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CONTACT AND CONFORMAL MAPS ON IWASAWA N GROUPS

Abstract. — The action of the conformal group O(1; n + 1) on Rn ∪ {∞} may be characterized in
differential geometric terms, even locally: a theorem of Liouville states that a C 4 map between domains U
and V in Rn whose differential is a (variable) multiple of a (variable) isometry at each point of U is the
restriction to U of a transformation x �→ g · x , for some g in O(1; n + 1). In this paper, we consider the
problem of characterizing the action of a more general semisimple Lie group G on the space G=P , where
P is a parabolic subgroup. We solve this problem for the cases where G is SL(3;R) or Sp(2;R) and P is a
minimal parabolic subgroup.

Key words: Semisimple Lie group; Contact map; Conformal map.

1. Introduction

In 1850, Liouville proved that any C 4 conformal map between domains in R3 is
necessarily a composition of translations, dilations and inversions in spheres. This can
be expressed in more modern language by first observing that the group O(1; 4) acts
naturally on the sphere S3 by conformal transformations (and hence locally on R3,
by stereographic projection), and then saying that any conformal map between two
domains arises as the restriction of the action of some element of O(1; 4). The same
result also holds in Rn when n > 3 (see, for instance, [7]), and with metric rather than
smoothness assumptions (see [3]).

In [6], a similar result was proved with the Heisenberg group in place of Euclidean
space and the sphere in Cn with its CR structure in place of the real sphere. The notion
of conformality used there is with respect to the so-called Levi metric; for smooth maps
this means that the map is a contact map, and the restriction of its differential to the
contact plane is a multiple of a unitary map. The conclusion is that all «conformal»
maps belong to the group SU(1; n).

In [8], P. Pansu showed that in the quaternionic and octonionic analogues of this
set-up, there is a natural generalised contact structure of codimension greater than one,
and the analogue of Liouville’s theorem holds under the sole assumption that the map
in question preserves the contact structure.

Similar phenomena have been studied in more general situations: see, for exam-
ple, [1, 2, 4, 5].

The authors of this paper looked at these problems in what seems to be the widest
context in which they can be reasonably formulated: the case of a semisimple Lie
group G acting on the quotient space G=P , where P is a parabolic subgroup of G . In
this context, G=P is the generalization of the sphere in Rn+1 or Cn+1; it always contains
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a dense open cell, which may be identified with the Iwasawa subgroup N , which is
the general analogue of Rn and the Heisenberg group. The action of G on G=P and
on N is contact and conformal in a geometrically reasonable sense (see Lemma 1). At
this point one can ask whether a Liouville type theorem can still hold.

In this article, we discuss two fairly typical examples, which will give a good idea of
our general theory. We also derive some explicit formulae which may be of independent
interest.

We recently discovered that many of our results were found previously by N. Yama-
guchi [10]. His work is rarely cited in the literature, and seems to have been largely
overlooked, and another aim of our work is to draw attention to his achievements.
Yamaguchi’s work relies on the theory of G structures, as developed by N. Tanaka [9].
Our methods are different – they are Lie theoretic but otherwise elementary. For this
reason, we believe that it may still be of interest to present our approach in some detail.

1.1. Contact and conformal maps.

Let G be a semisimple Lie group, with Cartan involution Θ, and Iwasawa decompo-
sition KAN . Consider the compact manifold G=P , where P is a parabolic subgroup with
Langlands decomposition MP AP N P , containing the minimal parabolic subgroup MAN ,
where N = ΘN . By considering the Bruhat decomposition, we see that NP , defined
to be ΘN P , may be identified with an open dense subset of G=P . The Lie algebra nP

has a «multistratification» and a stratification, the former being a decomposition of nP

of the form
⊕

γ∈Σ+
P
gγ , where Σ+

P denotes the set of restricted positive roots (a subset
of the dual of the Lie algebra of AP ), and in particular [gγ; gδ] ⊆ gγ+δ, and the latter
being a decomposition of the form n1 ⊕ n2 ⊕ · · · ⊕ nh , where ni is the sum of the root
spaces gγ where γ is a sum of i simple aP roots, and in particular [ni; ni] ⊆ ni+j . The
group NP admits a multistratification and a stratification arising from the corresponding
multistratification and stratification of its Lie algebra.

1.2. Examples.

We consider two examples. For both, the Lie algebra m is trivial, but we write it
regularly, so that it is easy to see how to deal with the general situation.

The case where G = SL(3;R). Suppose that P is the minimal parabolic subgroup of G
of lower triangular matrices. For x , y and z in R, denote by ν(x; y; z) the matrix




0 x z
0 0 y
0 0 0


 :

Take α and β to be the simple roots relative to the standard Cartan subalgebra of
sl(3;R) of diagonal matrices: α(diag (a; b; c)) = (a−b) and β(diag (a; b; c)) = (b− c).
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Then
gα = {ν(x; 0; 0) : x ∈ R};

gβ = {ν(0; y; 0) : y ∈ R};

gα+β = {ν(0; 0; z) : z ∈ R} :

Further, nP = n = {ν(x; y; z) : x; y; z ∈ R}; the algebra n has the multistratification
gα ⊕ gβ ⊕ gα+β and the stratification n1 ⊕ n2, where n1 = gα ⊕ gβ and n2 = gα+β .

The case where G = Sp(2;R). Suppose that P is a minimal parabolic subgroup of G .
The standard decomposition into restricted root spaces of the corresponding Iwasawa
Lie algebra n yields the multistratification gα ⊕ gβ ⊕ gα+β ⊕ g2α+β and the stratification
n1 ⊕ n2 ⊕ n3, where n1 = gα ⊕ gβ , n2 = gα+β and n3 = g2α+β . The details will be
discussed below.

In this paper, we shall consider only the cases where G is SL(3;R) or Sp(2;R)
and P is a minimal parabolic subgroup. The general case will be treated in subsequent
papers. Thus, from now on, G=P is either the manifold of complete flags in R3 or the
manifold of complete Lagrangian flags in R4.

The structure of n allows us to give several generalised versions of conformal and
contact mappings. To formulate these, we first identify n with the tangent space to
G=P at P , and then prove a lemma. Define φ: N → G=P by the formula φ(n) = nP .
By the Bruhat decomposition, φ is injective, and its image is a dense open subset of
G=P containing P . The differential φ∗ then maps n, the tangent space to N at the
identity e, onto TP , the tangent space to G=P at P . When γ is a simple positive
restricted root (or equivalence class thereof), we denote by S

γ;P the subspace φ∗(g
γ
)

of TP , and by S1;P the sum of the subspaces φ∗(gγ) as γ ranges over all the simple
positive restricted roots (or equivalence classes thereof).

Lemma 1. The action of any element p of P on G=P induces an action p∗ on the tangent
space TP which in turn induces an action φ−1

∗ p∗φ∗ on n. This last action preserves each of the
spaces g

γ
when γ is a simple root, and its restriction to n1 lies in Ad (MA)|n1

.

Proof. Since P = MAN , it is enough to prove the statement for elements of MA
and of N separately.

First, suppose that z ∈ MA. As z(nMAN ) = znz−1MAN , it follows immediately
that φ−1

∗ z∗φ∗ = Ad (z). Thus, φ−1
∗ z∗φ∗ is in Ad (MA), which preserves all the root

spaces gγ , and their direct sums.

Next, suppose that n ∈ N . For Z in n, consider the curve t �→ exp(tZ )MAN
based at P . Write n exp(tZ )MAN as [exp(t Ad (n)Z )]N MAN , where [g ]N stands for
the N -component of g in the Bruhat decomposition. We claim that

(1)
d
dt

[exp t (Ad (n)Z )]N

∣∣∣
t=0

= π(Ad (n)Z ) ;
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where π: n⊕ (m⊕a⊕n) → n is the canonical projection. Indeed, decomposing Ad (n)Z
as U + V , where U ∈ n and V ∈ m ⊕ a ⊕ n, then by the Baker-Campbell-Hausdorff
formula,

exp tU = [exp tU exp tV ]N =
[
exp

(
t (U + V ) + O(t 2)

)]
N

;

so that

d
dt

[exp(t Ad (n)Z )]N

∣∣∣
t=0

=
d
dt

[exp t (U + V )]N

∣∣∣
t=0

= U ;

and (1) holds. Therefore, φ−1
∗ n∗φ∗ = π ◦ Ad (n), as claimed.

Now for X in n and Y in gγ , where γ is a simple root, we have

Ad (exp X )Y = ead X Y = Y +
+∞∑

n=1

(ad X )n

n!
Y :

By writing X as the sum
∑

δ∈Σ+
P

X−δ, where X−δ ∈ g−δ, we see that ad (X )Y ∈ m⊕a⊕n,
since γ − δ is either 0, not a root, or a negative root. Then ad (X )nY ∈ m⊕ a⊕ n for
all positive integers n. Consequently π(Ad (exp X )Y ) = Y , as required to conclude the
proof.

This lemma allows us to identify n with the tangent space Tx at any point x in G=P ,
and to identify the subspaces gγ of n, where γ is a simple root, with subspaces Sγ;x

of Tx . These subspaces have conformal structures. Indeed, x = gP , the images g∗φ∗gγ

are well defined, independently of the representative g of the coset. Further, n has a
canonical inner product (X; Y ) �→ −B(θX; Y ), where B denotes the Killing form, and
this induces a conformal structure on all the subspaces S

γ;x .
Consider a diffeomorphism f of G=P or, more generally, f :U → V , where U and

V are open subsets of G=P . We identify the tangent space Tx at any point x in G=P
with n as above; for simplicity of notation, we now write n1 instead of g∗φ∗n1, and gγ

instead of Sγ;gP . We say that f is

(i) a contact map if f∗ maps n1 into itself;
(ii) a multicontact map if f∗ maps gγ into itself for every simple root γ;

(iii) a multiconformal map if it is a multicontact map and the restriction (f∗)
γ

of f∗ to
gγ is conformal for every simple root γ.

It is clear that multiconformal maps are multicontact, and multicontact maps are contact.
Examples of multiconformal maps are obtained by considering the natural action of

G on G=P , as clarified in the next theorem. It is clear that the theorem holds for any
semisimple G and any minimal parabolic P , and even for arbitrary parabolic subgroups
after some appropriate definitions have been made.

Theorem 2. The action of G on G=P is multiconformal.

It is obvious that the restriction of the action of a given element of G to an open
subset of G=P is still multiconformal.
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If we restrict the map x �→ g x on G=P to appropriate subsets of G=P , we may
consider this to be a map between subsets of N : we write g ·n for φ−1gφ(n). For maps
on N , we may introduce other notions of generalised conformality. We identify the
tangent space Tx at any point x in N with n by left translations. Suppose that R is a
group of transformations of n1. We say that a diffeomorphism f :U → V is

(iv) an R-contact map if f∗ preserves n1, and the restriction f∗|n1
lies in R (1);

(v) a conformal map if f∗ preserves n1, and the restriction f∗|n1
is a multiple of an

isometry.

The previous definitions, of multicontact and so on, also apply in this context.

Theorem 3. If U and V are open subsets on N , and g · U ⊆ V , then the map n �→ g · n
is Ad (MA)|n1

-contact.

Proof. By composing with translations with elements of N , we may reduce the proof
to showing that, if g · e = e (i.e., if g ∈ P ), then the differential of the map n �→ g · n,
acting on the subspace n1 of the tangent space to N at e, lies in Ad (MA)|n1

. This
follows from Lemma 1.

We will discuss conformal maps later in this paper.
There is another family of algebraic maps of G=P which might have nice geometric

properties. Suppose that Ξ is an automorphism of G and that Ξ(P ) ⊆ P . Then
the mapping Ξ̇: gP �→ Ξ(g )P is well-defined. If this automorphism is inner, then
necessarily Ξ(g ) = pgp−1 for some p in P (since P is its own normaliser in G ), whence
Ξ̇(gP ) = pgP , and this is one of the maps we have studied. However, both SL(3;R)
and Sp(2;R) have some additional automorphisms which fix P , and we now discuss
these briefly.

The «flip» automorphism Ψ of SL(3;R) is defined to be the map sending the matrix
(aij ) to the matrix (a4−j;4−i)

−1; its differential ψ acts on g sending (aij ) to (−a4−j;4−i).
Clearly Ψ(P ) = P . It is easy to see that every automorphism of SL(3;R) is either inner
or is the product of an inner automorphism and the flip. At the Lie algebra level,
ψ(gα) = gβ and ψ(gβ) = gα. It follows that Ψ̇ is a contact map but not a multicontact
map.

The grading automorphism Z of Sp(2;R) is the map sending the matrix (ai;j ) to

((−1)i−j ai;j ). Its differential ζ: g → g may be described as follows: we write the Lie
algebra g as godd ⊕ geven, where

godd = gα + g−α + gβ + g−β + g2α+β + g−2α−β

geven = m + a + gα+β + g−α−β ;

the subscripts refer to the parity of the number of simple roots involved in the root
spaces making up godd and geven. This is a grading of g, and the map ζ, given by

(1) It is possible to define R-contact maps on G=P provided that R ⊇ Ad (MA).
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ζ(X ) =

{
+ X if X ∈ geven

−X if X ∈ godd ;

is the differential of Z. The complex linear extension of Z to Sp(2;C) is inner,
but Z itself is not. It is easy to check that every automorphism of Sp(2;R) which
preserves P is either inner or a product of an inner automorphism and the grading
automorphism Z. The induced map Ż of G=P is a multiconformal map, but (restricted
to N ) is not Ad (MA)|n1

-contact.

2. Multicontact mappings

The main result in this paper is the following partial converse of Theorem 2.

Theorem 4. If U and V are connected open subsets of G=P and f :U → V is a
multicontact map, then there is a unique element g of G such that f is the restriction to U of
the map xP �→ g xP , or (in the case where G = Sp(2;R)) the restriction to U of the map
xP �→ Żg xP .

Proof. The proof consists of several steps. Since NP is open and dense in G , there
is no loss of generality in assuming that U and V are subsets of N .

2.1. Step 1.

We consider multicontact vector fields, that is, vector fields V on U whose local
flow {φV

t } consists of multicontact maps. If Xγ ∈ gγ and γ is a simple root, then

d
dt

(φV
t )∗(Xγ)

∣∣∣
t=0

= −LV (Xγ) = [Xγ; V ]

(where L denotes the Lie derivative). Thus a smooth vector field V on U is a multi-
contact vector field if and only if

(2) [V; gγ] ⊆ gγ for every simple root γ :

We define a representation τ of the Lie algebra g of G as a set of vector fields on N
as follows:

(τ (X )f )(n) =
d
dt

f (exp(−tX ) · n)
∣∣∣
t=0

:

By Theorem 2, τ (X ) is a multiconformal vector field on N and a fortiori a multicontact
vector field. In Steps 2 and 3, we show that all multicontact vector fields arise in this
way.

2.2. Step 2.

This is the crucial part of the proof. We show that a multicontact vector field has
polynomial components in the chosen coordinate system. We discuss the cases where
G = SL(3;R) and G = Sp(2;R) separately.
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The case where G = SL(3;R). We write a vector field V on U as fX + gY + hZ ,
where f , g and h are smooth functions on U in the coordinates x; y; z and {X; Y; Z }
is the canonical basis of n (viewed as left-invariant vector fields), i.e.,

X =
@
@x

; Y =
@
@y

+ x
@
@z

; Z =
@
@z

:

Clearly

[X; Y ] = Z; [X; Z ] = [Y; Z ] = 0 :

The multicontact vector field equations (2) state that [V; X ] = λX and [V; Y ] = µY ,
for some smooth functions λ and µ on U . These equations imply immediately that

λX = −gZ − (Xf )X − (Xg )Y − (Xh)Z

µY = fZ − (Yf )X − (Yg )Y − (Yh)Z ;

which in turn imply that

Xf = −λ Yg = −µ

Xg = 0 Yf = 0

Xh = −g Yh = f :

We see at once that f and g are determined by h and h itself satisfies the differential
equations

(3) X 2h = Y 2h = 0 :

The equation X 2h = @2h=@x2 = 0 has the general solution

h(x; y; z) = h0(y; z) + xh1(y; z) ;

for some functions h0 and h1. The equation Y 2h = 0 then becomes

0 =

(
@2

@y2 + 2x
@2

@y@z
+ x2 @2

@z2

)
(h0 + xh1) =

= x3

(
@2h1

@z2

)
+ x2

(
@2h0

@z2 + 2
@2h1

@y@z

)
+ x

(
@2h1

@y2 + 2
@2h0

@y@z

)
+

(
@2h0

@y2

)
:

Since the right hand side vanishes identically in some open set, the coefficients of the
various powers of x must vanish. Considering the x3 term, we see that @2h1=@z2 = 0.
Differentiating the coefficient of the x2 term once with respect to z , we deduce that
@3h0=@z3 = 0. Next, considering the constant term yields @2h0=@y2 = 0, and then
differentiating the coefficient of the x term once with respect to y, we deduce that
@3h1=@y3 = 0. Summarizing, we have shown that

@3

@z3 h0 = 0;
@2

@z2 h1 = 0;
@2

@y2 h0 = 0;
@3

@y3 h1 = 0 :



226 m. cowling et al.

The first two equations imply that

h0(y; z) = z2a(y) + zb(y) + c(y); h1(y; z) = zd (y) + e(y) ;

and the second two equations then imply that a′′ = b′′ = c ′′ = d ′′′ = e ′′′ = 0, so that
both h0 and h1 are polynomials, whence h is too.

The case where G = Sp(2;R). We view G as the group of four-by-four real matrices
which preserve the symplectic form (ũ; ṽ) �→ u1v4 + u2v3 −u3v2 −u4v1, with the Cartan
subalgebra of diagonal matrices {Hs;t : s; t ∈ R}, where Hs;t = diag (s; t;−t;−s). Let
ν(u; x; y; z) denote the matrix




0
u√
2

y√
2

z

0 0 x
y√
2

0 0 0 − u√
2

0 0 0 0




;

and write U for ν(1; 0; 0; 0), X for ν(0; 1; 0; 0), and so on. Then the vectors U ,
X , Y and Z are orthonormal relative to the matrix inner product (A ·B =

∑
i;j ai;jbi;j )

and hence are multiples of orthonormal vectors relative to the inner product derived
from the Killing form (A ·B = tr (A θB)). Further, we have the following commutation
relations:

[Hs;t ; U ] = (s − t )U [U; X ] = Y [X; Y ] = 0

[Hs;t ; X ] = 2tX [U; Y ] = Z [X; Z ] = 0

[Hs;t ; Y ] = (s + t )Y [U; Z ] = 0 [Y; Z ] = 0

[Hs;t ; Z ] = 2sZ :

Thus we may write gα for span {U }, gβ for span {X }, gα+β for span {Y }, and g2α+β

for span {Z }, and n for their direct sum, and the standard root commutation relations
hold. If we co-ordinatize N by writing (u; x; y; z) for exp(xX + yY + zZ ) exp(uU ),
then the left-invariant vector fields associated to U , X , Y and Z are

@
@u

;
@
@x

+ u
@
@y

+
u2

2
@
@z

;
@
@y

+ u
@
@z

;
@
@z

:

Take a multicontact vector field V on an open subset U of N , write V as fU +

+ gX + hY + kZ , and consider the equations (2), which state that [V; U ] = λU and
[V; X ] = µX , for some smooth functions λ and µ on U . These equations yield

λU = −gY − hZ − (Uf )U − (Ug )X − (Uh)Y − (Uk)Z

µX = fY − (Xf )U − (Xg )X − (Xh)Y − (Xk)Z ;
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which in turn imply that

Uf = λ Xg = −µ
Ug = 0 Xf = 0

Uh = −g Xh = f

Uk = −h Xk = 0 :

We see at once that the components f , g and h are determined by k and that k itself
satisfies the differential equations

(4) Xk = U 3k = 0 :

The equation U 3k = @3k=@u3 = 0 has the general solution

k(u; x; y; z) = k0(x; y; z) + uk1(x; y; z) + u2k2(x; y; z) ;

for some functions k0, k1 and k2. Hence the equation Xk = 0 becomes

0 =

(
@
@x

+ u
@
@y

+
u2

2
@
@z

)
(k0 + uk1 + u2k2) =

=

(
@k0

@x

)
+ u

(
@k1

@x
+

@k0

@y

)
+ u2

(
@k2

@x
+

@k1

@y
+

1
2

@k0

@z

)
+

+ u3
(

@k2

@y
+

1
2

@k1

@z

)
+ u4

(
1
2

@k2

@z

)
:

By considering the term which is independent of u, and differentiating the u term once
with respect to x and the u2 term twice with respect to x , we see that ki is a polynomial
of degree i in x with coefficients that are functions of y and z , for all i. Similarly, by
considering the u4 term and differentiating the u3 term once with respect to z and the
u2 term twice with respect to z , we see that ki is a polynomial of degree (2 − i) in z .
Thus

k(u; x; y; z) = k000(y) + zk001(y) + z2k002(y) +

+ uk100(y) + uxk110(y) + uzk101(y) + uxzk111(y) +

+ u2k200(y) + u2xk210(y) + u2x2k220(y) :

Now X commutes with @=@x , @=@y and @=@z . In particular X@2k=@x2 = 0,
X@2k=@x@z = 0 and X@2k=@z2 = 0. These imply that k ′

220 = 0, k ′
111 = 0 and k ′

002 = 0.
Thus

@k
@y

(u; x; y; z) = k ′
000(y) + zk ′

001(y) +

+ uk ′
100(y) + uxk ′

110(y) + uzk ′
101(y) + u2k ′

200(y) + u2xk ′
210(y) :

Further, X@2k=@x@y = 0 and X@2k=@z@y = 0. These imply that k ′′
110 = k ′′

210 = 0 and
k ′′

001 = k ′′
101 = 0, whence

@2k

@y2 (u; x; y; z) = k ′′
000(y) + uk ′′

100(y) + u2k ′′
200(y) :
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Finally, X@2k=@y2 = 0. This implies that k ′′′
000 = k ′′′

100 = k ′′′
200 = 0. In conclusion, each

ki is a polynomial of total degree at most 2.

2.3. Step 3.

The differential systems (3) and (4) can be integrated quite explicitly. The solutions
of (3) are

(5) h(x; y; z) = c0 + c1x + c2y + c3z + c4xy + c5x(z − xy) + c6zy + c7z(z − xy) ;

where c0; : : : ; c7 ∈ R, and the solution of (4) are

k(u; x; y; z) = c0 + c1u + c2u2 + c3(y − ux) + c4(uy − 2z) + c5u(y − ux) +

+ c6u(uy − 2z) + c7(y − ux)2 + c8(y − ux)(uy − 2z) + c9(uy − 2z)2 ;

where c0; : : : ; c9 ∈ R. Since the Lie algebras of multicontact vector fields contain τ (g),
as argued in Step 1, we conclude that in fact they coincide with these copies of g for
reasons of dimension.

The same conclusion, and more, may be inferred from Step 2 by general homo-
geneity arguments, using the polynomial nature of the solutions without integrating the
differential systems. This is done by selecting a characteristic element H0 in the Cartan
subalgebra a, that is, an element satisfying γ(H0) = 1 for all simple positive roots γ. A
function f on N is said to be homogeneous of degree r if it does not vanish identically
and it satisfies τ (H0)f = rf , and a vector field V is said to be homogeneous of degree s
if it does not vanish identically and it satisfies [τ (H0); V ] = −sV . Hence

deg(fV ) = deg(V ) − deg(f );

deg(V (f )) = deg(f ) − deg(V ) (except when V (f ) = 0) ,

deg([V; W ]) = deg(V ) + deg(W ) (except when V and W commute) .

In particular, all vector fields in the stratum nj are of degree j , and no polynomial vector
field can have degree greater than h, the height of n, i.e., the length of its stratification.

Next, we take a general multicontact vector field V , which is a polynomial solution
of (3) or (4). We may write V as a sum of homogeneous components, each of which
is also a solution of the equations.

Fix Y in n1 and assume that deg(V ) > 0. Then

deg([Y; V ]) = deg(Y ) + deg(V ) = 1 + deg(V ) > 1 ;

so it cannot be true that [Y; V ] ∈ n1 unless [Y; V ] = 0. Therefore [Y; V ] = 0 for
all Y in n1, and since n1 generates n, it follows that [Y; V ] = 0 for all Y in n. If
a vector field commutes with infinitesimal right translations, then it is an infinitesimal
left translation. Consequently, V = τ (X ) for some X in n, and multicontact vector
fields of positive degree correspond to elements in n.

To treat the case where deg(V ) < 0, we consider the inversion map on N , induced
by the action of s on G=P , where s is a representative of the longest Weyl group element.
The induced map s∗ has the property that deg(s∗V ) = − deg(V ) for homogeneous vector
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fields V . Consequently, if V is a homogeneous multicontact vector field of negative
degree, than s∗V is of positive degree, so s∗V = τ (X ) for some X in n, whence
V = τ (s−1

∗ X ), and V corresponds to an element of n.
Finally, if deg(V ) = 0, then ad V preserves both τ (n) and τ (n), and hence also

preserves τ (g), from the Jacobi identity, because the algebra generated by τ (n) and τ (n)
is τ (g). As ad V is a derivation of the semisimple Lie algebra τ (g), there exists Y in g

such that V −τ (Y ) commutes with τ (g). If a vector field commutes with τ (g), then in
particular it commutes with infinitesimal left translations, so it is an infinitesimal right
translation, and since it also commutes with dilations, it is zero. Hence V = τ (Y ),
and since deg(V ) = 0, it follows that Y ∈ m + a. We conclude our proof that the
multicontact vector fields correspond to g by recalling that g = n + n + m + a.

In the case where G = SL(3;R), it is easy to check the following correspondence
(up to constants) between polynomials and Lie algebra generators, in the sense that the
polynomial p corresponds to the unique multicontact vector field whose Z component
is pZ :

Z ↔ 1 θZ ↔ z(z − xy)

Y ↔ x θY ↔ yz

X ↔ y θX ↔ x(z − xy)

Hα ↔ z − 2xy Hβ ↔ z + xy ;

where Hα and Hβ are the elements in a that represent the simple roots by the Killing
form. The above table should be compared with (5). One can draw up a similar table
for Sp(2;R).

2.4. Step 4.

The final step involves integration. We wish to show that any multicontact map
from U to V is the restriction to U of a translation by a group element. By composing
with group translations, we may assume that e ∈ U ∩ V, and it is enough to show that
any multicontact map f from U to V which preserves the identity e is such a restriction.

We claim that the mapping f induces an automorphism of g. Indeed, if V ∈ τ (g),
then V is completely determined by V |U and we may consider the vector field f∗V
defined only on V . Since it too generates a local 1-parameter group of multicontact
transformations, it determines a unique element in τ (g). The induced automorphism
of g is the map τ−1f∗τ .

Consider the action of G on G=P . The subgroup P fixes the coset P , and no
other point. Consequently, the vector fields in τ (m + a + n) all vanish at e, and at
no other point. Since f is a diffeomorphism and f fixes e, all the vector fields in
the set f∗τ (m + a + n) also vanish at e. Thus the automorphism τ−1f∗τ of g maps
m + a + n into itself. Finally, since f is a multicontact map, then consideration of
f∗ at the identity shows that τ−1f∗τ also maps the positive simple root spaces gγ into
themselves.
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By composing the map f with the grading automorphism Z if necessary (in the case
where G = Sp(2;R)), we may suppose that τ−1f∗τ = Ad (p), for some p in P . Then
F : n �→ p−1 ·f (n) is a diffeomorphism, F (e) = e, and the induced automorphism τ−1F∗τ

is trivial. Since F∗τ (X ) = τ (X ) for all X in n, F commutes with left translations, and
so is a right translation. Since F (e) = e, it follows that F is trivial, and so f (n) = p · n
for all n in U , as required.

3. Contact mappings

In contrast with the case of multicontact mappings, the space of contact mappings,
that is, mappings preserving the contact plane n1 = gα ⊕ gβ , is infinite-dimensional.
This may be proved by considering the space of contact vector fields, that is, vector
fields which give rise to flows of contact mappings, and showing that this space is
infinite-dimensional. We consider the analogue of equations (2), namely

(6) [V; gα + gβ] ⊆ n1 ;

and analyze this, using the notation introduced in Step 2 above.

The case where G = SL(3;R). The equations (6) are equivalent to f = −Yh and g = Xh.
Thus h determines both f and g but is not itself subject to any condition. Then the
space of contact vector fields on N corresponds to the space of smooth functions on N .

The case where G = Sp(2;R). The equations (6) are equivalent to h = −Uk, g =

= −Uh = U 2k and f = Xh = −XUk, where k satisfies the single equation Xk = 0.
The space of solutions to Xk = 0 on U therefore contains the space

{(
−u2x +

1
2

uy + z

)
g (u) : g ∈ C ∞(U)

}
;

and is infinite-dimensional.

4. Conformal mappings

The situation with conformal mappings (in the sense defined above) is perhaps the
most curious. In both cases, the set of conformal mappings is finite-dimensional, but
in one case it is (nearly) a subgroup of G and in the other case it is not. Again, this is
proved by considering the corresponding class of vector fields. It is not hard to show
that the equations describing conformality of vector fields are the contact equations (i.e.,
(6) above), together with the additional condition that ad V , restricted to the contact
plane, must lie in R id ⊕ so(2).

The case where G = SL(3;R). If U and V are open subsets of N and f :U �→ V is
conformal, then by results of Korányi and Reimann [6], f is actually the restriction
to U of a map of the Heisenberg group N coming from the group SU(2; 1), which
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also has a Heisenberg group as its Iwasawa N subgroup. Most conformal maps do not
extend naturally to all of G=P .

The case where G = Sp(2;R). If V = fU + gX + hY + kZ and V is a conformal
vector field, then, as before, h = −Uk, g = −Uh = U 2k and f = Xh = −XUk, where
k satisfies the single equation Xk = 0.

Further, the matrix [
Uf Xf

Ug Xg

]

must satisfy the Cauchy-Riemann equations: Uf = Xg and Xf = −Ug . Thus k
determines everything, and k satisfies the three equations

Xk = 0; XU 2k = −UXUk; U 3k = −X 2Uk :

Since Xk = 0, the last equation implies that

U 3k = −X 2Uk = −X (XU − UX )k = XYk = YXk = 0 :

Thus k certainly satisfies the equations Xk = U 3k = 0, and f , g , h are determined as
in the multicontact case. The additional information is the equation XU 2k = −UXUk.

Solving these equations, much as before, leads to the conclusion that there are
constants c0, c1; : : : ; c4 such that

k(u; x; y; z) = c0 + c1u + c2u2 + c3(y − ux) + c4(4uy − u2x − 6z) :

The corresponding elements of g are those which, integrated, give rise to left translations
on N by elements of N , and the dilations (u; x; y; z) �→ (su; sx; s2y; s3z), where
s ∈ R+. The group of automorphisms of the Lie algebra of conformal vector fields
which induce conformal maps is generated by inner automorphisms from MAN and
the grading automorphism. Similar arguments to those for the multicontact case allow
us to deduce that the conformal maps of N are generated by left translations, dilations
and the grading automorphism.
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