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Gustavo GARRIGOS

POISSON-LIKE KERNELS IN TUBE DOMAINS OVER LIGHT-CONES

Asstract. — A family of holomorphic function spaces can be defined with reproducing kernels
B, (z, w), obtained as real powers of the Cauchy-Szegs kernel. In this paper we study properties of the

associated Poisson-like kernels: P, (z, w) = |B, (2, w)\z/ B_ (2, ). In particular, we show boundedness
of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological
boundary of the cone.

Key worps: Tube domain; Poisson kernel; Maximal function; Bergman space.

1. InTRODUCTION

Let Q@ ={y=(y,)) € R"| 3, > |¥|} denote the forward light-cone in R", n > 3,
and 7, = R” + i) the corresponding tube domain in C”. We also denote by

A =y - =x—-0i+...+3), yeR",

the Lorentz form (or determinant) associated with . When 0 < p < oo the classical
Hardy space is defined as:

H(Tg) = {F € H(Ty) | sup [|F( + )l ppgny < oo} )
yefd

There are two well-known kernels related to these spaces:
1. The Cauchy-Szego kernel :

S(z, u) = COA_%((Z— w/i), zel,, ncR".
2. The Poisson-Szego kernel :

AZ(2y)

Pz, u) = |5(z, u)|2/5(z, z) = L‘Om 5

z=x+ iy, uecR".

The first one is the reproducing kernel of H?, and thus naturally related to the
complex geometry of Hardy spaces. Its behavior for real analysis is however somewhat
pathological, since the associated orthogonal projector does not admit bounded exten-
sions to I” for any p # 2 [10, 6]. The second kernel is derived from S(z, #) in such
a way that reproduces functions in all Hardy spaces H”, when p > 1 (see, e.g., [12,
Chapter 3]). Moreover, it is better suited for real analysis since the family of functions
{Py(x) = Px+ iy, 0)}yeﬂ is an approximation of the identity in R”. That is, when p > 1
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every function f € I’(R”) can be extended to the tube domain by its Poisson integral:
Pf(x+ 1) = P, * f(x), x + iy € T, so that it holds the continuity property:

(1.1) ”Pf(x—|—iy)=Py*f(x)—>f(x), as y—»0(eQ),

with convergence in the norm of IZ(R”). There is also pointwise convergence for a.e.
x € R”, provided the values of y are restricted to a proper subcone of Q [11, p. 449].
A second pathological behavior appears in relation with the unrestricted pointwise con-
vergence in (1.1). This can be shown to fail using the following remarkable identity

from [13]: if £ € O then

1 [ flx=A9)

= e ai,

(1.2) lim Pf(x+ iy) =
(e)

with convergence in I7(R”). In fact, a combination of (1.2) and the Besicovitch coun-
terexample shows that the maximal operator

P f(x) =sup|Py*f|(x), xcR”,
yeQ

is never bounded in Z/(R”) for any finite p (see [11, pp. 449, 458]). These two
pathological behaviors of the Cauchy-Szegd kernel in tube domains over higher rank
cones motivate a further investigation of other related operators arising from reproducing
kernels in 7.

In this paper we shall mainly concentrate in Poisson-like kernels associated with two
families of holomorphic function spaces in tube domains over light-cones. The simplest
case is the family of (weighted ) Bergman spaces, defined for 0 < p < oo and a > 4 —
as:

A{;:{FG’H(Y}Q‘ / |F(x + iy dx A(y)* 2 dy < OO} .
Q JRn

The reproducing kernel for Ai is now
B(z,w)=c Alz—m)/)"“T?, z,weTl,,

and the corresponding Poisson-Bergman kernels:

_ 2 . AaJrg(Z)/)
P (z,w)=|B (2, w)|" /B, (z,2) = c, Aot i+ DT R

where z=x+ 4y, w=u+ iv € T,. In this paper we shall investigate the associated
Poisson-Bergman integrals:

P&ﬂz):/g/ P (z, w)f(w) AQmw)* 2dw, zeT,,

defined for f € IZ = I’(T; dx A3 (»)dy) and p > 1. Our first result in this direction
is the following.
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Tueorem 1.3. Let o« > % — 1. Then, P, is a bounded operator in L, if and only if
p>p, = %%_1 Moreover, if S is a proper subcone of ), the restricted maximal operator:
(1.4) P;,Qof(z) = sué) |P.fz+5)|, zeTy,

Y€

is bounded in I if and only if p> p..

We point out that the index p_ in the theorem coincides with the index ¢/, in [4];
that is, p, < p < p is precisely the range where the «positive» Bergman projector
(with kernel |B (z, w)|) is bounded in If. The boundedness (or unboundedness) of
the unrestricted maximal operator is still an open question subject of current investi-
gation. Likewise happens with the boundedness of the Bergman projector (with kernel
B (z, w)), for which the latest results give the region 1 + i <p<1+p and
several equivalences with other geometric problems of Bergman spaces (see [3, 2] and
the survey paper in this journal [4]).

The second family of holomorphic function spaces we shall consider is perhaps less
known, and arises as a limit case of the weighted Bergman spaces when o@ — oy = 5 —1:

Hi = {F € H(Tg) sup/ |Flx + iy + v)Pdx dp(v) < oo} )
o0 Jra

7€

In this definition p denotes the measure:
v’

f ) du(v) = (v, ) —
o0 v

R v

feCR,

supported on the topological boundary of the cone 0. Alternatively, 1 can be seen as
the «delta distribution» of the surface 9Q: = §(A), as defined in [8, Chapter 3]. It
can be shown that 4 is the distributional limit of the measures (ov— % 4 1) A“T2(8) de,
as N\, § — 1 [8, 5], justifying the terminology of «limit space» we gave above to H.
The reproducing kernel of Hj is now:

B, (2 w) =c, Alz—w) /)", zeTy, we Ty,

@Q

with the inner product of Li = L*(R" + 08 dx dju(v)). This space was first considered
when p =2 in [14], in connection with the representation theory of the group G(7¢).
A more complete investigation of H;f , for all 0 < p < oo, was recently presented in [7],
establishing several properties analogous to those of classical Hardy spaces. The main
question we wish to treat here concerns the «Poisson-like kernel» defined by:

Anfl(zy)
. P. (z,w) = |B, (z, w)|*/B, (z,2) =
(1.5) ao(z w) = | ao(z w)|*/ ao(z 2) CQO\A(x—u+ ot )

2(n—1)

when z=x+ iy € Ty, w=u+ iv € T, and the associated «Poisson-like integrals»:

(1.6) Parf(z) = /ag/ Pao(z) w)f(w) dudp(v), zeTy,
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defined for any f € Lﬁ and p > 1. In this case, the behavior is more complicated than
in the Poisson-Bergman situation, because of the strong singularities of the kernel when
z is close to 0. There are also fundamental differences with the Poisson-Szegé kernel,
since P f(2) is no longer of convolution type (there is an extra integral over 0f2), and
one cannot expect a behavior of approximate identity when z — 0. The results in
this paper show that the Poisson integrals in (1.6) admit an extension to the topogical
boundary of the tube similar to (1.2), and provide a sharp region of boundedness for
the «pointwise operator» P, f:=7P, f(-+ #) in L. These results are presented in
the next two theorems.

) . rp
Treorem 1.7. For every fixed y € ), the operator f — Pao y [ is bounded in LH if and

only if p > 2. In this case, the norm [Py, ,yHL‘Z—>Lﬁ is independent of y € ().

Treorem 1.8. For every f € C (R” + i0Q) and z = x + it € T}y, we have

f x+ (r+ zs)t) drsg_lé.
5

(1.9) llmP f(z+zy) d, / Ty

(yeﬂ)
]K[oreozzer, if we denote by 75% f(x + it) the integral on the right of (1.9), then the operator
P , in (1.9) is bounded in Lﬁ if and only if p > 2.

«
As an interesting observation we point out that
a+1
d, o
p Tat
[(p=7"+ (0 + 971"
is the 1-dimensional «Poisson-Bergman kernel» corresponding to the holomorphic func-

tion space in the half-plane Ai (H) = [2(H; dr s 'ds). In this way we find an analogy

between (1.2) and (1.9), where in the former case we obtained a 1-dimensional Poisson

o (p+io, r+ i) = op+io,r+iscH=R+0,00),

kernel, and in the latter the Poisson-Bergman Doy This should not be surprising since,
as we showed in [7], every F € Hi has a boundary limit in 7}, which satisfies the as-
sociated tangential Cauchy-Riemann equations, and in particular belongs to 1-dimensional
Bergman spaces when restricted to half-planes x + Hz. Finally, we point out that sev-
eral questions remain open concerning the maximal operator P f = sup o |7,  f]
in Lﬁ , even for the restricted case of a proper subcone of 2. These are under current
investigation and will be presented elsewhere.

2. The Porsson-BERGMAN KERNELS

Throughout this section, we fix & > oy = 4 — 1. In [7] it was shown that P (z, w)
is a reproducing kernel of 4? for every p > 1, meaning that F = P_F, for all F € A..
Further, when € is a proper subcone of €2 we established the equivalence of norms:

(2.1 HFHL/’ <

sup |F(- + i, < Co, I1Fly, Fed.

776 0

In this section we shall prove Theorem 1.3, which can be seen as a real analog of (2.1),
where the holomorphic function F is replaced by the Poisson-Bergman integral P f(2)
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of a function f € I?. To begin with, we show the boundedness of the «pointwise»
operator: [+ P_ f. We shall use the following well-known formula:

dx n
2.2 — = A=, A, yeq,
2.2) | Aea P &= a0 y
valid for all 3> n—1 (see [3, Lemma 3.4]). We shall also need the finer estimate
dx‘ n
(2.3) / — = de>CA(p) PP, whenye Qn B, (0)
<l [AG + )] g g ’
(see [1, Proposition 2.3] or [4]).

Prorosition 2.4. Let o > 4 — 1. Then, P is a bounded operator in I? if and only if
a+2-1
P> Py =

Proor. We prove first the sufficiency. Given f € I, an elementary estimate us-
ing (2.2) gives:

1Pofllz, <

L5 (dy)

/ / Py, u+ )|f( + iv)| ppgny dud(@)*" % dv
Q JRn

I, (dy)

Thus, we have reduced matters to study a positive operator 7, in the space I (dy) =
= I’(Q;A(5)* 2 dy) defined by the kernel

INOE

K@y, v)=——"——7>
a()’ ) A(}/—F Z/)2a+7

y,vefl.

Now, the boundedness of this operator when p > %%_1 follows from Schur’s lemma,
after testing with the functions ¢(v) = (v, — 212)91(1/12 —[Y1)%, v € Q, for suitable
6,,6, € R. The computations are similar to those in [I, p. 89], so details are left to
the reader.

For the sharpness, we shall actually show that P is bounded in Z? if and only if
the operator 7 is bounded in Z7(dy). For the last operator is now easy to obtain a
counterexample, since testing with g = Xz, (& where e =(1,0,... ,0), we see that

1

ath
(2.5) T.g() > c A0)

(because A(y + v) ~ A(y +e) if v e B% (e), see [3, Corollary 2.3]), and the function
in (2.5) only belongs to L’ (dy) when p > p_ (see [3, Lemma 3.3]). We still need to
show that boundedness of P_ implies boundedness of 7, for which we follow similar
ideas from [1, Theorem 2]. Given a non-negative function g € C (2N B,(0)), we test
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P, on f(u+ iv) = XBl(O)(u)g(v), and using (2.3) we obtain

IPAIE, > / /
> <1/ x| <

b
dxA°"2 (y)dy>

// P (x+ iy, u+ iv)g(v)duA(v)a_% dv
QJ <

> C/
[y1<1

Now, if g is supported on 2N B,(0), a scaling argument using g,(v) = g(Rv) leads to:

1
2

p n
A“T2(y)dy.

/Qz(a(y, 0)g(WAW)* 2 dv

[ 1780l a0 < CInle [ g0r A o)
[7I<R Q

which letting R — oo establishes our claim. O

To study the maximal function we shall need the following elementary lemma:

Lemma 2.6. Ify, ¥ € Q and x € R” then
Ay +5) > AQ) and |Alx + i(y + )))| > |Alx + )| > AG).

Proor. The first and last inequalities are well known (see, e.g., [7, §7] or [3, 3.1]).
We prove here the middle one. By the action of the group G =R, SO(z—1, 1), we
may assume that y’ =e=(1,0,... ,0), and further, by rotating we can also suppose
that y = (3, 9, , 0). Now we use the explicit formula

A(x 4 ile + 9))* = A + Ale +)* + (x, + )20y +1—3)" +
+ (x, — xz)z(y1 +1 erz)z + 2A(e +)/)|x3|2 > |Alx + ie)|2. O

Let us now turn to the proof of Theorem 1.3. We split the maximal function
in (1.4) into two parts:

Pf(2) = sup [P fz+in)|, z=x+iye Ty,
n<y
neQ

PiAf(e) = sup [P flz+ i), z=x+iyeTy,,

n=>y
neQ

where the inequality 77 < y means y—n € ). For the first operator, elementary estimates
involving Lemma 2.6 give

AQy +n) - A(2y)
A+ iy +n+o)* ~ A+ iy + o)

whenn <y,

and therefore we conclude P;’l f(z) < CP_|f|(2), from which the boundedness in 7
is a consequence of Proposition 2.4. Observe that in this case the restriction of 7 to a
proper subcone plays no role at all.
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For the second maximal operator we use the following estimate valid for all y < n:

Ay + )t __ Ap+m? Ay +n)°
IA(x + iy + 14+ )T T A+ i +m" A+ + o) T

(2.7) )
AQ2n)? A~
T A+ M| AW + o)

Now, in this last expression, the first quotient is precisely the Poisson-Szegd kernel, and

therefore,
P f(2) < sup /P;;O]g(x) KWAW)* idy, z=x+iyeTy,
nedy 5
where
. A(y)?
P f(x) = su x—u+ )| ———du,
0,fi00 = sup | If AG+ )

and K ](v) is the positive kernel in € given by the last quotient in (2.7). Since ’P;ZO is
bounded in Z”(R”), matters are reduced to study the maximal operator in :

(2.8) T"f@y) = stip /Q[(n(zz)f(v)A(v)o‘ffn dv, yeQ.

ney
The proof of Theorem 1.3 will be complete with the following proposition:

Prorposition 2.9. Let o« > 5 — 1 and 1 < p < oo. Then, the maximal operator T

in (2.8) is bounded in I?(A(0)*" % dv).

Proor. We write nn = (1, 7,), y = o(1,v), v = p(1,w), where ||, [v], |w| <1
and €, 0, p> 0. Since n € £, we must have 0 < || < 1—46, for some § > 0. Now,
an explicit computation gives

( )—(1*‘770| e <5
A+ v) = (1 —|n,Ne” + 2ep(1 =1, - w) + p*(1 — [w]?) > 8(e” + 2¢p).

Thus, since A(2)*" 2 dp = p" PPl — |w\2))“_%dpdw, we have

2a 2a l a—%
riemsse [ e ) dp <
e>o \w|<1 5 +e )

gsup/ S [ If(p,w) (1 = |w)* 2dw| p*dp.
0 (5+P) lwl<1

e>o

Now,

! <min{ L. } k(o) p)
sup ———— < —=> 5z =+k,0,p),
5>E (€+p)2a O_Za p2a

and it is easy to verify that this last kernel produces a bounded operator in Z7((0, oc);
0" Vdp), for all 1 < p < oo and a > 0 (by Schur’s Lemma). On the other hand,
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. _nr . . .
since |le(l — |w[))* 2 dw is a finite constant when o > # — 1, it follows that:

[ [ e ipa -ty tave o <
0 lv|<1

e}
/S/
0

5/ ‘ flo, W) - |w)* 2dw
0 |w|<1

b
0204—1 dU §

[ ki { Fp, )1~ |w2>a?dw] 7l dp
0 |w|<1

?
o o <

</ o, @1 o)t doo®™ do = £,
0 lw|<1 <
establishing the proposition, and with it the theorem. O

3. BOUNDEDNESS OF H;}: -POISSON KERNELS

In this section we prove Theorem 1.7. That is, we shall show that for p > 2 it
holds

G 1P fC+ iy < Clifly. Yneq.

The first observation is that, by the group action in 2, we can assume n = e =
=(1,0,...,0). Next, we reduce the problem to an inequality in the imaginary
variable.

Prorvosirion 3.2. The inequality in (3.1) holds if and only if

63 || k6 ogodu| < Cllpi
Q2 L2 (dp(r)
where
A n—1
K(t,v) = (t—|—e)2( ——7 tvEIN.
Az + e+ v)|™" 2
Proor. Analogous to the same equivalence in Proposition 2.4. o

A counterexample for p <2 is now easy to obtain using the following estimates:
Levma 3.4, Let ¢, v € 05, then
(3.5) Alt+e)<Alttet+ ) <Alw+e)Alr+e).
Proor. By definition we have
At+e+v)=A+e)+2((1+ ), — ¢ V).
Now, using #, = |#'| and A(z + e) = 1 + 2# (and likewise for v), we conclude

0<(I+z)y—1¢ v <v,(1+24)=0v,A(t+e. O
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Now, testing in (3.3) with g = x B,0)n092 it follows that

1
K(z, d > C————>
[ Ko g0 duw) = e o
which belongs to L*(dy) iff p > 2.
Let us now show the boundedness in (3.3) for p > 2. The proof will be an

application of Schur’s lemma, for which we need the following estimate.

Lemma 3.6. Let vy, d € R, t € 09, and

te o),

[%5(1‘) = / ANw+e)A(v+e+ )duv).
219}

Then, ify + 0 < —(n—2) and v > —(5 — 1) we have
L (5) S Ale+ AL e 90,

Proor. By rotating we can assume r = A¢; = (A, A, 0), A > 0. Now, observe that
under the assumption A < A\, we have A(A¢; + e + v) ~ A(v + e) (by Lemma 3.4),
and therefore, 1%5()\61) < Cxoly,s(o) = C;\O. Hence, it suffices to show that

L (A
(3.7) L:= lim 7’5( 4)

A—o0 )\’74»64’%*1
For this, we write the integral [W s with the new coordinates
(3.8) v=_(s+o]*, s> —|o)*,250) €N, s>0,0 R,

so that
L s(\e) = cn/ s”_‘%/R 2(1 + 25 4+ |0])) (A + 2(5* + |o]?) + 4M|o]* + 2)\)° dods
0 n—

(see, eg., [5, p. 134, 11, p. 493]). Now, to calculate the limit in (3.7) we divide the

above expression by the suitable power of A and change variables in s, so that

s
e [F0 [ (G (# ) (o2 (1450 o +2) s
— Rn2—2

= cn/ 5"73/ 259 (25* + 4lo* + 2)° dods ,
0 Rr—2

where the last step can be justified with the Dominated Convergence Theorem. Finally,
an elementary computation shows that the last integral is a finite constant under the
assumptions y 4 0 < —(n—2), v > —(4 — 1), establishing the lemma. O

We are now in position of proving (3.3), for which we shall choose § € R so that
©0(v) = A%(v + e) satisfies the conditions of Schur’s lemma:

K(t, 0)p() du(v) < Co(), teo,
2.9}

K(t, v)o(t) du(t) < Co), vedf.
90
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According to Lemma 3.6, these inequalities hold when

n , 3n n
Solving the inequalities we see that such 6 always exists when p > 2. The Schur Lemma
then establishes (3.3), and with it Theorem 1.7. O

4. BOUNDARY LIMITS OF Hi -PoISsON INTEGRALS

In this section we shall show the limiting formula in (1.9). Assuming it holds
for the moment, the boundedness of 75% in LZ , for p > 2, is just a consequence
of Theorem 1.7 and Fatou’s lemma (one can also prove it directly using Minkowski’s
inequality). A counterexample for p < 2 is also easy to construct, letting

. 1
S+ ) = Xp, 6 (%) Xp, )na0 (V) Pk

ﬁ) x+lU€Taﬂ.
V|27 log =~
[/

Indeed, a simple computation shows that f* € L’Z for all p < 2, while letting # €
c B%(cl) N 0 we have

g (75 75) g1 d
73 f(x—l— i) / /XB(())(X rt)XB (0)(“) 1d ISSN
Ilogf
5
1
. 1
N/XBI<0>(’“*”)@@0(” l)d’/ i ds = 00
* 0 .clog?

We now turn to the proof of (1.9). Observe that, by translation invariance and the
group action we can assume g = 7¢; = (7, 7, 0), and thus it suffices to show

AR + ¢ ))"’1f(u + i)
l : du dyu(v) =
Elfé/ / A+ e+ ¢ + o)D) 1 du(v)

(4‘1) (e€Q)
=4 / / S ) drs%‘lé_
[ 4+ (14 972 s

Also, the action of the group {g € G(Q) | g = ¢} lets us restrict the limit to
e=(g,6,0 €.
In order to prove (4.1) we shall use the coordinates of the Peirce decomposition in R”":

(4.2) u=re, +pe,+z, r,peR, zeR",
where ¢, = (1, —1,0) (see [6, Chapter IV]), and the coordinates defined in (3.8) for

v € 02. Our purpose is to obtain a suitable expression for the quadratic form A in
this coordinates, so that P%(Z'cI + ie, u+ iv) can be seen as an «approximate identity»
in the variables p, z, 0. We shall often use the equality

Alx+y) =Alx) + AQ) +2Ax, ), x,yeR”,

where A(x, y) = x5, — (0, + ...+ x,9).
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Lemma 4.3. In the conditions above,

Alu+ i(v + Cl+5)):A(E’61)qs,r,5<A(€p o)’ \/A(ZE ) \/AZ_— c)) '
> > by >

where
q9..,p,z, 0) = (2> —4rp + 2(1 + &) + 4lo]* + Ae, ¢)(1 + 2|0%) +
+ 2i(r + 2r|0|2 +2p(1 + §*) + 2sz- 0 + pA(e, ).

Proor. This follows by explicit computation of A(% + i(v + ¢, + ¢€)) in the coordi-
nates (4.2), (3.8). The verification is routinary and left to the reader. O

With the previous expression we can write

Ca [Ale, )2 + Ale, 62))]”71

«

p z g
‘A(E’ Cl)qs,r,x (A(E; Cl) ’ \/A(E, Cl) ’ \/A(E, Cl)>

2+ Ale, o))"
|qs’r):(p)z’ 0_)‘2(7171) .

73%(1'01 +ie,u+ )= 0T -

We shall define

ps,r,:(p’ 25 U) =

Lemma 4.4. In the above conditions

2+ A, )"

|P€,,)5(P,Z,J)| < ell(RXRn—Z XR”_Z),

‘qO,r,:(p’z’ 0—)|2(”*1)
Moreover,
dpdzd
(4.5) // / pzaz(—nz 2 E VN
w2 Jrs gy, (022 )P (P (14 )]

Proor. The first inequality is the same as saying

|qs,r,:(p’ Z, U)|2 2 |q0,r,:(p’ Z, U)|2 4

which in turn follows from the expression of A in Lemma 4.3, after separating the
terms involving € and performing the appropriate cancellations. In order to compute
the integral, one uses the following formula:

|q0,r,;(p> zZ, U)‘Z = 16a(p+A)2 T [72 )
where 2 =1 + (1 + ), A= A(z,0, 7,5, and

|2

N
+ s

2rso ’
1—|—s2

144
Va

This can also be obtained explicitly from the expression in Lemma 4.3, after a routinary

b=2Va+

computation making first squares in p, and then in z. At this point, it is easy to calculate
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// / dpdzdo 5
R Jrr—2 JRrr—2 16a(p + A)z + bz d% ’

which is the desired result in (2.2). |

the integral

The previous lemmas suggest looking at the family

7,5 —(n—1) 1% Z g
QO (p;Z;U):TI r:(”)’ 77>0;
" e\ i

as an approximation of the identity in R x R"™> x R"™, meaning that

; . %80
nlir})/‘/Rn 2/]Rn 2 (p © U) (p = U)dded (7’ +(1+f) )%

whenever g € C.(RxR"*xR"?). We can now transport this property to our original
integral, obtaining,

lim/ / 77%(1'61 +ie, u+ ) f(u+ ivdudp(v) =
219} n

e—0
=¢,lim 5”73/ [/ / / ORe.epprz0)f " (p, 2, o)a’pdza’o} drds =
"e—0 R LJR Jrr—2 JRA—2 o

/ e 3/ (rcl—|-zs o) I ds
FP+a+20 7

where in the last equality the limit inside the integrals is justified by Lemma 4.4. Thus,
changing variables in s we obtain exactly the expression in (4.1), completing the proof
of Theorem 1.8. ]
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