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Gustavo Garrigós

POISSON-LIKE KERNELS IN TUBE DOMAINS OVER LIGHT-CONES

Abstract. — A family of holomorphic function spaces can be defined with reproducing kernels
Bα(z; w), obtained as real powers of the Cauchy-Szegö kernel. In this paper we study properties of the
associated Poisson-like kernels: Pα(z; w) = |Bα(z; w)|2=Bα(z; z). In particular, we show boundedness
of associated maximal operators, and obtain formulas for the limit of Poisson integrals in the topological
boundary of the cone.
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1. Introduction

Let Ω = {y = (y1; y ′) ∈ Rn | y1 > |y ′|} denote the forward light-cone in Rn, n ≥ 3,
and TΩ = Rn + iΩ the corresponding tube domain in Cn. We also denote by

∆(y) := y2
1 − |y ′|2 = y2

1 − (y2
2 + : : : + y2

n ); y ∈ Rn ;

the Lorentz form (or determinant ) associated with Ω. When 0 < p < ∞ the classical
Hardy space is defined as:

H p(TΩ) =

{
F ∈ H(TΩ) | sup

y∈Ω

‖F (· + iy)‖Lp (Rn) < ∞
}

:

There are two well-known kernels related to these spaces:

1. The Cauchy-Szegö kernel :

S (z; u) = c0 ∆− n
2 ((z − u)=i); z ∈ TΩ; u ∈ Rn :

2. The Poisson-Szegö kernel :

P (z; u) = |S (z; u)|2=S (z; z) = c0

∆
n
2 (2y)

|∆(x − u + iy)|n ; z = x + iy; u ∈ Rn :

The first one is the reproducing kernel of H 2, and thus naturally related to the
complex geometry of Hardy spaces. Its behavior for real analysis is however somewhat
pathological, since the associated orthogonal projector does not admit bounded exten-
sions to Lp for any p �= 2 [10, 6]. The second kernel is derived from S (z; u) in such
a way that reproduces functions in all Hardy spaces H p, when p ≥ 1 (see, e.g., [12,
Chapter 3]). Moreover, it is better suited for real analysis since the family of functions
{Py(x) = P (x + iy; 0)}y∈Ω is an approximation of the identity in Rn. That is, when p ≥ 1
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every function f ∈ Lp(Rn) can be extended to the tube domain by its Poisson integral :
Pf (x + iy) = Py ∗ f (x), x + iy ∈ TΩ, so that it holds the continuity property:

(1.1) Pf (x + iy) = Py ∗ f (x) −→ f (x); as y → 0 (y ∈ Ω) ;

with convergence in the norm of Lp(Rn). There is also pointwise convergence for a:e:
x ∈ Rn, provided the values of y are restricted to a proper subcone of Ω [11, p. 449].
A second pathological behavior appears in relation with the unrestricted pointwise con-
vergence in (1.1). This can be shown to fail using the following remarkable identity
from [13]: if t ∈ @Ω then

(1.2) lim
y→t

(y∈Ω)

Pf (x + iy) =
1
π

∫

R

f (x − λt )

1 + λ2 dλ;

with convergence in Lp(Rn). In fact, a combination of (1.2) and the Besicovitch coun-
terexample shows that the maximal operator

P∗f (x) = sup
y∈Ω

|Py ∗ f |(x); x ∈ Rn ;

is never bounded in Lp(Rn) for any finite p (see [11, pp. 449, 458]). These two
pathological behaviors of the Cauchy-Szegö kernel in tube domains over higher rank
cones motivate a further investigation of other related operators arising from reproducing
kernels in TΩ.

In this paper we shall mainly concentrate in Poisson-like kernels associated with two
families of holomorphic function spaces in tube domains over light-cones. The simplest
case is the family of (weighted ) Bergman spaces, defined for 0 < p < ∞ and α > n

2 − 1
as:

Ap
α =

{
F ∈ H(TΩ)

∣∣∣
∫

Ω

∫

Rn

|F (x + iy)|p dx ∆(y)α− n
2 dy < ∞

}
:

The reproducing kernel for A2
α is now

B
α(z; w) = cα ∆((z − w)=i)−(α+ n

2 ); z; w ∈ TΩ ;

and the corresponding Poisson-Bergman kernels :

P
α

(z; w) = |B
α

(z; w)|2=B
α

(z; z) = c
α

∆α+ n
2 (2y)

|∆(x − u + i(y + v))|2α+n ;

where z = x + iy, w = u + iv ∈ TΩ. In this paper we shall investigate the associated
Poisson-Bergman integrals :

Pαf (z) =

∫

Ω

∫

Rn

Pα(z; w)f (w) ∆(�m w)α− n
2 dw; z ∈ TΩ ;

defined for f ∈ Lp
α = Lp(TΩ; dx∆α− n

2 (y)dy) and p ≥ 1. Our first result in this direction
is the following.
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Theorem 1.3. Let α > n
2 − 1. Then, Pα is a bounded operator in Lp

α if and only if

p > p
α := α+ n

2 −1
α

. Moreover, if Ω0 is a proper subcone of Ω, the restricted maximal operator:

(1.4) P∗
α;Ω0

f (z) := sup
y∈Ω0

|P
α

f (z + iy)|; z ∈ TΩ ;

is bounded in Lp
α if and only if p > pα.

We point out that the index p
α in the theorem coincides with the index q′

α in [4];
that is, p

α < p < p′
α is precisely the range where the «positive» Bergman projector

(with kernel |Bα(z; w)|) is bounded in Lp
α. The boundedness (or unboundedness) of

the unrestricted maximal operator is still an open question subject of current investi-
gation. Likewise happens with the boundedness of the Bergman projector (with kernel
B
α(z; w)), for which the latest results give the region 1 + 1

p′α
< p < 1 + p′

α and
several equivalences with other geometric problems of Bergman spaces (see [3, 2] and
the survey paper in this journal [4]).

The second family of holomorphic function spaces we shall consider is perhaps less
known, and arises as a limit case of the weighted Bergman spaces when α → α0 = n

2 −1:

H p
µ :=

{
F ∈ H(TΩ)

∣∣∣ sup
y∈Ω

∫

@Ω

∫

Rn

|F (x + i(y + v))|pdx dµ(v) < ∞
}

:

In this definition µ denotes the measure:
∫

@Ω

f (v) dµ(v) =

∫

Rn−1
f (|v′|; v′)

dv′

|v′| ; f ∈ Cc (R
n) ;

supported on the topological boundary of the cone @Ω. Alternatively, µ can be seen as
the «delta distribution» of the surface @Ω: µ = δ(∆), as defined in [8, Chapter 3]. It
can be shown that µ is the distributional limit of the measures (α− n

2 + 1) ∆α− n
2 (ξ) d ξ,

as α ↘ n
2 − 1 [8, 5], justifying the terminology of «limit space» we gave above to H p

µ.
The reproducing kernel of H 2

µ
is now:

Bα0
(z; w) = c

α0
∆((z − w)=i)−(n+1); z ∈ TΩ; w ∈ T@Ω ;

with the inner product of L2
µ

= L2(Rn + i@Ω; dx dµ(v)). This space was first considered
when p = 2 in [14], in connection with the representation theory of the group G (TΩ).
A more complete investigation of H p

µ
, for all 0 < p < ∞, was recently presented in [7],

establishing several properties analogous to those of classical Hardy spaces. The main
question we wish to treat here concerns the «Poisson-like kernel» defined by:

(1.5) P
α0

(z; w) = |B
α0

(z; w)|2=B
α0

(z; z) = c
α0

∆n−1(2y)

|∆(x − u + i(y + v))|2(n−1) ;

when z = x + iy ∈ TΩ, w = u + iv ∈ T@Ω, and the associated «Poisson-like integrals»:

(1.6) Pα0
f (z) =

∫

@Ω

∫

Rn

Pα0
(z; w)f (w) du dµ(v); z ∈ TΩ ;
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defined for any f ∈ Lp
µ

and p ≥ 1. In this case, the behavior is more complicated than
in the Poisson-Bergman situation, because of the strong singularities of the kernel when
z is close to @Ω. There are also fundamental differences with the Poisson-Szegö kernel,
since Pα0

f (z) is no longer of convolution type (there is an extra integral over @Ω), and
one cannot expect a behavior of approximate identity when z → @Ω. The results in
this paper show that the Poisson integrals in (1.6) admit an extension to the topogical
boundary of the tube similar to (1.2), and provide a sharp region of boundedness for
the «pointwise operator» Pα0;y f := Pα0

f (· + iy) in Lp
µ. These results are presented in

the next two theorems.

Theorem 1.7. For every fixed y ∈ Ω, the operator f 
→ Pα0;y f is bounded in Lp
µ if and

only if p > 2. In this case, the norm ‖Pα0;y‖L
p
µ→L

p
µ

is independent of y ∈ Ω.

Theorem 1.8. For every f ∈ Cc (R
n + i@Ω) and z = x + it ∈ T@Ω, we have

(1.9) lim
y→0

(y∈Ω)

Pα0
f (z + iy) = dα0

∫ ∞

0

∫

R

f (x + (r + is)t )

[r2 + (1 + s)2]
n
2

dr s
n
2 −1 ds

s
:

Moreover, if we denote by P̃α0
f (x + it ) the integral on the right of (1:9), then the operator

P̃α0
in (1:9) is bounded in Lp

µ if and only if p > 2.

As an interesting observation we point out that

℘α(ρ + iσ; r + is) =
dα σ

α+1

[(ρ− r)2 + (σ + s)2]α+1 ; ρ + iσ; r + is ∈ H = R + i(0;∞) ;

is the 1-dimensional «Poisson-Bergman kernel» corresponding to the holomorphic func-
tion space in the half-plane A2

α(H) = L2(H; dr sα−1ds). In this way we find an analogy
between (1.2) and (1.9), where in the former case we obtained a 1-dimensional Poisson
kernel, and in the latter the Poisson-Bergman ℘α0

. This should not be surprising since,
as we showed in [7], every F ∈ H p

µ has a boundary limit in T@Ω which satisfies the as-
sociated tangential Cauchy-Riemann equations, and in particular belongs to 1-dimensional
Bergman spaces when restricted to half-planes x + Ht . Finally, we point out that sev-
eral questions remain open concerning the maximal operator P∗

α0
f = supy∈Ω |P

α0;y f |
in Lp

µ
, even for the restricted case of a proper subcone of Ω. These are under current

investigation and will be presented elsewhere.

2. The Poisson-Bergman kernels

Throughout this section, we fix α > α0 = n
2 −1. In [7] it was shown that Pα(z; w)

is a reproducing kernel of Ap
α for every p ≥ 1, meaning that F = PαF , for all F ∈ Ap

α.
Further, when Ω0 is a proper subcone of Ω we established the equivalence of norms:

(2.1) ‖F ‖L
p
α
≤

∥∥∥ sup
η∈Ω0

|F (· + iη)|
∥∥∥

L
p
α

≤ CΩ0
‖F ‖L

p
α

; F ∈ Ap
α :

In this section we shall prove Theorem 1.3, which can be seen as a real analog of (2.1),
where the holomorphic function F is replaced by the Poisson-Bergman integral Pα f (z)
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of a function f ∈ Lp
α

. To begin with, we show the boundedness of the «pointwise»
operator: f 
→ Pα f . We shall use the following well-known formula:

(2.2)
∫

Rn

dx

|∆(x + iy)|β
dx = cβ ∆(y)−(β− n

2 ); y ∈ Ω ;

valid for all β > n − 1 (see [3, Lemma 3.4]). We shall also need the finer estimate

(2.3)
∫

|x|≤ 1
2

dx

|∆(x + iy)|β
dx ≥ C ∆(y)−(β− n

2 ); when y ∈ Ω ∩ B2(0)

(see [1, Proposition 2.3] or [4]).

Proposition 2.4. Let α > n
2 − 1. Then, Pα is a bounded operator in Lp

α if and only if

p > p
α := α+ n

2 −1
α

.

Proof. We prove first the sufficiency. Given f ∈ Lp
α, an elementary estimate us-

ing (2.2) gives:

‖Pαf ‖L
p
α
≤

∥∥∥∥
∫

Ω

∫

Rn

Pα(iy; u + iv)‖f (· + iv)‖Lp (Rn)du∆(v)α− n
2 dv

∥∥∥∥
L

p
α(dy)

=

= C

∥∥∥∥∥

∫

Ω

∆(y)α+ n
2

∆(y + v)2α+ n
2
‖f (· + iv)‖Lp ∆(v)α− n

2 dv

∥∥∥∥∥
L

p
α(dy)

:

Thus, we have reduced matters to study a positive operator T
α in the space Lp

α(dy) =

= Lp(Ω; ∆(y)α− n
2 dy) defined by the kernel

Kα(y; v) =
∆(y)α+ n

2

∆(y + v)2α+ n
2

; y; v ∈ Ω :

Now, the boundedness of this operator when p >
α+ n

2 −1
α

follows from Schur’s lemma,
after testing with the functions ϕ(v) = (v1 − v2)θ1 (v2

1 − |v′|2)θ2 , v ∈ Ω, for suitable
θ1; θ2 ∈ R. The computations are similar to those in [1, p. 89], so details are left to
the reader.

For the sharpness, we shall actually show that Pα is bounded in Lp
α if and only if

the operator T
α is bounded in Lp

α(dy). For the last operator is now easy to obtain a
counterexample, since testing with g = χB 1

4
(e), where e = (1; 0; : : : ; 0), we see that

(2.5) T
αg (y) ≥ c

∆(y)α+ n
2

∆(y + e)2α+ n
2

; y ∈ Ω

(because ∆(y + v) ∼ ∆(y + e) if v ∈ B 1
4
(e), see [3, Corollary 2.3]), and the function

in (2.5) only belongs to Lp
α(dy) when p > pα (see [3, Lemma 3.3]). We still need to

show that boundedness of Pα implies boundedness of Tα, for which we follow similar
ideas from [1, Theorem 2]. Given a non-negative function g ∈ Cc (Ω ∩ B1(0)), we test
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P
α

on f (u + iv) = χB1(0)(u)g (v), and using (2.3) we obtain

‖Pαf ‖p

L
p
α
≥
∫

|y|≤1

∫

|x|≤ 1
2

∣∣∣∣
∫

Ω

∫

|u|≤1
Pα(x + iy; u + iv)g (v)du∆(v)α− n

2 dv

∣∣∣∣
p

dx∆α− n
2 (y)dy≥

≥ C

∫

|y|≤1

∣∣∣∣
∫

Ω

Kα(y; v)g (v)∆(v)α− n
2 dv

∣∣∣∣
p

∆α− n
2 (y)dy :

Now, if g is supported on Ω ∩ BR (0), a scaling argument using gR (v) = g (Rv) leads to:
∫

|y|≤R

∣∣Tαg (y)
∣∣p ∆α− n

2 (y)dy ≤ C ‖Pα‖
p

∫

Ω

|g (y)|p ∆α− n
2 (y)dy ;

which letting R → ∞ establishes our claim.

To study the maximal function we shall need the following elementary lemma:

Lemma 2.6. If y; y ′ ∈ Ω and x ∈ Rn then

∆(y + y ′) ≥ ∆(y) and |∆(x + i(y + y ′))| ≥ |∆(x + iy ′)| ≥ ∆(y ′) :

Proof. The first and last inequalities are well known (see, e.g., [7, §7] or [3, 3.1]).
We prove here the middle one. By the action of the group G = R+SO(n − 1; 1), we
may assume that y ′ = e = (1; 0; : : : ; 0), and further, by rotating we can also suppose
that y = (y1; y2; 0). Now we use the explicit formula

|∆(x + i(e + y))|2 = ∆(x)2 + ∆(e + y)2 + (x1 + x2)2(y1 + 1 − y2)2 +

+ (x1 − x2)2(y1 + 1 + y2)2 + 2∆(e + y)|x3|
2 ≥ |∆(x + ie)|2:

Let us now turn to the proof of Theorem 1.3. We split the maximal function
in (1.4) into two parts:

P∗;1
α f (z) = sup

η<y
η∈Ω0

|Pαf (z + iη)|; z = x + iy ∈ TΩ

P∗;2
α f (z) = sup

η>y
η∈Ω0

|Pαf (z + iη)|; z = x + iy ∈ TΩ ;

where the inequality η < y means y−η ∈ Ω. For the first operator, elementary estimates
involving Lemma 2.6 give

∆(y + η)

|∆(x + i(y + η + v))|2
≤ ∆(2y)

|∆(x + i(y + v))|2
; when η < y ;

and therefore we conclude P∗;1
α f (z) ≤ CPα|f |(z), from which the boundedness in Lp

α

is a consequence of Proposition 2.4. Observe that in this case the restriction of η to a
proper subcone plays no role at all.
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For the second maximal operator we use the following estimate valid for all y < η:

(2.7)

∆(y + η)α+ n
2

|∆(x + i(y + η + v))|2α+n ≤ ∆(y + η)
n
2

|∆(x + i(y + η))|n
∆(y + η)α

|∆(y + η + v)|2α
≤

≤ ∆(2η)
n
2

|∆(x + iη)|n
∆(2η)α

|∆(η + v)|2α
:

Now, in this last expression, the first quotient is precisely the Poisson-Szegö kernel, and
therefore,

P∗;2
α f (z) � sup

η>y
η∈Ω0

∫

Ω

P∗
Ω0

fv(x) Kη(v)∆(v)α− n
2 dv; z = x + iy ∈ TΩ ;

where

P∗
Ω0

fv(x) = sup
y∈Ω0

∫

Rn

|f (x − u + iv)| ∆(y)
n
2

|∆(x + iy)|n du ;

and K
η(v) is the positive kernel in Ω given by the last quotient in (2.7). Since P∗

Ω0
is

bounded in Lp(Rn), matters are reduced to study the maximal operator in Ω:

(2.8) T ∗f (y) = sup
η>y

η∈Ω0

∫

Ω

Kη(v)f (v) ∆(v)α− n
2 dv; y ∈ Ω :

The proof of Theorem 1.3 will be complete with the following proposition:

Proposition 2.9. Let α > n
2 − 1 and 1 < p < ∞. Then, the maximal operator T ∗

in (2:8) is bounded in Lp(∆(v)α− n
2 dv).

Proof. We write η = ε(1; η0), y = σ(1; ν), v = ρ(1;ω), where |η0|; |ν|; |ω| ≤ 1
and ε;σ; ρ > 0. Since η ∈ Ω0, we must have 0 ≤ |η0| < 1− δ, for some δ > 0. Now,
an explicit computation gives

∆(η) = (1 − |η0|
2)ε2 ≤ ε2

∆(η + v) = (1 − |η0|
2)ε2 + 2ερ(1 − η0 · ω) + ρ2(1 − |ω|2) ≥ δ(ε2 + 2ερ) :

Thus, since ∆(v)α− n
2 dv = ρn−1(ρ2(1 − |ω|2))α− n

2 dρdω, we have

T ∗f (σ; ν) � sup
ε>σ

∫ ∞

0

∫

|ω|≤1
|f (ρ;ω)|ε

2αρ2α−1(1 − |ω|2)α− n
2

(ε2 + ερ)2α dω dρ ≤

≤ sup
ε>σ

∫ ∞

0

1
(ε + ρ)2α

[∫

|ω|≤1
|f (ρ;ω)|(1 − |ω|2)α− n

2 dω

]
ρ2α−1dρ :

Now,

sup
ε>σ

1
(ε + ρ)2α ≤ min

{
1
σ2α ;

1
ρ2α

}
= kα(σ; ρ) ;

and it is easy to verify that this last kernel produces a bounded operator in Lp((0;∞);
ρ2α−1dρ), for all 1 < p < ∞ and α > 0 (by Schur’s Lemma). On the other hand,
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since
∫
|ω|≤1(1 − |ω|2)α− n

2 dω is a finite constant when α > n
2 − 1, it follows that:

∫ ∞

0

∫

|ν|≤1
|T ∗f (σ; ν)|p(1 − |ν|2)α− n

2 dνσ2α−1 dσ �

�
∫ ∞

0

∣∣∣∣
∫ ∞

0
kα(σ; ρ)

[∫

|ω|≤1
|f (ρ;ω)|(1 − |ω|2)α− n

2 dω

]
ρ2α−1dρ

∣∣∣∣
p

σ2α−1dσ �

�
∫ ∞

0

∣∣∣∣
∫

|ω|≤1
|f (σ;ω)|(1 − |ω|2)α− n

2 dω

∣∣∣∣
p

σ2α−1dσ �

�
∫ ∞

0

∫

|ω|≤1
|f (σ;ω)|p(1 − |ω|2)α− n

2 dωσ2α−1 dσ = ‖f ‖p

L
p
α(dy)

establishing the proposition, and with it the theorem.

3. Boundedness of H p
µ-Poisson kernels

In this section we prove Theorem 1.7. That is, we shall show that for p > 2 it
holds

(3.1) ‖Pα0
f (· + iη)‖L

p
µ
≤ C ‖f ‖L

p
µ

; ’ η ∈ Ω :

The first observation is that, by the group action in Ω, we can assume η = e =

= (1; 0; : : : ; 0). Next, we reduce the problem to an inequality in the imaginary
variable.

Proposition 3.2. The inequality in (3:1) holds if and only if

(3.3)
∥∥∥∥
∫

@Ω

K (t; v)g (v) dµ(v)
∥∥∥∥

Lp (dµ(t )

≤ C ‖g‖Lp (dµ(t ) ;

where

K (t; v) =
∆(t + e)n−1

|∆(t + e + v)|2(n−1)− n
2

; t; v ∈ @Ω :

Proof. Analogous to the same equivalence in Proposition 2.4.

A counterexample for p ≤ 2 is now easy to obtain using the following estimates:

Lemma 3.4. Let t; v ∈ @Ω, then

(3.5) ∆(t + e) ≤ ∆(t + e + v) ≤ ∆(v + e) ∆(t + e) :

Proof. By definition we have

∆(t + e + v) = ∆(t + e) + 2((1 + t1)v1 − t ′ · v′) :

Now, using t1 = |t ′| and ∆(t + e) = 1 + 2t1 (and likewise for v), we conclude

0 ≤ (1 + t1)v1 − t ′ · v′ ≤ v1(1 + 2t1) = v1 ∆(t + e):
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Now, testing in (3.3) with g = χB1(0)∩@Ω it follows that
∫

@Ω

K (t; v)g (v) dµ(v) ≥ c
1

∆(t + e)
n
2 −1 ; t ∈ @Ω ;

which belongs to Lp(dµ) iff p > 2.
Let us now show the boundedness in (3.3) for p > 2. The proof will be an

application of Schur’s lemma, for which we need the following estimate.

Lemma 3.6. Let γ; δ ∈ R, t ∈ @Ω, and

I
γ;δ(t ) =

∫

@Ω

∆γ(v + e) ∆δ(v + e + t ) dµ(v) :

Then, if γ + δ < −(n − 2) and γ > −( n
2 − 1) we have

I
γ;δ(t ) � ∆(e + t )γ+δ+ n

2 −1; t ∈ @Ω :

Proof. By rotating we can assume t = λc1 = (λ;λ; 0), λ > 0. Now, observe that
under the assumption λ ≤ λ0 we have ∆(λc1 + e + v) ∼ ∆(v + e) (by Lemma 3.4),
and therefore, I

γ;δ(λc1) ≤ Cλ0
Iγ;δ(0) = C ′

λ0
. Hence, it suffices to show that

(3.7) L := lim
λ→∞

Iγ;δ(λc1)

λγ+δ+ n
2 −1 < ∞ :

For this, we write the integral Iγ;δ with the new coordinates

(3.8) v = (s2 + |σ|2; s2 − |σ|2; 2sσ) ∈ @Ω; s > 0;σ ∈ Rn−2 ;

so that

Iγ;δ(λc1) = cn

∫ ∞

0
sn−3

∫

Rn−2
(1 + 2(s2 + |σ|2))γ (1 + 2(s2 + |σ|2) + 4λ|σ|2 + 2λ)δ dσds

(see, e.g., [5, p. 134, 11, p. 493]). Now, to calculate the limit in (3.7) we divide the
above expression by the suitable power of λ and change variables in s, so that

L= lim
λ→∞

cn

∫ ∞

0
sn−3

∫

Rn−2

(
1
λ

+2
(

s2 +
|σ|2
λ

))γ(
1
λ

+2
(

s2 +
|σ|2
λ

)
+4|σ|2 +2

)δ

dσds =

= cn

∫ ∞

0
sn−3

∫

Rn−2
(2s2)γ(2s2 + 4|σ|2 + 2)δ dσds ;

where the last step can be justified with the Dominated Convergence Theorem. Finally,
an elementary computation shows that the last integral is a finite constant under the
assumptions γ + δ < −(n − 2), γ > −( n

2 − 1), establishing the lemma.

We are now in position of proving (3.3), for which we shall choose θ ∈ R so that
ϕ(v) = ∆θ(v + e) satisfies the conditions of Schur’s lemma:

∫

@Ω

K (t; v)ϕ(v)p′ dµ(v) ≤ C ϕ(t )p′; t ∈ @Ω ;

∫

@Ω

K (t; v)ϕ(t )p dµ(t ) ≤ C ϕ(v)p; v ∈ @Ω :
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According to Lemma 3.6, these inequalities hold when

−
(n

2
− 1

)
< θp′ <

n
2

and −
(

3n
2

− 2
)

< θp < −
(n

2
− 1

)
:

Solving the inequalities we see that such θ always exists when p > 2. The Schur Lemma
then establishes (3.3), and with it Theorem 1.7.

4. Boundary limits of H p
µ-Poisson integrals

In this section we shall show the limiting formula in (1.9). Assuming it holds
for the moment, the boundedness of P̃α0

in Lp
µ, for p > 2, is just a consequence

of Theorem 1.7 and Fatou’s lemma (one can also prove it directly using Minkowski’s
inequality). A counterexample for p ≤ 2 is also easy to construct, letting

f (x + iv) = χB1(0)(x)χB1(0)∩@Ω(v)
1

|v′| n
2 −1 log 1

|v′|

; x + iv ∈ T@Ω :

Indeed, a simple computation shows that f ∈ Lp
µ for all p ≤ 2, while letting t ∈

∈ B 1
4
(c1) ∩ @Ω we have

P̃α0
f (x + it ) ∼

∫ ∞

0

∫

R
χB1(0)(x − rt )χB1(0)(st )

℘α0
(r; is)

s
n
2 −1 log

1
s

drs
n
2 −1 ds

s
∼

∼
∫

R
χB1(0)(x − rt )℘α0

(r; i)dr

∫ 1

0

1

s log
1
s

ds = ∞ :

We now turn to the proof of (1.9). Observe that, by translation invariance and the
group action we can assume z = ic1 = (i; i; 0), and thus it suffices to show

(4.1)

lim
ε→0

(ε∈Ω)

∫

@Ω

∫

Rn

∆(2(ε + c1))n−1 f (u + iv)

|∆(u + i(ε + c1 + v))|2(n−1) du dµ(v) =

= dα0

∫ ∞

0

∫

R

f ((r + is)c1)

[r2 + (1 + s)2]
n
2

dr s
n
2 −1 ds

s
:

Also, the action of the group {g ∈ G (Ω) | gc1 = c1} lets us restrict the limit to
ε = (ε1; ε2; 0) ∈ Ω.

In order to prove (4.1) we shall use the coordinates of the Peirce decomposition in Rn:

(4.2) u = rc1 + ρc2 + z; r; ρ ∈ R; z ∈ Rn−2 ;

where c2 = (1;−1; 0) (see [6, Chapter IV]), and the coordinates defined in (3.8) for
v ∈ @Ω. Our purpose is to obtain a suitable expression for the quadratic form ∆ in
this coordinates, so that Pα0

(ic1 + iε; u + iv) can be seen as an «approximate identity»
in the variables ρ; z;σ. We shall often use the equality

∆(x + y) = ∆(x) + ∆(y) + 2∆(x; y); x; y ∈ Rn ;

where ∆(x; y) = x1y1 − (x2y2 + : : : + xnyn).
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Lemma 4.3. In the conditions above,

∆(u + i(v + c1 + ε)) = ∆(ε; c1) q
ε;r;s

(
ρ

∆(ε; c1)
;

z√
∆(ε; c1)

;
σ√

∆(ε; c1)

)
;

where

qε;r;s(ρ; z;σ) = −(|z |2 − 4rρ + 2(1 + s2) + 4|σ|2 + ∆(ε; c2)(1 + 2|σ|2)) +

+ 2i(r + 2r |σ|2 + 2ρ(1 + s2) + 2sz · σ + ρ∆(ε; c2)) :

Proof. This follows by explicit computation of ∆(u + i(v + c1 + ε)) in the coordi-
nates (4.2), (3.8). The verification is routinary and left to the reader.

With the previous expression we can write

Pα0
(ic1 + iε; u + iv) =

cα0
[∆(ε; c1)(2 + ∆(ε; c2))]n−1

∣∣∣∣∣∆(ε; c1)qε;r;s

(
ρ

∆(ε; c1)
;

z√
∆(ε; c1)

;
σ√

∆(ε; c1)

)∣∣∣∣∣

2(n−1) :

We shall define

p
ε;r;s(ρ; z;σ) =

[2 + ∆(ε; c2)]n−1

|qε;r;s(ρ; z;σ)|2(n−1) :

Lemma 4.4. In the above conditions

|pε;r;s(ρ; z;σ)| ≤ [2 + ∆(ε; c2)]n−1

|q0;r;s(ρ; z;σ)|2(n−1) ∈ L1(R×Rn−2 ×Rn−2) :

Moreover,

(4.5)
∫

R

∫

Rn−2

∫

Rn−2

dρ dz dσ

|q0;r;s(ρ; z;σ)|2(n−1) =
cn

(r2 + (1 + s2)2)
n
2

:

Proof. The first inequality is the same as saying

|qε;r;s(ρ; z;σ)|2 ≥ |q0;r;s(ρ; z;σ)|2 ;

which in turn follows from the expression of ∆ in Lemma 4.3, after separating the
terms involving ε and performing the appropriate cancellations. In order to compute
the integral, one uses the following formula:

|q0;r;s(ρ; z;σ)|2 = 16a(ρ + A)2 + b2 ;

where a = r2 + (1 + s2)2, A = A(z;σ; r; s), and

b = 2
√

a +
1 + s2

√
a

∣∣∣∣z +
2rs σ

1 + s2

∣∣∣∣
2

+ 4
√

a
|σ|2

1 + s2 :

This can also be obtained explicitly from the expression in Lemma 4.3, after a routinary
computation making first squares in ρ, and then in z . At this point, it is easy to calculate
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the integral ∫

R

∫

Rn−2

∫

Rn−2

dρ dz dσ

16a(ρ + A)2 + b2 = · · · = cn

a
n
2

;

which is the desired result in (2.2).

The previous lemmas suggest looking at the family

ϕr;s
η (ρ; z;σ) = η−(n−1) pη;r;s

(
ρ

η
;

z√
η

;
σ√
η

)
; η > 0 ;

as an approximation of the identity in R×Rn−2 ×Rn−2, meaning that

lim
η→0

∫

R

∫

Rn−2

∫

Rn−2
ϕr;s

η (ρ; z;σ)g (ρ; z;σ)dρ dz dσ =
cn g (0)

(r2 + (1 + s2)2)
n
2

;

whenever g ∈ Cc (R×Rn−2 ×Rn−2). We can now transport this property to our original
integral, obtaining,

lim
ε→0

∫

@Ω

∫

Rn

Pα0
(ic1 + iε; u + iv) f (u + iv)du dµ(v) =

= cn lim
ε→0

∫ ∞

0
sn−3

∫

R

[∫

R

∫

Rn−2

∫

Rn−2
ϕr;s

∆(ε;c1)(ρ; z;σ)f r;s(ρ; z;σ)dρ dz dσ

]
dr ds =

= c ′
n

∫ ∞

0
sn−3

∫

R

f (rc1 + is2c1)

[r2 + (1 + s2)2]
n
2

dr ds ;

where in the last equality the limit inside the integrals is justified by Lemma 4.4. Thus,
changing variables in s we obtain exactly the expression in (4.1), completing the proof
of Theorem 1.8.
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