
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Detlef Müller

Sub-Laplacians of holomorphic Lp-type on
exponential Lie groups

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 13 (2002), n.3-4, p. 259–270.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2002_9_13_3-4_259_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_2002_9_13_3-4_259_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 2002.



Rend. Mat. Acc. Lincei
s. 9, v. 13:259-270 (2002)

Detlef Müller

SUB-LAPLACIANS OF HOLOMORPHIC LP -TYPE
ON EXPONENTIAL LIE GROUPS

Abstract. — In this survey article, I shall give an overview on some recent developments concerning
the Lp-functional calculus for sub-Laplacians on exponential solvable Lie groups. In particular, I shall give
an outline on some recent joint work with W. Hebisch and J. Ludwig on sub-Laplacians which are of
holomorphic Lp-type, in the sense that every Lp-spectral multiplier for p �= 2 will be holomorphic in some
domain.
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1. Introduction

Let T be a self-adjoint linear operator on a Hilbert space L2(X; dµ), and denote by
T =

∫
R λdEλ its spectral resolution.

If m is a bounded Borel function on R, then we call m an Lp-multiplier for T
(1 ≤ p < ∞), if m(T ) :=

∫
R m(λ)dEλ extends from Lp ∩ L2(X; dµ) to a bounded

operator on Lp(X; dµ). We shall denote by Mp(T ) the space of all Lp-multipliers
for T , and by σp(T ) the Lp-spectrum of T:

In this survey article, the operators of interest will be Laplacians or sub-Laplacians
on manifolds, mostly even Lie groups, but the setting will apply to larger classes of
operators as well, for instance to «Laplacians» on homogeneous trees (see e.g. [17]).

We say that T admits a differentiable Lp-functional calculus, if there exists some
k ∈ N, such that C k

0 (R) ⊂ Mp(T ): A typical example for this type of behaviour is

the classical Laplacian T = −∆ = −
∑

j
@2

@xj
2 on Euclidean space Rd : In this case,

m(−∆) is the convolution operator f �→ f ? Km; where the convolution kernel Km is
the inverse Fourier transform of the function ξ �→ m(|ξ|2) on Rd : More generally, it is
known that every left-invariant Laplacian or sub-Laplacian on a connected Lie group
G of polynomial growth admits a differentiable Lp-functional calculus, for 1 ≤ p < ∞:
There are even multiplier theorems of Marcinkiewicz-Mikhlin-Hörmander type known
for such operators, see e.g. [1, 6, 11, 12, 14, 23-26].

On the other hand, we shall say that T is of holomorphic Lp-type, if there exist some
non-isolated point λ0 in the L2-spectrum σ2(T ) and an open complex neighborhood
W of λ0 in C, such that every m ∈ Mp(T ) ∩ C∞(R) extends holomorphically to W .
Here, C∞(R) denotes the space of all continuous functions on R vanishing at infinity.

It is this rather opposite behaviour on which I shall concentrate.
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Remark 1.1. If T is of holomorphic Lp-type, and if in addition T admits a joint
core in every space Lq(X ); then

(1.1) W ⊂ σp(T ) :

In particular,

(1.2) σ2(T ) � σp(T ) :

A fundamental class of operators with such type of behaviour are Laplace-Beltrami
operators on Riemannian symmetric spaces of the non-compact type. Such an operator
is of holomorphic Lp-type for every p ∈ [1;∞[; p �= 2. Even the maximal domain
W = Wp to which all Lp-multipliers will extend holomorphically is known in this
case [8, 3, 31, 2]. The «bad» behaviour of these operators with respect to Lp-functional
calculi is closely linked to the exponential volume growth of the underlying Riemannian
manifolds.

2. Exponential Lie groups

In the sequel, I shall restrict myself to the case where X = G is an exponential Lie
group, which means that the exponential mapping exp : g → G is a diffeomorphism
from the Lie algebra g of G onto G . Such groups are known to be solvable.

We fix a left-invariant Haar measure dg on G; and shall identify an element X of
the Lie algebra with the right-invariant vector field on G , which is given by

Xf (g ) := lim
t→0

1
t

[
f ((exp tX )g ) − f (g )

]
:

Choose right invariant vector fields X1; : : : ; Xk in g generating g as a Lie algebra, and
form the sub-Laplacian

L = −
k∑

j=1

X 2
j :

By [29, 19] L is hypoelliptic and essentially self-adjoint as an operator on L2(G; dg )
with domain D(G ). We denote its closure again by L. Since G is amenable, one has

(2.1) σ2(L) = [0;∞[ :

Question. Which type of Lp-functional calculi does T := L admit ?

In view of what has been said before, in trying to answer this question we may
concentrate on the case where the group G has exponential volume growth. But then
the example of Laplace-Beltrami operators on symmetric spaces rather suggests that L
should be of holomorphic Lp-type for p �= 2: It therefore rather came as a surprise when
the following fact was discoverd:

• Certain (sub-) Laplacians on certain exponential Lie groups of exponential volume
growth, notably so-called AN -groups, do admit differentiable Lp-functional calculi,
see e.g. [13, 9, 4, 27, 15, 28].
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A typical example is the ax + b-group, whose Lie algebra has a basis T; X satisfying
the commutation relations [T; X ] = X:

• On the other hand, it turned out that there are exponential Lie groups which do
admit sub-Laplacians of holomorphic Lp-type:
Denote by B = exp(b) Boidol’s group, i.e. the Lie group whose Lie algebra b is
spanned by elements T; X; Y; U; satisfying the following commutation relations:

[T; X ] = X; [T; Y ] = −Y; [X; Y ] = U; where U is central :

Then the sub-Laplacian L := −(T 2 + X 2 + Y 2) is of holomorphic Lp-type for every
p �= 2; see [7].

These results indicate that the question above can have no easy answer, and it is
indeed still widely open. Nevertheless, interesting progress has been made in extending
the results in [7] to wider classes of groups and operators L, for instance in [22] and
furthermore in [16], which lead to a certain conjecture which I am going to describe
next.

Let me only mention that important progress has recently been made also on the
question whether those sub-Laplacians, which do admit differentiable Lp-functional cal-
culi, even allow for multipliers of Mikhlin-Hörmander type (see [17]).

In order to formulate our conjecture, I have to briefly recall some basic facts from
the representation theory of exponential Lie groups, see e.g. [5, 22].

2.1. Unitary representations.

If π : G → U(H) is a unitary representation of G on the Hilbert space H = Hπ,
then we denote the integrated representation of L1(G ) = L1(G; dg ) again by π, i.e.
π(f )ξ :=

∫
G

f (g )π(g )ξ dg for every f ∈ L1(G ); ξ ∈ H: For X ∈ g, we denote by
dπ(X ) the infinitesimal generator of the one-parameter group of unitary operators t �→
�→ π(exp tX ).

For a given function f on G , we write
[
λ(g )f

]
(x) := f (g−1x); g; x ∈ G ;

for the left-regular action of G .
Recall that the modular function ∆G on G is defined by the equation

∫

G

f (xg )dx = ∆G (g )−1
∫

G

f (x)dx; g ∈ G :

We put

f ∗(g ) := ∆−1
G (g )f (g−1) :

Then f �→ f ∗ is an isometric involution on L1(G ), and for any unitary representation
π of G , we have

π(f )∗ = π(f ∗) :



262 d. müller

The group G is said to be symmetric, if the associated group algebra L1(G ) is symmetric,
i.e. if every element f ∈ L1(G ) with f ∗ = f has a real spectrum with respect to the
involutive Banach algebra L1(G ):

Recall that the unitary dual Ĝ of G; i.e. the space of all equivalence classes of
irreducible unitary representations of G , can be constructed by means of the orbit method.
More precisely, if ‘ ∈ g∗ is a linear form on g; one can always find a so-called Vergne-
polarization p = p(‘) for ‘: This is a suitable subalgebra of g which is isotropic with
respect to the skew form B‘(X; Y ) := ‘([X; Y ]) on g; i.e. ‘([X; Y ]) = 0 ’X; Y ∈ p;
and of maximal possible dimension among such isotropic subalgebras. Then

χ‘(exp X ) := ei‘(X ); X ∈ p

defines a unitary character of the subgroup P := exp(p); and one can show that the
induced representation

π‘ := indG
P χ‘

acts irreducibly on its representation space H‘: Moreover, two such representations π‘

and π‘′ are equivalent if and only if there exists some g ∈ G such that ‘′ = Ad∗(g )‘;
where Ad∗ denotes the co-adjoint representation of G on g∗: Finally, one can show
that every irreducible unitary representation of G is equivalent to one of these induced
representation, i.e. if we denote by

Ω(‘) := Ad∗(G )‘

the coadjoint orbit of ‘; then the so-called Kirillov-map

K : g∗=Ad∗(G ) → Ĝ; Ω(‘) �→ [π‘]

is a bijection. Even more is true. Both spaces g∗=Ad∗(G ) and Ĝ can be endowed with
natural topologies, the first with the quotient topology induced from the Euclidean
topology of g∗; and the second with the Jacobson topology, pulled back from the
primitive ideal space of the C ∗-hull of L1(G ): Then the following deep theorem holds
true

Theorem 2.1 [21]. The Kirillov map K is a homeomorphism.

2.2. The conjecture.

The following theorem links our problem to the symmetry question for G .

Theorem 2.2 (see [20]). If G is symmetric, then for every sub-Laplacian L on G one has
σp(L) = σ2(L) ’ 1 ≤ p < ∞:

In view of (1.1), this implies in particular that G is non-symmetric, if there exists
a sub-Laplacian on G which is of holomorphic Lp-type for some p �= 2:

The symmetry question has been studied for exponential Lie groups by various
authors, with fundamental contributions by H. Leptin, and a complete answer had
eventually been given by D. Poguntke in terms of the following condition, which had
originally been introduced by J. Boidol in a different context.
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If ‘ ∈ g∗; denote by g(‘) := ker ad∗(‘) = {X ∈ g : ‘([X; Y ]) = 0 ’ Y ∈ g}
the stabilizer of ‘ under the coadjoint action ad∗. Moreover, if m is any Lie algebra,
consider the descending central series

m = m1 ⊃ m2 ⊃ : : : ;

i.e. m2 = [m;m], and mk+1 = [m;mk]; and denote by m∞ its «bottom», i.e.

m∞ =
⋂

k

mk :

m∞ is the smallest ideal k in m such that m=k is nilpotent. Put

m(‘) := g(‘) + [g; g] :

Then we say that ‘ respectively the associated coadjoint orbit Ω(‘) satisfies Boidol’s
condition (B), if

(B) ‘ |m(‘)∞ �= 0 :

Theorem 2.3 [30]. The exponential Lie group G is non-symmetric if and only if there exists
a coadjoint orbit satisfying Boidol’s condition.

Boidol’s group is, by the way, the lowest dimensional example of a non-symmetric
exponential Lie group.

Non-symmetry of G alone, however, does not necessarily force sub-Laplacians on G
to be of holomorphic Lp-type, as is shown by the study of some distinguished Laplacian
on the AN -group arizing in the Iwasawa-decomposition of SL(3;R). This fact, as well
as the proof in the main theorem in [22], suggests the following

Conjecture. There exists a sub-Laplacian on G which is of holomorphic Lp-type for some
p �= 2 if and only if there exists some coadjoint orbit which is closed and satisfies Boidol’s
condition (B).

3. The main result

If Ω is a coadjoint orbit, and if n denotes the nilradical of g, then

Ω|n := {‘|n : ‘ ∈ Ω} ⊂ n∗

will denote the restriction of Ω to n:
The following result has been proved recently in joint work with W. Hebisch und

J. Ludwig.

Theorem 3.1 [16]. Let G be an exponential solvable Lie group, and assume that there exists
a coadjoint orbit Ω(‘) satisfying Boidol’s condition (B), whose restriction to the nilradical n is
closed. Then every sub-Laplacian on G is of holomorphic Lp-type, for 1 ≤ p < ∞; p �= 2:

Remarks. (a ) The condition that the restriction of a coadjoint orbit to the nilradical
be closed is a stronger condition than the closedness of the orbit itself.
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(b ) Under the hypotheses of the theorem, we obtain in particular that

σ2(L) � σp(L) for p �= 2 :

This results has been proved independently by D. Poguntke (Poguntke, oral communi-
cation).

(c ) What we really use in the proof is the following property of the orbit Ω:

Ω is closed, and for every real character ν of g which does not vanish on g(‘); there exists a
sequence {τn}n of real numbers such that limn→∞ Ω + τnν = ∞ in the orbit space.

Here, a character means an element ν ∈ g∗
C, such that ν([g; g]) = {0}:

This property is a consequence of the closedness of Ω|n: There are, however, many
examples where the condition above is satisfied, so that the conclusion of the theorem
still holds, even though the restriction of Ω to the nilradical is not closed. It is an
open problem whether the condition above automatically holds whenever the orbit Ω

is closed.
In the remaining part of the article, I shall try to explain the meaning of our

conditions in Theorem 3.1 and sktech some of the main ideas in its proof. For full
proofs and further details, the interested reader is referred to the articles [22, 16].

3.1. On the meaning of the conditions in Theorem 3.1.

Let us denote by C ∗(G ) the C ∗-hull of the group algebra L1(G ); und recall that λ

denotes the left-regular representation of G: If we consider λ(L1(G )) as a subspace of
the space of bounded operators B(L2(G )) on L2(G ) then, since G is amenable,

C ∗(G ) = λ
(
L1(G )

)
⊂ B

(
L2(G )

)
:

Of course, every unitary representation of L1(G ) extends to C ∗(G ): The following result
translates the topological condition that an orbit be closed into an analytic condition;
it is a consequence of Theorem 2.1.

Proposition 3.2. Suppose G is an exponential solvable Lie group, and let ‘ ∈ g∗. If the
orbit Ω(‘) is closed, then π‘(C

∗(G )) is the algebra of all compact operators on H‘. In particular,
π‘(f ) is compact for every f ∈ L1(G ).

The second result is a kind of «Riemann-Lebesgue lemma».

Proposition 3.3. Suppose G is an exponential solvable Lie group, and let ‘ ∈ g∗ with
coadjoint orbit Ω := Ω(‘). Assume that the restriction of Ω to the nilradical n of the Lie
algebra g is closed. Then the orbit Ω is closed itself, and for any real character ν of g which
does not vanish on the stabilizer g(‘) of ‘, we have that

(3.1) lim
|τ |→∞

Ω + τν = lim
|τ |→∞

Ω(‘ + τν) = ∞

in the orbit space. In particular,

(3.2) lim
|τ |→∞

‖π‘+τν
(f )‖ = 0

for every f ∈ L1(G ):
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3.2. Representations on mixed Lp-spaces.

Another important ingredient in the proof of Theorem 3.1 is the construction of
certain bounded representations on mixed Lp-spaces. For related constructions in the
context of semi-simple Lie groups, see [10] (compare also [18] for an earlier appearance
of mixed Lp-spaces on groups).

A careful analysis of «roots» on g reveals that, given any p ∈ [1;∞[; one may find
Euclidean spaces X; Y and a real character ∆p : G → R; a kind of «modulus for Lp»,

such that

(3.3) π
p

‘ (g ) := ∆p(g )λ(g ); g ∈ G

defines an isometric representation of G on the mixed Lp-space Lp := Lp(X; L2(Y ));
endowed with the norm

‖f ‖p :=

(∫

X

(∫

Y

|f (x; y)|2 dy

)p=2

dx

)1=p

:

More precisely, λ and hence π
p

‘ act on functions f : G → C; satisfying the covariance
condition

f (xp) = χ‘(p)f (x) ’ x ∈ G; p ∈ P ;

with χ‘ and P as in Section 2.1, and the measure space X × Y is identified with the
quotient space G=P:

This can be done in such a way that

(3.4) π2
‘ � π‘ :

3.3. A holomorphic family of operators.

In the sequel, we shall always make the following
Assumption. ‘ ∈ g∗ satisfies Boidol’s condition, and Ω(‘)|n is closed.

By means of Boidol’s condition, one can then set up the construction in such a way
that

(3.5) ∆p∆
−1
2

(
exp(X )

)
= e ( 1

2 − 1
p )ν(X ); X ∈ g;

where ν ∈ g∗ is a real character of g satisfying

(3.6) ν|g(‘) �= 0 :

For any complex number z in the strip

Σ :=
{
ζ ∈ C : |Im ζ| < 1=2

}
;

let ∆z be the complex character of G given by

∆z

(
exp(X )

)
:= e−izν(X ); X ∈ g;
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and χz the unitary character

χz (exp(X )) := e−iRe (z)ν(X ); X ∈ g :

Since, by (3.5),

∆z = χz∆p(z)∆
−1
2 ;

if we define p(z) ∈]1;∞[ by the equation

(3.7) Im (z) = 1=2 − 1=p(z) ;

we see that the representation πz
‘ , given by

(3.8) πz
‘ (x) := ∆z (x)π‘(x) = χz (x)π

p(z)

‘ (x); x ∈ G ;

is an isometric representation on the space Lp(z):
Next, observe that for every t > 0; e−tL is a convolution operator

(3.9) e−tLf = ht ? f ;

where the {ht}t>0 form a 1-parameter semigroup of smooth probability measures in
L1(G ); the heat-semigroup. By means of Gaussian-type estimates for these heat kernels,
one can then conclude that

(3.10) πz
‘ (h1) = π

q

‘ (∆z∆
−1
q h1) ∈ B(Lq); 1 ≤ q < ∞ :

Moreover, from Proposition 3.2 one obtains:

(3.11) πz
‘ (h1) = π‘(∆zh1) is compact on L2 :

Let us define a family of operators by setting

T (z) := πz
‘ (h1); z ∈ Σ :

More precisely, we write Tq(z) in place of T (z); if we consider T (z) as a bounded
operator on Lq: The spectrum of Tq(z) will be denoted by σq(z): Adapting a classical
interpolation theorem of M.A. Krasnoselskii, one deduces from (3.10) and (3.11) the
following

Proposition 3.4. (a) The mapping Σ � z �→ Tq(z) is an analytic family of compact
operators on Lq in the sense of Kato, for every 1 < q < ∞.
(b) If z ∈ R; then the following additional properties hold true:

(i) T2(z) is self-adjoint on L2.
(ii) σq(z) = σ2(z) ⊂ R ’ 1 < q < ∞:

(iii) If λ is an eigenvalue of T2(z); then λ ∈ σp(z); and if ξ is any associated eigenfunction
in Lp; then ξ lies in every Lq; for 1 < q < ∞:

Notice in particular that σq(z) is discrete away from the origin, if 1 < q < ∞: This
allows for the application of analytic perturbation theory, which eventually leads to the
following
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Proposition 3.5. Let 1 ≤ p0 < 2: There exist an open neighborhood U of a point z0 ∈ R
in the complex strip Σ and holomorphic mappings

λ : U → C

and

ξ : U →
⋂

p0≤p≤p′0

Lp ;

such that ξ(z) �= 0 and

(3.12) T (z)ξ(z) = λ(z)ξ(z) for every z ∈ U :

Moreover, shrinking U; if necessary, one can find a constant C > 0 such that

(3.13) ‖ξ(z)‖Lp ≤ C for every z ∈ U; p ∈ [p0; p′
0] :

3.4. Application to spectral multipliers.

Assume now that F ∈ Mp(L) ∩ C∞(R):
Then, applying a duality argument, one may conclude that also F ∈ Mp′ (L); and

so, by interpolation, that F ∈ Mq(L); and

(3.14) ‖F (L)‖Lq→Lq ≤ C; for every q ∈ [p; p′] :

(here, we assume w.r. that p ≤ 2:)
Now, recall the following result by R. Coifman and G. Weiss.

Theorem 3.6 (Transference). Suppose G is an amenable group, and let K ∈ C0(G ): Denote
by λ(K ) the convolution operator λ(K ) : f �→ K ? f on Lq(G ): Then, if π is any isometric
representation of G on a Lebesgue space Lq(Z ); one has the estimate

(3.15) ‖π(K )‖Lq (Z )→Lq (Z ) ≤ ‖λ(K )‖Lq (G )→Lq (G )

The idea is then to apply this to the operator F (L); but there are certain obstacles
to be overcome.

Of course, by the Schwartz’ kernel theorem, F (L) is of the form F (L)f = K ? f;
where K is a suitable distribution on G , but we cannot expect K to lie in C0(G ): By
replacing the multiplier F (λ) by e−λF (λ); which amounts to replacing the kernel K
by the smooth kernel h1 ? K; we may at least assume that K ∈ C ∞(G ):

Next, in order to force the support of K to be compact, one may devise a sequence
of Herz-Schur-multipliers φn on G of compact support and tending to 1 uniformly
on compact sets. Such a sequence does exist, since G is amenable. One can then
approximate K in a certain way by the kernels Kn := K φn; which have compact
support.

Grossly oversimplifying (and somewhat cheating), let us therefore henceforth assume
for simplicity that K ∈ C0(G ): Then there still remains the problem that we have to
adapt Theorem 3.5 to the setting of our mixed Lp-spaces. However, this is no serious
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obstacle, since one can embed Lp(z) = Lp(z)(X; L2(Y )) into some space Lp(z)(Z ); for
instance by means of Rademacher functions and Khintchin’s inequality.

Eventually one can then apply the transference method and obtains from (3.14) that

(3.16) ‖πz
‘ (K )‖

Lp(z)→Lp(z) ≤ C ’ z ∈ Σ such that p(z) ∈ [p; p′] :

We choose ψ ∈ C0(X × Y ) such that 〈ξ(z0);ψ〉 �= 0; where z0 ∈ R and ξ(z) are as in
Proposition 3.5. We then obtain a holomorphic mapping

h : U → C; z �→ 〈πz
‘ (K )ξ(z);ψ〉

on a suitable neighborhood U of z0 in the complex plane, since, by (3.13) and (3.15),

|h(z)| ≤ ‖πz
‘ (K )‖

Lp(z)→Lp(z)‖ξ(z)‖
Lp(z)‖ψ‖Lp(z)′

is uniformly bounded on U:

• Consider the case Im z = 0:

If we define µ(z) by λ(z) = e−µ(z); then we have

πz
‘ (h1)ξ(z) = T (z)ξ(z) = λ(z)ξ(z) ;

hence

dπz
‘ (L)ξ(z) = µ(z)ξ(z) :

By means of spectral theory on Hilbert spaces, one concludes that

h(z) = 〈πz
‘ (F (L))ξ(z);ψ〉 = 〈F (dπz

‘ (L))ξ(z);ψ〉 = F (µ(z)) 〈ξ(z);ψ〉;

i.e.

(3.17) F ◦ µ(z) =
h(z)

〈ξ(z);ψ〉; ’z ∈ U ∩R :

Here, we assume that we have chosen U so small that the denominator of (3.17) does
not vanish.

Clearly the right-hand side of (3.17) extends holomorphically to U; and thus F ◦µ
extends to a holomophic function on U: It thus only remains to show that the function
µ cannot be constant, in order to conclude that the multiplier F is holomorphic near
λ0 := µ(z0): It is here where the «Riemann-Lebesgue-Lemma» Proposition 3.3 comes
into play.

Indeed, if z = τ ∈ R; then πz
‘ � π‘+τν

, hence, by (3.2), lim
τ→∞ ‖πτ

‘ (h1)‖ = 0:
This implies λ(τ ) → 0, hence µ(τ ) → ∞ as τ → ∞: Thus µ is not constant and so,
modifying z0 ∈ R ∩ U slightly, if necessary, we may assume that µ′(z0) �= 0: But then
µ is a local bi-holomorphism, and so F is holomorphic near λ0:
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[19] L. Hörmander, Hypoelliptic second-order differential equations. Acta Math, 119, 1967, 147-171.
[20] A. Hulanicki, Subalgebra of L1(G ) associated with Laplacians on a Lie group. Colloq. Math., l31, 1974,

259-287.
[21] H. Leptin - J. Ludwig, Unitary representation theory of exponential Lie groups. De Gruyter, Expositions

in Mathematics, 18, 1994.
[22] J. Ludwig - D. Müller, Sub-Laplacians of holomorphic Lp-type on rank one AN -groups and related

solvable groups. J. of Funct. Anal., 170, 2000, 366-427.
[23] G. Mauceri - S. Meda, Vector-valued multipliers on stratified groups. Revista Math. Iberoamer., 6, 1990,

141-154.
[24] D. Müller - E.M. Stein, On spectral multipliers for Heisenberg and related groups. J. Math. Pures et

Appliq., 73, 1994, 413-440.
[25] D. Müller - F. Ricci - E.M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg

(-type) groups I . Invent. Math., 119, 1995, 199-233.
[26] D. Müller - F. Ricci - E.M. Stein, Marcinkiewicz multipliers and multi-parameter structure on Heisenberg

(-type) groups II . Math. Z., 221, 1996, 267-291.
[27] S. Mustapha, Multiplicateurs spectraux sur certains groupes non-unimodulaires. Harmonic Analysis and

Number Theory, CMS Conf. Proceedings, 21, 1997.
[28] S. Mustapha, Multiplicateurs de Mikhlin pour une classe particulière de groupes non-unimodulaires.

Annales de l’Institut Fourier, 1998, 957-966.



270 d. müller

[29] E. Nelson - W.F. Stinespring, Representation of elliptic operators in an enveloping algebra. Amer. J.
Math., 81, 1959, 547-560.
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