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HUA-HARMONIC FUNCTIONS ON SYMMETRIC
TYPE TWO SIEGEL DOMAINS

Abstract. — We study a natural system of second order differential operators on a symmetric Siegel
domain D that is invariant under the action of biholomorphic transformations. If D is of type two, the
space of real valued solutions coincides with pluriharmonic functions. We show the main idea of the proof
and give a survey of previous results.

Key words: Symmetric Siegel domain; Pluriharmonic function; Invariant system of differential opera-
tors.

1. Siegel domains

Symmetric Siegel domains are in 1-1 correspondence with bounded symmetric do-
mains in Cn via biholomorphic mappings [15]. We study a natural G -invariant system
of second order operators defined equivalently in both realization. However, for the
technics we use, the unbounded realization is more convenient.

A Siegel tube type domain is the domain

D = V + iΩ ⊂ V C ;

where Ω is a symmetric cone in a Euclidean space V . The most natural example is V
being the space of r × r real symmetric matrices and Ω the cone of positive definite
matrices in V .

Suppose that, we are given a complex vector space Z and a Hermitian bilinear
mapping

Φ : Z × Z → V C :

We assume that

Φ(ζ; ζ) ∈ Ω; ζ ∈ Z ;

and Φ(ζ; ζ) = 0 implies ζ = 0 :

The Siegel domain of type two associated with these data is defined as

D =
{

(ζ; z) ∈ Z × V C : �z − Φ(ζ; ζ) ∈ Ω
}

:

The simplest example of such a domain is

Dm =
{

(ζ; z) ∈ Cm ×C : �z − |ζ|2 > 0
}

;

which is biholomorphically equivalent to the unit ball
{

w ∈ Cm+1 : |w|2 < 1
}

:
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Let G (D) be the connected component of the group of biholomorphic transforma-
tions of D and let S be the solvable part of its Iwasawa decomposition. S acts simply
transitively on D and it will be identified with it.

2. Hua-harmonic functions

To define the Hua system we need some notation. Let T be the tangent bundle
for D and T C-the complexified tangent bundle. We write T C as

T C = T 1;0 ⊕ T 0;1 ;

with T 1;0 being the holomorphic tangent bundle and T 0;1-the antiholomorphic tangent
bundle. We choose an orthonormal frame Z1; : : : :; Zm in T 1;0 and we write

HJK(F ) =
∑

j;k

(
(ZjZ̄ k −∇Zj

Z̄ k)F
)

R(Z̄ j; Zk)|T 1;0 ;

∇ is the Bergman connection and R-the curvature tensor. ZjZ̄ k −∇Zj
Z̄ k is the unique

S -invariant operator corresponding to @zj
@z̄ k

at a given point.

Given F , HJK(F ) is a section of endomorphisms of T 1;0(D) invariant in the fol-
lowing sense:

HJK(F ◦ Ψ) = Ψ−1
∗ ◦ HJK(F ) ◦ Ψ∗ ;

for every biholomorphic transformation Ψ of D.
The system HJK can be written on any Kählerian manifold, it is invariant and it

annihilates holomorphic and antiholomorphic functions. Moreover, for tube domains
it coincides with the system written by A. Korányi, E. Stein and J. Wolf in the sixties.
It took more then twenty years to characterize zeros of HJK for the tube case. The
story started in 1958 when L.H. Hua [9] wrote the system for some classical domains
and he proved that it annihilates the Poisson-Szegö kernel. Then A. Korányi, E. Stein
and J. Wolf obtained the formula for general tube domains and in an unpublished
paper showed that the Poisson-Szegö kernel is harmonic with respect to the system (see
e.g. [12]). The first results showing that differential equations actually characterize the
class of Poisson-Szegö integrals were obtained in special cases [13, 10, 11]. Finally in
1980 K. Johnson and A. Korányi proved the following theorem:

Theorem 1 (K. Johnson and A. Korányi, 1980). A function F on a symmetric tube
domain satisfies HJK(F ) = 0 if and only if it is the Poisson-Szegö integral of a hyperfunction.

The Johnson and Korányi theorem [12] shows that in the tube case the system is
closely related to the Shilov boundary. The question what is the meaning of the system
for non-tube type symmetric Siegel domains remained open for next twenty years. It
was explicitly formulated in the paper by N. Berline and M. Vergne [1], where they
described a third order system that characterizes Poisson-Szegö integrals on type two
symmetric Siegel domains.
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It turns out that the Hua-Johnson-Korányi system on type two Siegel domains
characterizes pluriharmonicity [3]:

Theorem 2 (D. Buraczewski, 2001). Let F be a real valued function on a non-tube
irreducible symmetric domain. If HJK(F ) = 0 then F is pluriharmonic.

Theorem 2 says that although the HJK system is defined by such a natural geometric
objects like the connection and the curvature tensor, in general, it is not much hope
to obtain anything more than pluriharmonic functions as its zeros.

The proof of the above theorem consists of two steps: first, to prove it for bounded
functions and secondly, to write an arbitrary Hua-harmonic function as a series of K -
finite bounded Hua-harmonic functions. Of course, the most important job is done
within the first step and it relies heavily on the identification of D with the solvable
group S .

3. Bounded HJK-harmonic functions

In this section we are going to sketch the proof of Theorem 2 for bounded functions.
Before that we need some biographical comments. The idea that HJK-harmonic func-
tions on Siegel type two domains could possibly be pluriharmonic appeared as a result
of our previous studies of pluriharmonicity there [4-6]. In these papers we characterized
pluriharmonicity within the class of bounded functions on type two Siegel domains by
means of at most three elliptic degenerate operators. Moreover, we described a large
class of operators doing the job. It was quite natural to expect that the methods should
be applicable to the Hua system. The first result in this direction was:

Theorem 3 (A. Bonami, D. Buraczewski, E. Damek, A. Hulanicki, R. Penney and
B. Trojan, 1999). Let F be a real valued function satisfying the following condition

sup
s∈S

∫

N (Φ)
|F (us)|2 du〈∞

on a non-tube irreducible symmetric domain. If HJK(F ) = 0 then F is the real part of a
holomorphic H 2 function.

In all our studies of pluriharmonicity, the crucial point was to use the solvable
group S . This way we focused our attention on objects invariant under the group S
rather then G (D)-invariant ones. Notice that there are plenty of functions which are
not pluriharmonic and are annihilated by all the G (D)-invariant operators without a
constant term. Therefore, a more traditional approach to analysis on symmetric spaces
misses pluriharmonicity.

Both characterizing pluriharmonic functions and describing zeros of the HJK-system
we started with the above H 2 condition, because functions in this space were easier to
handle via the Fourier transform. When methods of treating bounded functions in this
context have been elaborated [4] we generalized our theorems.

We study S -invariant operators that arise from the HJK system and map functions
into functions. Given Z; W ∈ T 1;0 let

HJKZ;W F = 〈HJK(F )(Z ); W 〉 :
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This way we obtain a number of second order operators. To write them more explicitly
we have to understand better the structure of the group S . Its Lie algebra is a semi-direct
sum:

S = N ⊕A; N = ⊕
η∈∆N

η
;

with A acting diagonally on N :

[H; X ] = η(H )X; X ∈ Nη; η ∈ ∆ ⊂ A∗ :

The corresponding groups will be denoted by:

N = expN; A = expA; S = expS = NA :

The action of A on N is diagonal with eigenvalues eη(log a):

a exp Xa−1 = exp ead log a X :

The set of roots ∆ has the following structure:

∆ = {λ1; : : : ;λr} ∪ ∆′ ;

where ∆′ consists of linear combinations of the roots λ1; : : : ;λr . For symmetric tube
domains we have:

∆′ =

{
λi + λj

2
;
λj − λi

2
; 1 ≤ i < j ≤ r

}

dimNλj
= 1

dimNλj +λi
2

= dimNλj−λi
2

= d; 1 ≤ i < j ≤ r ;

while for type two symmetric domains:

∆′ =

{
λi + λj

2
;
λj − λi

2
; 1 ≤ i < j ≤ r;

λj

2
; 1 ≤ j ≤ r

}
;

dimNλj
= 1 ;

dimNλj +λi
2

= dimNλj−λi
2

= d; 1 ≤ i < j ≤ r ;

dimNλj
2

= χ; 1 ≤ j ≤ r :

The Lie algebra S decomposes as

S = Z ⊕ V ⊕N0 ⊕A;

where
Z = ⊕r

j=1Nλj
2

;

V = ⊕i≤jNλi+λj
2

;

N0 = ⊕i<jNλj−λi
2

:

Let

N (Φ) = exp(Z ⊕ V ); N0 = expN0; V = exp V :



hua-harmonic functions on symmetric type two siegel domains 203

Then

S = N (Φ)N0A ;

in the sense that any s ∈ S can be written as

s = wya = (ζ; x)ya ;

w = (ζ; x) ∈ N (Φ); y ∈ N0; a ∈ A :

In these terms S = VN0A is a solvable group acting simply transitively on the tube
domain

DT = V + iΩ = {(0; z) : �z ∈ Ω} ⊂ D :

Clearly, for its Lie algebra ST we have:

ST = V ⊕N0 ⊕A :

Let F be a function on D. Then

F
ζ(xya) = F

(
(ζ; x)ya

)
= F

(
(ζ; 0)(0; x)ya

)

is a function on DT and left-invariant operators on VN0A (i.e. VN0A-invariant operators
on V + iΩ) are well defined when applied to F . We are going to make use of that.

Let Z; W be S -invariant sections of T 1;0. Then the operators

HJKZ;W F = 〈HJK(F )(Z ); W 〉
are left-invariant on S . Clearly,

HJK(F ) = 0 ⇐⇒ HJKZ;W (F ) = 0 ;

for all S -invariant Z; W ∈ T 1;0.
The first step is to prove that a Hua-harmonic function is the Poisson-Szegö integral:

(1) F
(
(ζ; x)ya

)
=

∫

N (Φ)
f
(
(ζ; x)yawa−1y−1)P (w)dw ;

P being the Poisson-Szegö kernel for D. A simple proof of that can be found in [2].
Next, we prove that the Laplace-Beltrami operator ∆T for DT is among the operators

HJKZ;W . This implies that for every ζ,

(2) F
ζ(xya) =

∫

VN0

fζ(xyavna−1)p(vn)dvdn ;

where p is the Poisson kernel for DT . Letting a → 0 in both (1) and (2) we get

f (ζ; x) = f
ζ
(xy) :

Therefore,

f
ζ(xyavna−1) = fζ

(
xyav(ya)−1)

and by (2)

F
(
(ζ; x)ya

)
=

∫

V

fζ
(
xyav(ya)−1)q(v)dv ;
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where

q(v) =

∫

N0

p(vn)dn

is the Poisson-Szegö kernel for the tube V + iΩ. Now applying the Johnson, Korányi
result (Theorem 1), we see that

HJKT (F ) = 0

and we obtain new linearly independent equations [2].

4. Induction and reduction to the complex ball

The rest of the proof goes by induction on the rank r of the cone and the main
work is done on the complex ball. For that we have to decompose the group S properly.
Let

Nij = Nλj−λi
2

; Vij = Nλi+λj
2

; Zj = Zλj
2

and let

Hr = Zr ⊕j<r (Vjr ⊕Njr ) ⊕ Vrr :

Then it can be easily seen that Hr is the Heisenberg with the centre Vrr . Let Ar =

= expRHr , where Hr is the dual vector to λr and let Sr = expHr Ar . Then Sr is
the group acting simply transitively on the Siegel half plane Dr which is an unbounded
realization of the complex ball. Sr will be identified with Dr . The crucial observation
is that S is a semi-direct product

S = S ′Sr ;

where S ′ a group acting simply transitively on the Siegel domain D′ of the rank r − 1.
Sr is normal in S .

It turns out that some HJK operators are operators on Sr . So we can restrict our
function to left cosets of Sr and work there. Let

Xα
r ;Yα

r ;α = 1; :::;χ be a basis of Zr

X α
jr ;α = 1; :::; d be a basis of Vjr

Y α

jr ;α = 1; :::; d be a basis of Njr

Xrr be a basis of Vrr

orthonormal in Bergman metric for D. Then it is orthonormal in the Bergman metric
for Dr as well. Moreover, the complex structure J coincides on both D and Dr and

J (Xα

r ) = Yα

r

J (X α
jr ) = Y α

jr

J (Xrr ) = Hr ;
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[3]. Among HJK’s are the following operators:

L =

χ∑

α=1

(Xα

r )2 + (Yα

r )2 − χHr ;

L =
1
2

r−1∑

j=1
α

(X α

jr )2 + (Y α

jr )2 + X 2
rr + H 2

r −
(

1
2

(r − 1)d + 1
)

Hr

(see [3]). In this notation the sublaplacian on expHr is

LBf (w) =

χ∑

α=1

(Xα
r )2 + (Yα

r )2 +
r−1∑

j=1
α

(X α
jr )2 + (Y α

jr )2|a=1f (w) :

(An element s of Sr is written as s = wa, w ∈ expHr , a ∈ Ar ). The fact that L
annihilates F |Sr

allows us to eliminate

Hr =
1
χ

χ∑

α=1

(Xα

r )2 + (Yα

r )2

and we get the boundary equation

(3) (L2
B + m2T 2)fr = 0 ;

which implies that F |Sr
is pluriharmonic [4]. In (3) fr is the boundary value of F |Sr

on expHr and T = Xrr |a=1.
Pluriharmonicity of F |Sr

(as well as of F restricted to left cosets of Sr ) implies
that F satisfies extra equations. Using them we are able to prove that F |S ′ and all
its left translates are annihilated by the HJK-system for D′ and we may proceed by
induction [3].

5. HJK-harmonic functions

To treat arbitrary HJK-harmonic functions we have to prove that HJK(F ) = 0
implies that F is G (D)-harmonic. Then we can write

F =
∑

π∈K̂

F
π

;

where F
π

= χ
π
∗K F is the projection of F onto the space of K -finite vectors of type

π [7]. K̂ is the set of equivalence classes of irreducible unitary representations of K
and χ

π
is the character of π. Each F

π
is clearly Hua harmonic and so G (D) harmonic.

But a K -finite G (D) harmonic function is bounded [8]. Hence Theorem 2 for bounded
functions sais that every F

π
is pluriharmonic and so is F .

There are two approaches to prove strong harmonicity of F . The first one is due
to Johnson and Korányi [12] the second one – to Lassalle [14]. In the latter one the
following lemma is crucial:
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Lemma 1 (M. Lassalle – tube type, D. Buraczewski – non tube). Let F be a bi-K -
invariant function on the semi-simple Lie group G (D) and HJK(F ) = 0 then F is constant.

In the above lemma both the system and the function are lifted to G (D) (see [3, 14]).
While Lemma 1 is proved, for a HJK-harmonic function F we write

Φ(x) =

∫

K

F (gkx) dk; x ∈ D

Φ lifted to G (D) is bi-K -invariant and, clearly, annihilated by the Hua system:

HJK(Φ)(x) =

∫

K

HJK(F )(gkx) dk = 0 :

Therefore Φ is constant and so∫

K

F (gkx) dk = Φ(x) = Φ(x0) = F (gx0) ;

which means that F is G (D)-harmonic.
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