ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

JACQUES FARAUT

Formule de Gutzmer pour la complexification d'une espace Riemannien symétrique

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 13 (2002), n.3-4, p. 233-241.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2002_9_13_3-4_233_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

JACQUES FARAUT

FORMULE DE GUTZMER POUR LA COMPLEXIFICATION D'UN ESPACE RIEMANNIEN SYMÉTRIQUE

ABSTRACT. — A Gutzmer formula for the complexification of a Riemann symmetric space. We consider a complex manifold Ω and a real Lie group G of holomorphic automorphisms of Ω . The question we study is, for a holomorphic function f on Ω , to evaluate the integral of $|f|^2$ over a G-orbit by using the harmonic analysis of G. When Ω is an annulus in the complex plane and G the rotation group, it is solved by a classical formula which is sometimes called Gutzmer's formula. We establish a generalization of it when Ω is a G-invariant domain in the complexification of a Riemannian symmetric space G/K.

KEY WORDS: Symmetric space; Spherical function; Gutzmer formula.

Une fonction holomorphe f dans une couronne

$$\Omega = \left\{ z \in \mathbb{C} \mid r_1 < |z| < r_2 \right\}$$

est développable en série de Laurent,

$$f(z) = \sum_{n=-\infty}^{\infty} \hat{f}(n)z^n ,$$

et

$$\frac{1}{2\pi} \int_0^{2\pi} |f(re^{i\theta})|^2 d\theta = \sum_{n=0}^{\infty} |\hat{f}(n)|^2 r^{2n} \qquad (r_1 < r < r_2).$$

Cette formule est parfois appelée formule de Gutzmer (cf. par exemple [8, p. 389]).

Nous allons présenter des généralisations de cette formule dans le cadre des espaces riemanniens symétriques. Le problème général est le suivant. Considérons une variété complexe Ω sur laquelle un groupe de Lie réel G agit par automorphismes holomorphes. Si f est une fonction holomorphe définie sur Ω , comment peut-on évaluer l'intégrale

$$I(f,z) = \int_{G} |f(g \cdot z)|^{2} dg ,$$

à l'aide de l'analyse harmonique de G? (dg est une mesure de Haar sur G que nous supposons unimodulaire). Dans l'exemple ci-dessus G est le groupe U(1) agissant par rotations.

Considérons un autre exemple simple : Ω est une bande horizontale de \mathbb{C} ,

$$\Omega = \left\{ z = x + iy \in \mathbb{C} \mid \alpha < y < \beta \right\}.$$

Ici G est le groupe $\mathbb R$ agissant par translations. Soit f une fonction holomorphe sur Ω telle que

$$\sup_{\alpha < y < \beta} \int_{-\infty}^{\infty} |f(x+iy)|^2 dx < \infty.$$

Alors f admet une représentation de Fourier-Laplace,

$$f(z) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\lambda) e^{-i\lambda z} d\lambda \qquad (z \in \Omega) ,$$

et

$$\int_{-\infty}^{\infty} |f(x+iy)|^2 dx = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\hat{f}(\lambda)|^2 e^{2\lambda y} d\lambda$$

(cf. [7, Chapter I, Section 3]). Cette dernière égalité est un analogue non compact de la formule de Gutzmer.

Formule de Gutzmer pour la complexification D'un espace symétrique compact

La première généralisation que nous présentons est due à Lassalle [6, Théorème 1]. Soit $\mathcal{X}=U/K$ un espace symétrique compact : U est un groupe de Lie compact connexe, K est un sous-groupe fermé de U, et il existe un automorphisme involutif θ de U telle que

$$U_0^{\theta} \subset K \subset U^{\theta}$$
 ,

où U^{θ} est l'ensemble des points fixes de θ et U_0^{θ} est la composante neutre de U^{θ} . La décomposition de Cartan de $\mathfrak{u}=\mathrm{Lie}(U)$ s'écrit

$$\mathfrak{u} = \mathfrak{k} + \mathfrak{p}$$

et $\mathfrak{a} \subset \mathfrak{p}$ désignera un sous-espace de Cartan. Soit Ω un domaine invariant par U dans la complexification $\mathcal{X}_{\mathbb{C}} = U_{\mathbb{C}}/K_{\mathbb{C}}$. Tout $z \in \mathcal{X}_{\mathbb{C}}$ s'écrit

$$z = g \exp iH \cdot o$$
 $(g \in U, H \in \mathfrak{a}, o = eK)$,

et

$$\Omega = U \exp i\omega \cdot o ,$$

où ω est un ouvert de $\mathfrak a$. Lassalle a démontré qu'une fonction holomorphe dans Ω est développable en série de Laurent [5]. Notons \widehat{U}_K l'ensemble des classes d'équivalence des représentations sphériques de U. Rappelons qu'une représentation $(\pi\,,\,\mathcal V)$ est dite sphérique si elle est irréductible et s'il existe dans $\mathcal V$ un vecteur non nul invariant par K. Pour $\lambda\in\widehat{U}_K$ notons $(\pi_\lambda\,,\,\mathcal V_\lambda)$ un représentant de la classe λ . On note aussi $d_\lambda=\dim\mathcal V_\lambda$, et $u_\lambda\in\mathcal V_\lambda$ un vecteur unitaire invariant par K. La représentation π_λ se prolonge en une représentation $\widetilde{\pi}_\lambda$ holomorphe de $U_\mathbb C$, et, pour $X\in\mathfrak u$, l'opérateur $\widetilde{\pi}_\lambda(\exp iX)$ est autoadjoint. Le développement de Laurent d'une fonction $f\in\mathcal O(\Omega)$

s'écrit

$$f(z) = \sum_{\lambda \in \widehat{U}_K} d_{\lambda} (\widetilde{\pi}_{\lambda}(\gamma^{-1}) \hat{f}(\lambda) | u_{\lambda}) ,$$

 $(z = \gamma \cdot o \in \Omega, \ \gamma \in U_{\mathbb{C}}, \ o = eK_{\mathbb{C}})$. Le vecteur $\hat{f}(\lambda) \in \mathcal{V}_{\lambda}$ est le coefficient de Laurent généralisé de f. La formule de Gutzmer se généralise comme suit :

$$\int_{U} |f(g \cdot z)|^{2} dg = \sum_{\lambda \in \widehat{U}_{K}} d_{\lambda} ||\hat{f}(\lambda)||^{2} \varphi_{\lambda}(\exp 2iH)$$

 $(z = \exp iH \cdot o, H \in \mathfrak{a})$, où dg est la mesure de Haar normalisée de U et φ_{λ} est la fonction sphérique associée à la classe λ ,

$$\varphi_{\lambda}(\gamma) = \left(\pi_{\lambda}(\gamma^{-1})u_{\lambda}|u_{\lambda}\right).$$

Cette formule de Gutzmer est une conséquence simple des relations d'orthogonalité de Schur. Nous pouvons en effet écrire

$$f(\mathbf{g}\cdot\mathbf{z}) = \sum_{\boldsymbol{\lambda} \in \widehat{U}_K} d_{\boldsymbol{\lambda}} \big(\pi_{\boldsymbol{\lambda}}(\mathbf{g}^{-1}) \widehat{f}(\boldsymbol{\lambda}) | \widetilde{\pi}_{\boldsymbol{\lambda}}(\bar{\boldsymbol{\gamma}} \) \boldsymbol{u}_{\boldsymbol{\lambda}} \big) \ ,$$

où $\gamma \mapsto \bar{\gamma}$ est la conjugaison de $U_{\mathbb{C}}$ par rapport à la forme réelle U, et

$$\int_{U}\left|\left(\pi_{\lambda}(g^{-1})\widehat{f}(\lambda)\middle|\widetilde{\pi}_{\lambda}(\bar{\gamma})u_{\lambda}\right)\right|^{2}=\frac{1}{d_{\lambda}}\left\|\widehat{f}(\lambda)\right\|^{2}\left\|\widetilde{\pi}_{\lambda}(\bar{\gamma})u_{\lambda}\right\|^{2}.$$

D'autre part

$$\|\widetilde{\pi}_{\lambda}(\bar{\gamma})u_{\lambda}\|^{2} = (\widetilde{\pi}_{\lambda}(\gamma^{-1}\bar{\gamma})u_{\lambda}|u_{\lambda}) = \varphi_{\lambda}(\bar{\gamma}^{-1}\gamma).$$

2. Formule de Gutzmer pour la complexification d'un espace riemannien symétrique de type non compact

Soit $\mathcal{X}=G/K$ un espace riemannien symétrique de type non compact : G est un groupe de Lie connexe semi-simple de centre fini et K est un sous-groupe compact maximal de G. Soit

$$\mathfrak{a} = \mathfrak{k} + \mathfrak{p}$$

la décomposition de Cartan de $\mathfrak{g}=\mathrm{Lie}(G)$, et soit $\mathfrak{a}\subset\mathfrak{p}$ un sous-espace de Cartan. On note $A=\exp\mathfrak{a}$, et M le centralisateur de A dans K. Soient Δ^+ un système positif dans le système des racines restreintes de la paire $(\mathfrak{g},\mathfrak{a})$, et

$$\mathfrak{n} = \sum_{\alpha \in \Delta^+} \mathfrak{g}_{\alpha} \,, \quad N = \exp \mathfrak{n} \,, \quad \rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} m_{\alpha} \alpha \,.$$

La décomposition d'Iwasawa associée à Δ^+ peut s'écrire G=NAK. Si $k^{-1}g\in N$ expHK $(H\in\mathfrak{a})$ on note

$$H = A(x, b)$$
 $(x = gK, b = kM \in B = K/M).$

La transformée de Fourier d'une fonction intégrable sur $\mathcal X$ est la fonction $\hat f$ définie sur $\mathfrak a^* \times B$ par

$$\hat{f}(\lambda, b) = \int_{\mathcal{X}} f(x) e^{\langle -i\lambda + \rho, \mathcal{A}(x, b) \rangle} dx.$$

(dx est une mesure sur \mathcal{X} invariante par G). La formule d'inversion fait intervenir la fonction c d'Harish-Chandra. Si

$$\int_{\sigma^*} \left(\int_{\mathbb{R}} \left| \hat{f}(\lambda, b) \right|^2 db \right)^{1/2} \frac{d\lambda}{\left| c(\lambda) \right|^2} < \infty$$

(db est la mesure sur B invariante par K et normalisée), alors

$$f(x) = \int_{\mathfrak{a}^*} \left(\int_{\mathcal{B}} \hat{f}(\lambda, b) e^{\langle i\lambda + b, A(x,b) \rangle} db \right) \frac{d\lambda}{|c(\lambda)|^2}$$

(pour une normalisation convenable de la mesure dx). La formule de Plancherel s'écrit, si f est de plus de carré intégrable,

$$\int_{\mathcal{X}} |f(x)|^2 dx = \int_{\mathfrak{a}^*} \left(\int_{\mathcal{B}} |\hat{f}(\lambda, b)|^2 db \right) \frac{d\lambda}{|c(\lambda)|^2}$$

(pour ces résultats sur la transformée de Fourier on peut consulter [3, Chapter III]).

Soit Ω un domaine invariant par G dans la complexification $\mathcal{X}_{\mathbb{C}} = G_{\mathbb{C}}/K_{\mathbb{C}}$, contenant \mathcal{X} . Nous supposons que Ω peut s'écrire

$$\Omega = G \exp i\omega \cdot o ,$$

où ω est un ouvert de $\mathfrak a$ invariant par le groupe de Weyl de la paire $(\mathfrak g,\mathfrak a)$, et $0\in\omega$ (voir à ce sujet [1], et aussi [2]). Nous supposons de plus que Ω est simplement connexe, et que

$$\Omega \subset N_{\mathbb{C}}A_{\mathbb{C}} \cdot o$$
 .

Il en résulte que les applications

$$x \mapsto \mathcal{A}(x, b)$$
, $\mathcal{X} \to \mathfrak{a}$,

admettent un prolongement holomorphe

$$z\mapsto \mathcal{A}(z,\,b)$$
 , $\Omega o\mathfrak{a}_\mathbb{C}$.

Ces domaines sont étudiés dans [4].

La fonction sphérique φ_{λ} admet la représentation intégrale suivante

$$\varphi_{\lambda}(g) = \int_{R} e^{\langle i\lambda + \rho, \mathcal{A}(x,b) \rangle} db \qquad (x = g \cdot o).$$

D'après ce qui précède il est clair que la fonction

$$H\mapsto arphi_{\lambda}(\operatorname{exp} H) \qquad (H\in \mathfrak{a})$$
 ,

admet un prolongement holomorphe au tube $\mathfrak{a}+i\omega$. Nous verrons qu'elle admet même un prolongement holomorphe au tube $\mathfrak{a}+2i\omega$ (Proposition 3).

Théorème 1. Soit f une fonction continue intégrable sur $\mathcal X$ telle que sa transformée de Fourier $\hat f$ soit à support compact. Alors f admet un prolongement holomorphe $\widetilde f$ à Ω , et si $z=\exp iH\cdot o\in\Omega$,

$$\int_{G}\left|\widetilde{f}(g\cdot z)\right|^{2}dg=\int_{\mathfrak{a}^{*}}\left(\int_{B}\left|\widehat{f}(\lambda\;,\;b)\right|^{2}db\right)\varphi_{\lambda}(\exp 2iH)\frac{d\lambda}{\left|c(\lambda)\right|^{2}}\;.$$

C'est cette formule que nous considérons comme une généralisation de la formule de Gutzmer.

Posons

$$\widetilde{f}(z) = \int_{\mathfrak{a}^*} \left(\int_B \widehat{f}(\lambda, b) e^{\langle i\lambda + \rho, A(z, b) \rangle} db \right) \frac{d\lambda}{|c(\lambda)|^2}.$$

Cette intégrale est bien définie pour $z \in \Omega$, et \widetilde{f} est une fonction holomorphe. D'après la formule d'inversion, \widetilde{f} prolonge f. La condition que \widehat{f} soit à support compact n'est bien sûr pas nécessaire. Nous montrons dans un article en préparation que si F est une fonction holomorphe dans Ω telle que

$$\sup_{z\in\Omega}\int_{G}\left|F(g\cdot z)\right|^{2}dg<\infty,$$

alors F admet une représentation intégrale de la forme

$$F(z) = \int_{\mathfrak{a}^*} \left(\int_B h(\lambda , b) e^{\langle i\lambda + \rho, A(z, b) \rangle} db \right) \frac{d\lambda}{|c(\lambda)|^2} ,$$

et que la formule de Gutzmer s'applique à F:

$$\int_{G} \left| F(g \cdot z) \right|^{2} dg = \int_{\mathfrak{a}^{*}} \left(\int_{B} \left| h(\lambda , b) \right|^{2} db \right) \varphi_{\lambda}(\exp 2iH) \frac{d\lambda}{|c(\lambda)|^{2}} .$$

Avant de démontrer le Théorème 1 nous faisons quelques observations préliminaires.

a) Soit G un groupe localement compact et unimodulaire. Soient Λ un sousensemble borélien de \hat{G} , et μ la restriction à Λ de la mesure de Plancherel. Pour $\lambda \in \Lambda$ on choisit une représentation $(\pi_{\lambda}, \mathcal{V}_{\lambda})$ de la classe λ . Soit $\{A(\lambda)\}_{\lambda \in \Lambda}$ un champ mesurable d'opérateurs nucléaires, $A(\lambda) \in \mathcal{L}_1(\mathcal{V}_{\lambda})$, vérifiant

$$\int_{\Lambda} \operatorname{Tr} \left(|A(\lambda)| \right) d\mu(\lambda) < \infty ,$$

$$\int_{\Lambda} \operatorname{Tr} \left(A(\lambda)^* A(\lambda) \right) d\mu(\lambda) < \infty .$$

Posons

$$f(g) = \int_{\Lambda} \operatorname{Tr} \left(A(\lambda) \pi_{\lambda}(g^{-1}) \right) d\mu(\lambda) .$$

Alors $f \in L^2(G)$, et

$$\int_{G} |f(g)|^{2} dg = \int_{\Lambda} \operatorname{Tr} \left(A(\lambda)^{*} A(\lambda) \right) d\mu(\lambda) ,$$

et l'application qui à un champ $A = \{A(\lambda)\}$ associe la fonction f se prolonge en une isométrie de l'espace de Hilbert des champs mesurables $A = \{A(\lambda)\}$ d'opérateurs de Hilbert-Schmidt, $A(\lambda) \in \mathcal{L}_2(\mathcal{V}_{\lambda})$, muni de la norme définie par

$$||A||^2 = \int_{\Lambda} \operatorname{Tr} (A(\lambda)^* A(\lambda)) d\mu(\lambda)$$
,

dans $L^2(G)$.

Considérons le cas particulier où $A=\{A(\lambda)\}$ est un champ d'opérateurs de rang un :

$$A(\lambda)v = (v|\eta(\lambda))\xi(\lambda) \qquad (v \in \mathcal{V}_{\lambda})$$
 ,

où $\{\eta(\lambda)\}$ et $\{\xi(\lambda)\}$ sont des champs de vecteurs mesurables $(\eta(\lambda), \xi(\lambda) \in \mathcal{V}_{\lambda})$. Dans ce cas

$$\begin{split} \operatorname{Tr}\left(|A(\lambda)|\right) &= \|\eta(\lambda)\| \|\xi(\lambda)\| \ , \\ \operatorname{Tr}\left(A(\lambda)^*A(\lambda)\right) &= \|\eta(\lambda)\|^2 \|\xi(\lambda)\|^2 \ , \\ \operatorname{Tr}\left(A(\lambda)\pi_{\lambda}(g^{-1})\right) &= \left(\pi_{\lambda}(g^{-1})\xi(\lambda)|\eta(\lambda)\right). \end{split}$$

Ainsi nous pouvons énoncer

Proposition 2. Soient $\{\xi(\lambda)\}\$ et $\{\eta(\lambda)\}\$ deux champs de vecteurs mesurables tels que

$$\int_{G} \|\xi(\lambda)\|^{2} \|\eta(\lambda)\|^{2} d\mu(\lambda) < \infty.$$

Posons

$$f(g) = \int_{\Lambda} (\pi_{\lambda}(g^{-1}\xi(\lambda)|\eta(\lambda))) d\mu(\lambda).$$

Alors $f \in L^2(G)$ et

$$\int_{G} \left| f(g) \right|^{2} dg = \int_{\Lambda} \| \xi(\lambda) \|^{2} \| \eta(\lambda) \|^{2} d\mu(\lambda) .$$

Notons que l'intégrale définissant la fonction f est à comprendre au sens de la formule de Plancherel.

b) Nous allons appliquer ces résultats dans le cas où Λ est la série principale sphérique. Pour $\lambda \in \mathfrak{a}^*$, \mathcal{V}_{λ} est l'espace des fonctions v définies sur G telles que

$$v(xman) = e^{\langle i\lambda - \rho, H \rangle} v(x)$$
 $(m \in M, a = \exp H \in A, n \in N).$

Une telle fonction est déterminée par sa restriction à K car

$$v(kan) = e^{\langle i\lambda - \rho, H \rangle} v(k) \qquad (k \in K, a = \exp H \in A, n \in N).$$

Cette restriction est invariante à droite par M et v s'identifie à une fonction définie sur B = K/M. On considère sur \mathcal{V}_{λ} la norme définie par

$$||v||^2 = \int_B |v(b)|^2 db.$$

Ainsi $V_{\lambda} \simeq L^2(B)$. La représentation π_{λ} est définie par

$$(\pi_{\lambda}(g)v)(x) = v(g^{-1}x).$$

La représentation π_{λ} est unitaire et irréductible. Elle est sphérique. En effet la fonction $u_{\lambda} \in \mathcal{V}_{\lambda}$ définie par

$$u_{\lambda}(kan) = e^{\langle i\lambda - \rho, H \rangle}$$

est invariante par K. Notons que $||u_{\lambda}|| = 1$.

Si $f \in L^1(G)$, on pose

$$\pi_{\lambda}(f) = \int_{G} f(g) \pi_{\lambda}(g) dg.$$

Si f est invariante à droite par K, alors $\pi_{\lambda}(f)$ est un opérateur de rang un,

$$\pi_{\lambda}(f)v = (v|u_{\lambda})\hat{f}(\lambda)$$
,

où, par définition,

$$\hat{f}(\lambda) = \pi_{\lambda}(f) u_{\lambda} .$$

Cette dernière relation s'écrit aussi

$$\hat{f}(\lambda, b) = \int_{\mathcal{X}} e^{\langle -i\lambda + \rho, \mathcal{A}(x, b) \rangle} f(x) dx.$$

En effet

$$(\pi_{\lambda}(g)u_{\lambda})(k) = e^{\langle -i\lambda + \rho, A(x,b)\rangle}$$
 $(x = gK, b = kM).$

De cette formule il résulte que l'application

$$g\mapsto \pi_{\lambda}(g)u_{\lambda}$$
 , $G\to L^2(B)$,

admet un prolongement holomorphe au domaine de $G_{\mathbb{C}}$ défini par

$$\{\gamma \in G \mid \gamma \cdot o \in \Omega\}$$
.

Nous noterons $\widetilde{u}_{\lambda}(\gamma)$ ce prolongement : si $z = \gamma \cdot o$,

$$(\widetilde{u},(\gamma))(b) = e^{\langle -i\lambda + \rho, A(z,b) \rangle}$$

Proposition 3. La fonction

$$H\mapsto \varphi_\lambda(\exp H) \qquad (H\in\mathfrak{a})$$
 ,

admet un prolongement holomorphe au tube $\mathfrak{a}+2i\omega$. De plus, pour $H\in\omega$,

$$\varphi_{\lambda}(\exp 2iH) = \int_{\mathbb{R}} \left| e^{\langle i\lambda + \rho, \mathcal{A}(\exp iH \cdot \rho, b) \rangle} \right|^2 db = \|\widetilde{u}_{\lambda}(\exp iH)\|^2.$$

Ce résultat est du à B. Krötz et R.J. Stanton [4, Theorem 4.2]. Puisque, à ma connaisance, cet article n'est pas encore publié nous nous permettons d'en donner ici

la démonstration. La fonction $\varphi_{\lambda}(\exp 2H)$ $(H \in \mathfrak{a})$ peut s'écrire

$$\varphi_{\lambda}(\exp 2H) = \int_{B} e^{\langle i\lambda + \rho, \mathcal{A}(\exp H \cdot \sigma, b) \rangle} e^{\langle -i\lambda + \rho, \mathcal{A}(\exp - H \cdot \sigma, b) \rangle} db.$$

C'est en effet une conséquence du Theorem 1.1, Chapter III de [3]. Il en résulte que la fonction $H \mapsto \varphi_{\lambda}(\exp H)$ admet un prolongement holomorphe au tube $\mathfrak{a} + i\omega$. Pour $H \in \omega$,

$$\varphi_{\lambda}(\exp iH) = \int_{\mathbb{R}} \left| e^{\langle i\lambda + \rho, A(\exp iH \cdot \sigma, b) \rangle} \right|^2 db$$

et cette intégrale est précisemment le carré de la norme L^2 de $\widetilde{u}_{\lambda}(\exp iH)$.

c) Démontrons maintenant le Théorème 1. Puisque

$$\int_{\mathcal{B}} \hat{f}(\lambda, b) e^{\langle i\lambda + \rho, \mathcal{A}(g \cdot z, b) \rangle} db = \left(\pi_{\lambda}(g) \hat{f}(\lambda) | \widetilde{u}_{\lambda}(\bar{\gamma}) \right),$$

où $z = \gamma \cdot o$, nous pouvons écrire

$$\widetilde{f}(g \cdot z) = \int_{\mathfrak{g}^*} \left(\pi_{\lambda}(g) \widehat{f}(\lambda) | \widetilde{u}_{\lambda}(\bar{\gamma}) \right) \frac{d\lambda}{|c(\lambda)|^2}.$$

Considérons les champs de vecteurs $\{\xi(\lambda)\}\$ et $\{\eta(\lambda)\}\$ définis par

$$\xi(\lambda) = \hat{f}(\lambda)$$
, $\eta(\lambda) = \widetilde{u}_{\lambda}(\overline{\gamma})$.

D'après la Proposition 3, si $\gamma = \exp iH$,

$$\|\eta(\lambda)\|^2 = \varphi_{\lambda}(\exp 2iH)$$
.

Puisque le support de \hat{f} est compact

$$\int_{\mathfrak{a}^*} \|\xi(\lambda)\|^2 \|\eta(\lambda)\|^2 \frac{d\lambda}{|c(\lambda)|^2} < \infty.$$

Nous pouvons appliquer la Proposition 2 et nous obtenons

$$\int_{G}\left|\widetilde{f}(\mathbf{g}\cdot\mathbf{z})\right|^{2}d\mathbf{g}=\int_{\mathfrak{a}^{*}}\left\|\widehat{f}(\lambda)\right\|^{2}\varphi_{\lambda}(\exp2iH)\frac{d\lambda}{|c(\lambda)|^{2}}\,.$$

REMERCIEMENTS

Recherche effectuée partiellement avec le soutien de la Commission Européenne (TMR 1998-2001 Network *Harmonic Analysis*).

BIBLIOGRAPHIE

- [1] D.N. Akhiezer S.G. Gindikin, On Stein extensions of real symmetric spaces. Math. Ann., 286, 1990, 1-12.
- [2] L. Geatti, Invariant domains in the complexification of a non-compact Riemannian symmetric space. Preprint, 2001.
- [3] S. Helgason, Geometric Analysis on Symmetric Spaces. A.M.S., 1994.

- [4] B. Krötz R.J. Stanton, Holomorphic aspects of representations: (I) automorphic functions. Preprint, 2001
- [5] M. LASSALLE, Séries de Laurent des fonctions holomorphes dans la complexification d'un espace symétrique compact. Ann. Scient. Éc. Norm. Sup., 11, 1978, 167-210.
- [6] M. LASSALLE, L'espace de Hardy d'un domaine de Reinhardt généralisé. J. Funct. Anal., 60, 1985, 309-340.
- [7] R.E. Paley N. Wiener, Fourier transforms in the complex domain. A.M.S., 1934.
- [8] G. Valiron, Théorie des fonctions. Masson, 1966.

Institut de Mathématiques de Jussieu CNRS, UMR 7586 Université Pierre et Marie Curie Case 82 4 Place Jussieu 75252 Paris 05 (Francia) faraut@math.jussieu.fr