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Marco M. Peloso - Fulvio Ricci

TANGENTIAL CAUCHY-RIEMANN EQUATIONS
ON QUADRATIC CR MANIFOLDS

Abstract. — We study the tangential Cauchy-Riemann equations @bu = ω for (0; q)-forms on
quadratic CR manifolds. We discuss solvability for data ω in the Schwartz class and describe the range of
the tangential Cauchy-Riemann operator in terms of the signatures of the scalar components of the Levi
form.

Key words: Tangential Cauchy-Riemann complex; Kohn Laplacian; CR manifolds; Global solvability;
Hypoellipticity.

1. Introduction

Let V be an n-dimensional complex vector space, W an m-dimensional real vector
space, W C the complexification of W , and

Φ : V × V −→ W C

a Hermitean map (i.e. Φ(z; z ′) = Φ(z ′; z) for every z; z ′ ∈ V , where complex conju-
gation in W C is referred to the real form W ).

We consider the associated quadratic manifold

(1) S =
{

(z; t + iu) ∈ V × W C : u = Φ(z; z)
}

in n + m complex dimensions. Then S is a CR manifold of CR-dimension n and real
codimension m.

We consider the @b-complex on S , mapping (0; q)-forms on S into (0; q + 1)-
forms, for 0 ≤ q ≤ n.

We shall consistently use the parameters (z; t ) ∈ V × W to denote the element(
z; t + iΦ(z; z)

)
∈ S . A natural Lie group structure can be introduced on V × W (as

described in Section 1); this group will be denoted by GΦ.
The fiber of the vector bundle Λ0;q(T ∗S ) over each point of S can be identified in

the trivial way with the exterior product Λq = Λ0;q(V ∗). Through the identification of
S with V × W = GΦ, we then regard (0; q)-forms on S as vector valued functions on
GΦ with values in Λq .

Depending on the integrability or regularity conditions imposed on the forms under
consideration, we shall denote the different spaces of (0; q)-forms as L2(GΦ) ⊗ Λq ,
S(GΦ) ⊗ Λq , S ′(GΦ) ⊗ Λq , etc.

We shall also need other linear bundles over GΦ, with fibers End (Λq);Hom (Λq;Λq+1),
etc. The corresponding spaces of sections will be denoted in a similar way.
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We address the following problem: determine under which assumptions on the
Hermitean form Φ, q ≥ 1 and the @b-closed form ω ∈ S(GΦ) ⊗ Λq , the equation

@bu = ω has a solution u ∈ S ′(GΦ) ⊗ Λq .
Our approach is based on the results in [7] concerning the Kohn Laplacian

�(q)
b = @b@

∗
b + @

∗
b@b

acting on (0; q)-forms on S . The operator @
∗
b is the adjoint of the L2-closure of @b

w.r. to the Haar measure dz dt on GΦ and to a fixed inner product on V .
The answer depends on the signatures of the scalar-valued forms

Φλ(z; z ′) = λ
(
Φ(z; z ′)

)
;

depending on λ ∈ W ∗.
In general, W ∗ decomposes as the union of an open regular set, consisting of those

λ for which Φλ is non-degenerate, and its complement, the singular set. We further
decompose the regular set as the union of the open sets Ωq , defined by the condition

that Φλ has q positive and n − q negative eigenvalues. Some Ωq may be empty, and it

may well happen that all of them are empty, i.e. that Φλ is degenerate for every λ.
In general, we denote by Ω ⊂ W ∗ the set of those λ for which Φλ has maximum

rank. If there are non-degenerate Φλ, then Ω is the regular set.
In [7] we proved the following theorem.

Theorem 1.1. The following are equivalent :

(i) Ωq is non-empty ;

(ii) �(q)
b is locally solvable, i.e. given any smooth (0; q)-form ω, the equation �(q)

b u = ω has
a solution in a fixed neighborhood of the origin ;

(iii) �(q)
b has a tempered fundamental solution, i.e. Kq ∈S ′(GΦ)⊗End(Λq) such that �(q)

b (ω∗
∗Kq) = ω for every ω ∈ S(GΦ) ⊗ Λq ;

(iv) the L2-null-space of �(q)
b is trivial.

If Ωq is non-empty, then �(q)
b has a relative fundamental solution Kq;rel ∈ S ′(GΦ)⊗

⊗End (Λq), i.e. such that �(q)
b (ω ∗Kq;rel ) = (I −Cq)ω for every ω ∈ S(GΦ)⊗Λq , where Cq is

the orthogonal projection of L2(GΦ) ⊗ Λq onto the null-space of �(q)
b .

The notation we have used is such that, if f and g are functions on GΦ with values
in Λq and in End (Λq) respectively, then

f ∗ g (z; t ) =

∫

GΦ

g
(
(w; u)−1(z; t )

)
f (w; u) dw du

takes values in Λq .
We derive from this the following result.
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Theorem 1.2. Let q ≥ 1. The equation @bu = ω has a solution u ∈ S ′(GΦ) ⊗ Λq−1 for

a given @b-closed form ω ∈ S(GΦ) ⊗ Λq if and only if Cqω = 0. In particular, the equation

has a solution u ∈ S ′(GΦ) ⊗ Λq−1 for every ω ∈ S(GΦ) ⊗ Λq such that @bω = 0 if and only
if Ωq is empty.

The proof will require a precise description of the L2-null-space of �(q)
b . This will

be done in Section 3.

The question of solvability for the Cauchy-Riemann complex has drawn a great deal
of interest since Lewy’s celebrated example of a non-solvable differential operator [6].
Such question is also of interest for extension phenomena, such as Bochner’s theorem,
see [1-5] for historical background and references.

The relations between solvability of the @b-complex and signatures of the scalar
components of the Levi form for general CR manifolds have been investigated by
several authors [9-11].

In the case of a quadratic CR manifold S , Rossi and Vergne [8] showed that if Φ

is non-degenerate, i.e. is there exists λ ∈ W ∗ such that Φλ is non-degenerate, then
condition (i) in Theorem 1.1 is necessary and sufficient for the solvability of the @b-
equation. The degenerate case is not included in their analysis. On the other hand, it
is as an immediate consequence of our Theorem 1.2 that if Φ is degenerate, then Ωq

is empty and the @b-equation @bu = ω is solvable for all @b-closed, (0; q)-forms ω in
the Schwartz class, for all q ≥ 1.

2. The Lie group associated to S and its representations

We define the following product between two elements (z; t ); (z ′; t ′) ∈ V × W :

(z; t )(z ′; t ′) =
(
z + z ′; t + t ′ + 2Im Φ(z; z ′)

)
;

which induces a step-two nilpotent Lie group structure on V × W . We call GΦ this
group and gΦ its Lie algebra.

For v ∈ V , let @vf denote the directional derivative of a function f in the direc-
tion v. The left-invariant vector field Xv on GΦ that coincides with @v at the origin is
given by

Xvf (z; t ) = @vf (z; t ) + 2Im Φ(z; v) · ∇t f (z; t ) :

If J denotes the complex structure on V , we define Zv; Z v ∈ gΦ
C as

Zv = 1
2 (Xv − iXJv) = 1

2 (@v − i@Jv) + iΦ(z; v) · ∇t ;

Z v = 1
2 (Xv + iXJv) = 1

2 (@v + i@Jv) − iΦ(z; v) · ∇t :

The relevance of the group GΦ in our context is justified by the fact that the
operators Z v coincide with the tangential Cauchy-Riemann operators on S .
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The following commutation rules hold:

(2)
[Zv; Zv′ ] = [Z v; Z v′ ] = 0 ;

[Zv; Z v′ ] = −2iΦ(v; v′) · ∇t :

Hence GΦ is step-two nilpotent.
It can be shown that the Lie algebras that arise in this way can be characterized as

follows.

Proposition 2.1. A real Lie algebra g is isomorphic to the Lie algebra gΦ associated to a
quadratic CR manifold if and only if g = v⊕w, with [v; v] ⊆ w, [g;w] = 0 and there is
a complex structure J on v such that [ Jv; Jv′] = [v; v′] for every v; v′ ∈ v.

We summarize the description of the irreducible unitary representations of GΦ.
For λ ∈ W ∗, let Φλ be the scalar-valued form Φλ(v; v′) = λ(Φ(v; v′)). Denote by

V λ

0 the radical of Φλ, i.e. the subspace of the v such that Φλ(v; v′) = 0 for every
v′ ∈ V .

Let V λ

1 be the orthogonal complement of V λ

0 in V , w.r. to the fixed inner product.
Let also V λ

r be a real form of V λ

1 on which Φλ is real. For z ∈ V , we set z = z ′ + z ′′,
with z ′ ∈ V λ

1 , z ′′ ∈ V λ

0 , and z ′ = x ′ + iy ′ with x ′; y ′ ∈ V λ

r .

Lemma 2.2. Let λ ∈ W ∗, and let η be a linear functional on V λ

0 . Define the representation
πλ;η of GΦ on L2(V λ

r ) as

(3)
(
π
λ;η(z; t )φ

)
(ξ) = ei(λ(t )+2Reη(z′′))e−2iΦλ(y′;ξ+x′)φ(ξ + 2x ′) :

Then πλ;η is an irreducible unitary representation of GΦ. Conversely, any irreducible
unitary representation of GΦ is equivalent to one and only one πλ;η.

It is convenient to diagonalize Φλ with respect to an orthonormal basis {vλ

1 ; : : : ; vλ

n }
of V , in such a way that vλ

j ∈ V λ
r for j ≤ ν(λ) and vλ

j ∈ V λ
0 for j > ν(λ), where

0 ≤ ν(λ) = rank Φλ = dimV λ

1 ≤ n. We set

(4) µj = µj (λ) = Φλ(vλ
j ; vλ

j ) :

Calling

Z λ
j = 1

2 (Xvλj
− iXJvλj

); Z
λ

j = 1
2 (Xvλj

+ iXJvλj
) ;

a standard computation gives that

(5)

dπλ;η(Z λ
k ) =

{
@ξj

− µkξk if k ≤ ν

iηk−ν(λ) if k > ν

dπλ;η(Z
λ

k ) =

{
@
ξj

+ µkξk if k ≤ ν

iηk−ν(λ) if k > ν ;

with ηk−ν(λ) = η(vλ
k ) ∈ C.
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For a function f on GΦ, we define

(6) πλ;η(f ) =

∫
f (z; t )πλ;η(z; t )−1 dzdt :

This definition has the effect that π
λ;η(f ∗ g ) = π

λ;η(g )π
λ;η(f ), and that

π
λ;η(Lf ) = dπ

λ;η(L)π
λ;η(f ) ;

for any left-invariant differential operator L.
We denote by hj the j-th Hermite function on the real line:

(7) hj (t ) = (2j√πj !)−1=2(−1)j e t2=2 d j

dt j e−t2
;

and, for a given a multi-index m ∈ Nν(λ), we set

(8) hλ
m(ξ) =

ν(λ)∏

j=1

|µj |
1=4hmj

(
|µj |

1=2ξj

)
:

By (7) and (8) above we have that (dt − t )hj =
√

2(j + 1)hj+1 and (dt + t )hj =

= −
√

2jhj−1. From these it follows that

(@ξk
+ µkξk)hλ

m = (−sgnµk)
(
(2mk + 1)|µk | − µk

)1=2
hλ

m−(sgnµk )ek
;

where ek = (0; : : : ; 1; : : : ; 0) denotes the k-th element of the standard basis. Hence,
for any unitary irreducible representation πλ;η of GΦ,

dπλ;η(Z
λ

k )hλ
m =

{
(−sgnµk)

(
(2mk + 1)|µk | − µk

)1=2
hλ

m−(sgnµk )ek
if k ≤ ν(λ)

iηk−ν(λ)h
λ
m if k > ν(λ) :

Analogously, one gets

dπ
λ;η(Z λ

k )hλ

m =

{
sgnµk

(
(2mk + 1)|µk | + µk

)1=2
hλ

m+(sgnµk )ek
if k ≤ ν(λ)

iηk−ν(λ)h
λ
m if k > ν(λ) :

The matrix coefficient 〈πλ;η(f )hλ
m; hλ

m′〉 will be denoted as f̂ (λ; η; m; m′). For a
(0; q)-form ω, the notation ω̂(λ; η; m; m′) ∈ Λq will be used with the same meaning.

If Φλ is non-degenerate, so that V λ

0 = {0}, we drop the parameter η.
Define

D(λ) =

ν(λ)∏

j=1

|µj | :

Lemma 2.3. The function D(λ) is smooth on Ω, the subset of W ∗ where ν(λ) is maximum.
The Plancherel formula for GΦ is

(9) ‖f ‖2
2 =

∫

Ω

∫

(V λ
0 )∗

‖πλ;η(f )‖2
HS dη D(λ) dλ;
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where dλ is an appropriately normalized Lebesgue measure on W ∗ and dη is the volume element
on (V λ

0 )∗ induced by the inner product on V .

Observe that the domain of integration in (9) has a natural differentiable structure,
as it can be identified with Ω ×Cn−ν , with ν = max ν(λ).

3. The @b-complex on GΦ and the null space of �(q)
b

Let {v1; : : : ; vn} be any orthonormal basis of V with respect to the given inner
product. Let (z1; : : : ; zn) denote the coordinates on V with respect to this basis. We
denote by d zI the (0; q)-form d zi1

∧ · · · ∧ d ziq
, where I = (i1; : : : ; iq) is a strictly

increasing multi-index. Given a (0; q)-form φ =
∑

|I |=q φI d zI with smooth coefficients,
we have

(10) @bφ =
∑

|I |=q

n∑

k=1

Z k(φI )d zk ∧ d zI =
∑

|J |=q+1

∑

k;|I |=q

ε J
kI Z k(φI )d zJ ;

where

Zj = 1
2 (Xvj

− iXJvj
); Z j = 1

2 (Xvj
+ iXJvj

); j = 1; : : : ; n ;

and εJ
kI = 0 if J �= {k} ∪ I as sets, and it equals the parity of the permutation that

rearranges (k; i1; : : : ; iq) in increasing order if J = {k} ∪ I .

Then @
∗
b can be easily computed to yield that

(11) @
∗
b


∑

|I |=q

φI d zI


 =

∑

|J |=q−1


−

∑

k;|I |=q

εI
kJ ZkφI


 d zJ :

The Kohn Laplacian is defined as �(q)
b = @b@

∗
b + @

∗
b@b . This is explicitly computed

in [7, Proposition 2.1].

We assume now that Ωq is non-empty. Then also Ωn−q = −Ωq is non-empty and it

contains a Zariski-open subset Ω′
n−q where the number of distinct eigenvalues of Φλ is

maximum. It is shown in [7] that locally on Ω′
n−q the eigenvalues µj (λ) and the basis

elements vλ

j in (4) are well-defined real-analytic functions of λ.

We can therefore find a locally finite open covering {Uj} of Ω′
n−q such that for each

j there is an orthonormal coordinate system (zλ
1 ; : : : ; zλ

n ) on V that varies smoothly
with λ ∈ Uj and diagonalizes Φλ as Φλ(z; z) =

∑n
k=1 µk |z

λ
k |

2.

For a multi-index L of length q with entries ‘1 < ‘2 < · · · < ‘q , we denote by ωλ
L

the form d zλ
‘1
∧ · · · ∧ d zλ

‘q
.

Let L = Lj the multi-index of length q containing those k for which µk < 0. Let
also {ρj} be a smooth partition of unity on Ω′

n−q subordinated to the given covering.

The following result is proven in [7, Lemma 5.1].
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Lemma 3.1. Let ω ∈ L2(GΦ) ⊗ Λq . The following are equivalent :

(i) ω is in the null space of �(q)
b ;

(ii) πλ(ω) = 0 a.e. outside of Ωn−q and, a.e. on each Uj , πλ(ω) = T λ ⊗ ωλ
L , where T λ is

a Hilbert-Schmidt operator on L2(V λ
r ), with range in the linear span of hλ

0 .

Corollary 3.2. The subspace (S(GΦ)⊗Λq)∩ker�(q)
b is dense in (L2(GΦ)⊗Λq)∩ker�(q)

b

in the L2-topology. Moreover, if ω ∈ (L2(GΦ) ⊗ Λq) ∩ ker�(q)
b then @bω = @

∗
bω = 0 in the

sense of distributions.

Proof. By Lemma 5.1 in [7] it follows that ω ∈ L2(GΦ) ⊗Λq lies in ker�(q)
b if and

only if ω̂(λ; k; ‘) �= 0 implies that λ ∈ Ωn−q , ‘ = 0 and ω̂(λ; k; 0) = c(λ; k)ωλ
L is such

that

‖ω‖2
L2 =

∫

Ωn−q

∑

k

|c(λ; k)|2D(λ) dλ :

Therefore, for any ε > 0 it is possible to find a positive integer k0 and Schwartz
functions ψk with support in Ωn−q , identically zero for k > k0, and such that

∫

Ωn−q

∑

k

|c(λ; k) − ψk(λ)|2D(λ) dλ < ε :

By Lemmas 3.1 and 5.2 in [7] there exists ψ ∈ S(GΦ) ⊗ Λq such that ψ̂(λ; k; ‘) =

= δ0‘ψk(λ)ωλ
L . Hence ψ ∈ ker�(q)

b and ‖ω − ψ‖ < ε.
The second assertion is clear for Schwartz forms and follows from the density above

for an L2-form.

4. Proof of Theorem 1.2

The proof is based on the following lemma.

Lemma 4.1. There is a family {Kq}0≤q≤n, with Kq ∈ S ′(GΦ) ⊗ End (Λq), satisfying the
following properties

(i) Kq is a fundamental (resp: a relative fundamental) solution of �(q)
b if Ωq is empty (resp:

non-empty);

(ii) the following identity holds

(12) @b(ω ∗ Kq) = (@bω) ∗ Kq+1 ;

for all ω ∈ S(GΦ) ⊗ Λq .

Assuming the validity of the lemma, we prove Theorem 1.2.

Proof of Theorem 1.2. Given ω as in the statement, it suffices to define u =

= @
∗
b (ω ∗ Kq). Since @bω = 0, we have

@
∗
b@b(ω ∗ Kq) = @

∗
b (@bω ∗ Kq+1) = 0 ;
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by (12). Then

@bu = @b@
∗
b (ω ∗ Kq) = �(q)

b (ω ∗ Kq) = (I − Cq)ω :

On the other hand, notice that if ω∈S(GΦ)⊗Λq is such that Cqω �=0, then the equation

@bu=ω cannot be solved. Indeed, using Corollary 3.2, let ωk ∈ (S(GΦ) ⊗Λq) ∩ ker�(q)
b

be a sequence converging to Cqω in L2(GΦ) ⊗ Λq . Then,

‖Cqω‖
2
L2 = 〈ω; Cqω〉 = lim

k→+∞
〈@bu;ωk〉 = lim

k→+∞
〈u; @

∗
bωk〉 = 0 ;

a contradiction.

Proof of Lemma 4.1. Given λ ∈ Ω and (in case ν = rank Φλ < n) η ∈ (V λ
0 )∗, define

the operator Aλ;η
q on L2(V λ

r ) ⊗ Λq as

Aλ;η
q (hλ

m ⊗ ωλ
L ) =





0 if ν = n; λ ∈ Ωq

m = 0 and L = L
1

αλ

L + |η|2 +
n∑

j=1

(2mj + 1)|µj |
(hλ

m ⊗ ωλ

L ) otherwise :

When ν = n, we simply drop η from this formula altogether. Due to its diagonal
form, it is easy to check that Aλ;η

q is a bounded operator.
The (relative) fundamental solutions Kq constructed in [7] are such that for any pair

of Schwartz (0; q)-forms ω;σ on GΦ,

(13) 〈ω ∗ Kq;σ〉 = −
∫

Ω

∫

(V λ
0 )∗

〈〈Aλ;η
q πλ;η(ω);πλ;η(σ)〉〉 dη D(λ) dλ :

The inner product 〈〈 ; 〉〉 is the ordinary Hilbert-Schmidt inner product for operators
on L2(V λ

r )⊗Λq . If ν = n−1, the integral in dη in (13) may not be absolutely convergent
for certain values of λ, and it must be taken in a principal value sense.

We shall show below that

(14) dπλ;η(@b) ◦ Aλ;η
q = Aλ;η

q+1 ◦ dπλ;η(@b) :

This implies that, if ω ∈ S(GΦ) ⊗ Λq and σ ∈ S(GΦ) ⊗ Λq+1, then

(15) 〈〈Aλ;η
q πλ;η(ω);πλ;η(@

∗
bσ)〉〉 = 〈〈Aλ;η

q+1πλ;η(@bω);πλ;η(σ)〉〉 :

Hence

(16) 〈ω ∗ Kq; @
∗
bσ〉 = 〈(@bω) ∗ Kq;σ〉;

which implies (12). When ν = n − 1, the derivation of (16) from (15) requires some
more care, but we leave the details to the interested reader.

The proof of (14) is very easy when ν < n and η �= 0, or when ν = n and λ �∈
�∈ Ωq∪Ωq+1. In both cases, in fact, Aλ;η

q =−dπ
λ;η(�(q)

b )−1 and Aλ;η
q+1 =−dπ

λ;η(�(q+1)
b )−1.

It is the sufficient to apply dπλ;η to both sides of the identity @b�
(q)
b = �(q+1)

b @b .
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Assume now that ν = n and λ ∈ Ωq . We recall that

dπλ
(@b)(hλ

m ⊗ ωλ
L ) =

∑

|J |=q+1

(∑

k

εJ
kLdπ

λ
(Z

λ

k )hλ
m

)
⊗ ωλ

J ;

and that

dπλ;η(Z
λ

k ) =
∑

|J |=q+1

(∑

k

εJ
kL(−sgnµk)

(
(2mk + 1)|µk | − µk

)1=2
hλ

m−(sgnµk )ek

)
⊗ ωλ

J :

Hence,

(17)

dπλ(@b) ◦ Aλ
q (hλ

m ⊗ ωλ
L ) =

=
∑

|J |=q+1

∑

k

εJ
kL

(−sgnµk)
(
|µk |(2mk + 1) − µk

)1=2

αλ
L +

n∑

j=1

(2mj + 1)|µj |
(hλ

m−(sgnµk )ek
⊗ ωλ

J )

if m �= 0 or L �= L and dπλ(@b) ◦ Aλ;η
q (hλ

m ⊗ ωλ
L ) = 0 otherwise.

On the other hand,

dπλ(@b)(hλ

m ⊗ ωλ

L ) =
∑

|J |=q+1

∑

k

εJ
kL(−sgnµk)

(
|µk |(2mk + 1) − µk

)1=2
(hλ

m−(sgnµk )ek
⊗ ωλ

J ) ;

so that

(18)

Aλ;η
q+1 ◦ dπλ(@b)(hλ

m ⊗ ωλ

L ) =

=
∑

|J |=q+1

∑

k

εJ
kL

(−sgnµk)
(
|µk |(2mk + 1) − µk

)1=2

αλ
J − 2µk +

n∑

j=1

(2mj + 1)|µj |
(hλ

m−(sgnµk )ek
⊗ ωλ

J ) :

Notice that λ ∈ Ωq implies that λ �∈ Ωq+1. If J = {k} ∪ L as sets, then it is easy to

check that αλ

L = αλ

J − 2µk . When L = L and k �∈ L then µk > 0 which implies that

dπλ(Kq+1) ◦ dπλ(@b)
(
hλ

0 ⊗ ωλ
L

)
= 0 :

Thus, (17) and (18) prove equality (14) for λ ∈ Ωq .
The argument for λ ∈ Ωq+1 is similar to the case λ ∈ Ωq and we omit it.
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Riemann complexes. Ann. Scuola Norm. Sup. Pisa, 8, 1981, 365-404.
[10] J.J. Kohn, Boundary of complex manifolds. Proc. Conf. on Complex Manifolds (Minneapolis, 1964).

Springer-Verlag, New York 1965, 81-94.
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