_q^{\lambda,\eta}(b_m^{\lambda} \otimes \omega_L^{\lambda}) = 0$ otherwise. On the other hand,

$$d\pi_{\lambda}(\overline{\partial}_b)(b_m^{\lambda}\otimes\omega_L^{\lambda}) = \sum_{|I|=a+1}\sum_k \epsilon_{kL}^J(-\operatorname{sgn}\mu_k) \big(|\mu_k|(2m_k+1)-\mu_k\big)^{1/2}(b_{m-(\operatorname{sgn}\mu_k)e_k}^{\lambda}\otimes\omega_J^{\lambda}) \ ,$$

so that

$$(18) \qquad A_{q+1}^{\lambda,\eta} \circ d\pi_{\lambda}(\overline{\partial}_{b})(b_{m}^{\lambda} \otimes \omega_{L}^{\lambda}) = \\ = \sum_{|J|=q+1} \sum_{k} \epsilon_{kL}^{J} \frac{(-\operatorname{sgn}\mu_{k}) (|\mu_{k}|(2m_{k}+1)-\mu_{k})^{1/2}}{\alpha_{J}^{\lambda} - 2\mu_{k} + \sum_{k=1}^{n} (2m_{j}+1)|\mu_{j}|} (b_{m-(\operatorname{sgn}\mu_{k})e_{k}}^{\lambda} \otimes \omega_{J}^{\lambda}).$$

Notice that $\lambda \in \Omega_q$ implies that $\lambda \not\in \Omega_{q+1}$. If $J = \{k\} \cup L$ as sets, then it is easy to check that $\alpha_L^\lambda = \alpha_L^\lambda - 2\mu_k$. When $L = \overline{L}$ and $k \not\in \overline{L}$ then $\mu_k > 0$ which implies that

$$d\pi_{\lambda}(K_{a+1}) \circ d\pi_{\lambda}(\overline{\partial}_{b}) \left(h_{0}^{\lambda} \otimes \omega_{\overline{L}}^{\lambda} \right) = 0.$$

Thus, (17) and (18) prove equality (14) for $\lambda \in \Omega_q$.

The argument for $\lambda \in \Omega_{q+1}$ is similar to the case $\lambda \in \Omega_q$ and we omit it. \square

ACKNOWLEDGEMENTS

This work was done within the project TMR Network «Harmonic Analysis».

References

- [1] R.A. AIRAPETYAN G.M. KHENKIN, Integral representation of differential forms on Cauchy-Riemann manifolds and the theory of CR-functions. Russian Math. Surveys, 39:3, 1984, 41-118.
- [2] A. Boggess, CR Manifolds and the Tangential Cauchy-Riemann Complex. CRC Press, Boca Raton 1991.
- [3] S. Chen M. Shaw, *Partial Differential Equations in Several Complex Variables*. International Press, Providence 2001.

[4] G.B. Folland - J.J. Kohn, *The Neumann problem for the Cauchy-Riemann complex*. Annals of Math. Studies, 57, Princeton U. Press, Princeton 1972.

- [5] G.B. Folland E.M. Stein, Estimates for the $\overline{\partial}_b$ complex and analysis on the Heisenberg group. Comm. Pure Appl. Math., 27, 1974, 429-522.
- [6] H. Lewy, An example of a smooth differential operator without solution. Ann. Math., 66, 1957, 155-158.
- [7] M.M. Peloso F. Ricci, Analysis of the Kohn Laplacian on quadratic CR manifolds. Preprint 2001.
- [8] H. Rossi M. Vergne, Group representation on Hilbert spaces defined in terms of $\overline{\partial}_b$ -cohomology on the Silov boundary of a Siegel domain. Pac. J. Math., 6, 1976, 193-207.
- [9] A. Andreotti G. Fredricks M. Nacinovich, On the absence of Poincaré lemma in tangential Chauchy-Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404.
- [10] J.J. Kohn, Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964). Springer-Verlag, New York 1965, 81-94.
- [11] F. Treves, A remark on the Poincaré lemma in analytic complexes with nondegenerate Levi form. Comm. PDE, 7, 1982, 1467-1482.

M.M. Peloso: Dipartimento di Matematica Politecnico di Torino Corso Duca degli Abruzzi, 24 - 10129 Torino peloso@calvino.polito.it

> F. Ricci: Scuola Normale Superiore di Pisa Piazza dei Cavalieri, 7 - 56126 Pisa fricci@sns.it