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ALINE Bonamr

THREE RELATED PROBLEMS OF BERGMAN SPACES OF
TUBE DOMAINS OVER SYMMETRIC CONES

Asstract. — It has been known for a long time that the Szegd projection of tube domains over
irreducible symmetric cones is unbounded in Z# for p # 2. Indeed, this is a consequence of the fact that the
characteristic function of a disc is not a Fourier multiplier, a fundamental theorem proved by C. Fefferman
in the 70’s. The same problem, related to the Bergman projection, deserves a different approach. In this
survey, based on joint work of the author with D. Békoll¢, G. Garrigés, M. Peloso and F. Ricci, we give
partial results on the range of p for which it is bounded. We also show that there are two equivalent
problems, of independent interest. One is a generalization of Hardy inequality for holomorphic functions.
The other one is the characterization of the boundary values of functions in the Bergman spaces in terms
of an adapted Littlewood-Paley theory. This last point of view leads naturally to extend the study to spaces
with mixed norm as well.

Key worps: Whitney decomposition; Symmetric cone; Bergman projector; Littlewood-Paley; Hardy
inequality.

1. INTRODUCTION

Let € be an irreducible symmetric cone in the Euclidean space V, and 7, = V + i)
the corresponding tube domain in the complexified space V. We shall note 7 the
dimension of V and r the rank of 2. Moreover, we shall denote by (x|y) the scalar
product in V, and by A the determinant function. For the description of such cones
2 in terms of Jordan algebras, one may use the book of Faraut and Kordnyi [8]. One
may also have in mind the typical example that one obtains when V is the space
of real symmetric » x » matrices, and € is the cone of positive definite matrices. In
this example, the scalar product on V' is induced by the Hilbert-Schmidt norm of the
matrices, and the determinant function is given by the determinant of the matrices.

The rank is », while the dimension is ’(VTH)

We shall also make use of the generalized wave operator on V, given by 0 = A(% %).

This is a differential operator of degree , defined by the equality
A (13> [“19] = A@©MY, eV,
i Ox
It is the usual derivative (up to a constant) when ) is the half-line (0, c0). Its name
is due to another fundamental example, given by the forward light cone in R”,

{xGR";xl >\/x22+--~+x5} s

which is of rank 2. In this case, the determinant function is equal to

A(x):xlz—xzz—w-—xi,
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and the operator [J is the wave operator. One may look at [5, 2], which deal with this
particular case.

For 1 < p, g < oo, let A7 = AD(T;,) denote the weighted Bergman spaces in the
tube domain T, that is the space of of holomorphic functions F € H(T,), satisfying
the integrability condition
1
q

7
? n
(1.1) 1E| g = 1Fll 20 = [/ {/ |F(x + z')/)|1’dx] A" () dy| < oo.
Q 14

We shall impose v > 2 — 1 to avoid trivial cases where 42’7 = {0}.

The mixed Lebesgue spaces 2’7 are defined in an obvious way. When p = g, we
write I/ and A4’ to simplify. The space 42’7 is a closed subspace of L%

The case p = g = 2 is of special interest. It is well-known that every F € 4> can
be written as

(1.2) F(2) = Lf(2) = / FEORO de, ze T,
Q

for some function f e XAV (€)dE) (see [8, Chapter XIII]). The operator £ will
be called the Fourier-Laplace transform of f (using the usual terminology, it is the
Laplace transform of its Fourier transform). The function /" may be seen as the (Shilov)
boundary value of the holomorphic function F. The orthogonal projection from Li
onto A’, which is called the (weighted) Bergman projection, is denoted by P, and
explicitly given by

P, F(z) = / B, (z — @) F(w) A(lm w)"™ 7 dw ,
To

where B (z —w) = AdW)A~ YT ((z - w)/i) is the reproducing kernel of Ai (see [8]).
For simplification, we have written dw = du dv, for w = u + iv an element of T,.
We can now state the three problems under consideration in this survey.

Prosrem 1. Boundedness of the Bergman projection. The question, here, is to know the
exact range of p, g for which the projection P, extends as a bounded operator on 7.
For obvious reasons (self-adjointness and interpolation), the set of couples (% , %1) for
which it is bounded is a convex set in (0, 1)x (0, 1), which is symmetric around (% , % .

Let us recall that, for the upper half-plane, this convex set is the whole square
(0,1) x (0,1). For higher rank, the situation is different. From the convexity and
symmetry given above, we may restrict our interest to values of ¢ which are larger
than 2. We shall first see that there is a small critical index g, > 2 such that P, defines
a bounded operator on 127 for 2 < g < g, for all values of p. Moreover, in this range,
one has still a bounded operator when the kernel B, is replaced by its absolute value,

that is when one considers the positive operator given by
(1.3) PrF(z) = / |B (z — w)|F(w) A(Im w7 dw.
s

We shall see that the index ¢, is sharp for this continuity property.



THREE RELATED PROBLEMS OF BERGMAN SPACES OF TUBE ... 185

In the other direction, there is a large critical index, depending on p, that we shall
cll 7, » such that, for g > g, » the projection P, fails to be bounded for obvious
reasons.

Let us recall that the situation is completely different for the Szegd projection, which
is unbounded in Z7(V) for p # 2 (see [11, 9]).

Prosem 2. Hardy inequality in Bergman spaces. The question, here, is to know the
range of (p, ¢q) for which one has a Hardy type inequality for holomorphic functions
on the tube domain Tg,

(1.4) |Ell s < C, JIA0Im )TIF| 5.

Again, for the upper half-plane, one knows the exact range, and in fact it is valid for all
p and ¢ in the interval [1, 00). It is an easy consequence of the usual Hardy inequality,
which gives an integral inequality between a function and its derivative. Let us remark
that, since we deal with holomorphic functions, the differential operator OJ may be
defined as a polynomial in 0/0x, as we did, or in 9/0z, or in J/0y.

The converse inequality, where left and right hand side of (1.4) are exchanged, is
always valid, as a consequence of the mean value property.

ProsLem 3. Characterizations of boundary values of Bergman spaces. For the upper half-
plane, Bergman spaces are characterized by the fact that their boundary values belong
to some Besov space. So, the functions of the Bergman spaces may be obtained as
Fourier-Laplace transforms of these boundary values, a property which generalizes the
situation of A°.

One would like to have an equivalent characterization in higher rank. We will show
that it is indeed the case for some values of p, 9. We will need a precise description
of the geometry of the cone to be able to describe these objects, which come from
an adapted Littlewood-Paley decomposition. So, we will not be able to state properly
Problem 3 before Section 4.

It turns out that the three problems are in some sense equivalent. The same critical
indices occur in the three problems. In particular, all three possess a negative answer for
q> 79, , for obvious reasons. So, the equivalence between the three problems is only
interesting for 2 < ¢ <7, » We may see Problems 2 and 3 as equivalent formulations
of Problem 1 which help to take care of the oscillations of the kernel.

We will give precise statements in the other sections, and give a complete answer
for p <2, with the exact range of values g > 2 for which the projection P, is bounded
on 27, For p > 2 (and, in particular for p = g), there is a gap in the results. We
will see in the last section how the question opened by this gap may be related to
Littlewood-Paley theory for functions on V' with spectrum in Q. We will then state a
last problem, Problem 4.

The present survey is based on joint work of the author with David Békoll¢, Gustavo
Garrigds, Marco Peloso and Fulvio Ricci [1, 3-5]. While the first papers dealt only
with the forward light cone, the two last ones deal with the general case. Once the
geometric aspects of the proofs have been developed, using the formalism of Jordan
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algebras as in [8], there is no difficulty to write our results in the general case, which
we do here. Sections 3 and 4 contain some new statements. We tried to give some
easy proofs, when they help for the general understanding of the subject. We refer to
the different papers for the difficult ones.

Let us mention that part of the results of [1], which are related to the small critical
index ¢, have also been generalized by Békollé and Temgoua Kagou [6], using the
formalism of Gindikin for the description of the cones. Let us also mention that
one source of inspiration has been the work of Coifman and Rochberg on atomic
decomposition of Bergman spaces [7].

Finally, I would like to thank Gustavo Garrigés, whose comments were very helpful.
All this survey has been enriched by discussions with him.

2. GEOMETRY AND ANALYSIS ON THE CONE

In order to describe precisely the results, and specially to define Besov spaces, we
start with the description of the geometry of the cone. We refer to [8] for the context,
and to [3] and [4] for the geometric lemmas.

Considering V' as a Jordan algebra, we denote its unit element by e (think of the
identity matrix for the fundamental example of real symmetric matrices). Let G be
the identity component of the group of invertible linear transformations which leave
the cone Q) invariant. It is well known that G acts transitively on €, which may
be identified with the Riemannian symmetric space G/K, where K is the compact
subgroup of elements of G which leave e invariant. The G-invariant Riemannian
metric can be defined by

(€)= (€1 )
if y = re and &, i are tangent vectors at y € ). We shall denote by & the corresponding
distance, and by B;(§) the invariant ball centered at £ of radius 6. The invariance implies
that, for g € G, B;(g€) = gB;(§).
The determinant function is also preserved by g, in such a way that

(2.1 Algy)) = Alge)A(y) = Det(g) " A(y) .

. . . . . . —_n
It follows from this formula that an invariant measure in  is given by A(y)™7 dy.
The invariance properties allow also to prove that the determinant function is almost
constant on the balls of a given radius, as well as scalar products.

Lemvia 2.1, There is a constant v > O such that, for y € Q, if £,& € Q with
d&, &) <2, then

1 A
1_ &l .
(2.3) 5 < b <7;
1 _ ¢
4 - <l
(2.4) 5 S <v
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From the previous lemma, it follows that, for all y € Q and 0 < 9 <2,
meas (B (y)) = meas (B;(e)) ~ Vol (Bs(e)) ~ 0",

where Vol (B) stands for the Euclidean volume of B, while meas(B) stands for its
measure for the invariant measure.

Next, we need the analog for a general cone of the decomposition of the real half-line
(0, + oc) into an union of dyadic intervals [2/, 27T, which may be seen as invariant
balls of constant size. This is given by the next lemma.

Levima 2.2, There exists a sequence of points {§}; in (), and an associated family of disjoint
sets { E;}; covering Q, such that

B, ,(§) C E C B(S).

A sequence of points {{;}, with the above properties is called a lattice of the cone,
and the associated partition {E}; a Whitney decomposition of the cone € .

From considerations on the volume of balls we get easily that, for a fixed radius
R > 1, the balls BR(fj) have the finite intersection property. That is, there is an integer
N = N(£, R) so that each point in 2 belongs to at most N of these balls.

We will use an appropriate partition of unity related to a lattice in order to define
Besov spaces. Its existence is given in the next proposition.

Prorosrrion 2.3. There exists a sequence of smooth functions 1 ) such that
L 4 € C2(BE, 1)
2.0<9, <1 and Y 9.6 =1, VEe;
3. The functions wj are uniformly bounded in L'(RY).

This implies, in particular, the existence of some constant ¢ > 0 such that
25) 16,571, < clfl,. VFel®D. Vi, 1<p<cc.

Roughly speaking, the ¢/’s are obtained from a fixed function by the action of an

p’

element of G which sends e to &.. This allows to compute easily their Z? norms.
Associated with the operator [J and the Whitney decomposition, we can now in-

troduce the family of Besov-type spaces, B’’?, naturally adapted to the geometry of the

cone. They are defined as equivalent classes of tempered distributions on V, by means

of the seminorm:
1

(2.6) Fllggs = | D ATEIf =wlll| . fesW).
J

The Whitney decomposition of the cone has other applications. It allows to discretize
integrals which involve almost constant quantities on each piece. Let us give an example
of such a situation. The proof is a direct consequence of the lemmas.

Provosrrion 2.4. Let 0 < 6 < 1 be fixed, and {§}; be a lattice with associated Whitney
decomposition { E} .. Then, for every s € R, y € Q, and for every non-negative function f on
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the cone, we have

- Z JM\@)A /

g
UI&)A
S < [ et 15 <

_1ge d€
<oy etont [ ot
j 7 s
where 7y is the constant in (2.3) and C depends only s.

One may think, at first view, that such estimates will be difficult to use because of
the constant 7. But a further integration in the y variable transforms exponentials into
powers, as given in the next lemma.

Lemma 2.5. Fory € Q and s € C withRes> 2 — 1, then

€ As(e) _9E A
/Q © 37 =Ta®A70)

Moreover, the integral does not converge for other values of 's.

I'i,(s) is the Gamma function in 2, which may be computed in terms of the usual
Gamma function. We will need the following lemma, which is an easy consequence of
the previous one. Here LI(12) denotes the space of functions on € whose ¢-th power
is integrable for the measure A(y)”fgd_y.

Lemma 2.6. The function A(y + €)™ is in L1(Q) if and only if's > é(u + 2 1)

r

In fact, we also need in the proofs the generalized powers of A. We give here
their definitions for completeness, but refer to Chapter VI of [8] and to [4] for their
use in estimates. Let {¢;,... , ¢} be a fixed Jordan frame in V' (think of diagonal
matrices for which the diagonal entries are all zero except for one equal to 1). Let
A (%), ..., A (x) the principal minors of x € V, with respect to the fixed Jordan frame
{¢,» ..., ¢} The generalized power function in € is defined as

Ax) =A] 2 A () AV(x), s=(5,5,...,5)€C, xeQ.

When all 5; are equal to s, we see that A = A’

3. THE SMALL CRITICAL INDEX

The small critical index is given by

14

2o
r

(3.1 q, =1+

Let us mention, even if we will not use it, that for the forward light cone and the usual
Bergman space (r = 2, v = %), it is the critical index for Bochner-Riesz means in R L
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We see first that the small critical index is related to Problem 2. More precisely, it
occurs when generalizing the Hardy inequality on the real half-line, given by

/Om (/:Of(y)dyy vy < C/wa(y)qy”‘ldy

for positive f. To replace the integration, the first idea that one has in mind is to use

an explicit solution of the equation 0”g = /" inside the cone, with  large enough so
. . . m_n . . . .

that its elementary solution, given by ¢A™ 7 xq,, is locally integrable (which is the case

if m>2—1). Then

T Fo) = /Q Fo+ )AG)™ i dy

satisfies the equation 0”g = f. We will prove the following proposition, which can be
called the Hardy inequality of order m on ).

Prorostrion 3.1. There exists a constant C such that, for all positive functions f,
(3.2) / [T fI AW dv< C / [AG)" FIAG) " dy
Q Q

ifand onlyif 1 < g < q,.

Proor. It is equivalent to prove that the operator 7, with kernel given by

Ay —0)" "xoy = 0AQ) T,

is bounded in L7(Q2). A necessary condition is that 77/ belongs to LZ/ (©Q), with 7~
the formal adjoint of 7', when f" is the characteristic function of the ball B,(e). One

can show that, for y € Ne + €, with IV a fixed integer which is large enough, one has
the bound below

T"f@y) > cAQp) .

The necessary condition follows from Lemma 2.6.
The sufficiency follows from a routine argument, using Schur’s lemma and general-
ized powers of A: we find that there exists some generalized power s such that

TNy <callr Al < calr.

This is based on integrability conditions. We shall not go into details, and refer to the
bibliography for this kind of computations. O

This proposition leads to a Hardy inequality of order m for holomorphic functions
on the tube domain 7j,,

(3.3) 1E0 o < G | A0m ) "L F| .0
for all p, g€ [1, ), with g< g,.

We will see that this range of values can always be extended. So this first method,
inspired by the method on the upper half-plane, does not give optimal results.

Let us now show the role of the small critical index in Problem 1. We will prove
the following theorem.
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Treorem 3.2, The operator P:r, given by (1.3), is bounded on I1? if and only if
9, <q9<4,

Proor. Let us first prove the sufficient condition. Clearly, P;L acts as a convolution
operator in the x, # variable (if we note z = x + 4, w = u + iv). Moreover, the
norm of this convolution operator acting in (V) is bounded by the Z' norm of the
kernel |A(- + i(y + )" P, This norm is easily computed, using Lemma 2.5 and
Plancherel formula. Indeed, we have that

Lemma 3.3. For o« € R, the integral
/ [Alx 4+ )| @ dx, ye)
v

is finite if and only if o > 2 — 1. In this case, it is equal to c(c)) A(y) ™" 7.
Using also Minkowski inequality, we see that

(/ INACEs lj’)|pdx> ' < f/ Ay + o) " F0) Q)" Tdv,
v Q

F(v) = (/ If (e + iv)|Pdu)P )
1%

By assumption, F belongs to L?((2), and has norm equal to the norm of f in L2?. To

with

conclude, we use the next proposition.

Prorosirion 3.4. The operator with kernel A(y + v)™" is bounded on L1 (Y) if and only if’
9, <q<4q,

We do not give the proof of this proposition. It follows the same lines as the proof
of Proposition 3.1.

Let us now prove the necessary condition of the theorem. We test the operator Pf
on functions f(x + #) = Xl (x)g(y),with ¢ a positive function supported in the
intersection of the cone with the Euclidean ball of radius % centered at 0. The
constant 7, here, is the constant of Lemma 2.1. Let us take for granted that there

exists a constant ¢ such that, for y € Q with |y| < 1/, one has
(3.4) / |A(x + )| “dx > cAy)~“F7 .
Ix<1

We postpone the proof of this inequality, and go on with the proof of the theorem.
For x such that |x| < 1/2, and y € Q such that [y| < %, one has the inequality

P+ )= ¢ [ Ay o) g0 Q!

By assumption, there exists a constant C independent of g, such that

»
/ (/ Ay + U)Vg(U)A(v)V':dy) Ay)dy < C/ () A@) 3 dv.
yEQ.lyI< L Q o



THREE RELATED PROBLEMS OF BERGMAN SPACES OF TUBE ... 191

1

5, by any positive con-
stant /V: for every positive function g on (2, we have the inequality

By homogeneity of the kernel, we can replace the constant

q
/ (/ A(””)”g(”mw)”dv) AG)Fdy<C g AW .
YEQ <N \JQ

veQ), |v|<N
Using the density of compactly supported functions, we get the same inequality without
any bound on integrals. The necessary condition of the theorem is then a consequence
of the necessary condition in Proposition 3.4.
It remains to prove (3.4). It is sufficient to prove the inequality

/ [A(x + &y)| “dx > CA()/)_‘H'L: )
B ()

Indeed, we deduce from Lemma 2.1 that the invariant ball B,(y) is contained in the
Euclidean ball {|x| < 1}. Now, we can use the fact that A is almost constant on the
invariant ball, which allows to write that the left hand side is equivalent to

” dx
A [ 1A+ il
Y. BM\ x+ 9 A

x)

7

~

Using the action of G and the formula of change of variable for A, we see that this
last quantity is equal to A(y) "7, multiplied by the same integral when computed for
y =e. This last factor is clearly a positive constant. O

For both Problems 1 and 2, we see that the study below the small critical index
can be deduced from the boundedness of positive operators on the cone €. One needs
different methods to take into account the oscillations of the Bergman kernel.

4. THE LARGE CRITICAL INDEX

The large critical index is equal to

51/,]7: 7 qy: 7 r >
=1 =1
G G,

with the convention that g, = if p/ > 2, thatis p< 1+ (2 — DL

Let us first consider its relation with Problem 1. It follows from Lemma 2.6 that the
Bergman kernel B (- + ie) = AdWA~ YT (e—i) is in Lﬁ/’q, if and only when ¢ < ?V,P.
But, if the Bergman projection P, is bounded in 7', then it is also bounded in 7 .
Moreover, the Bergman projection of the characteristic function of an Euclidean ball,
which is centered at 7e and contained inside 7j,, belongs to I "7 By the mean value
equality, this is the function B, (- + 7e), up to a constant. So the condition g <g, , is
necessary for the boundedness of the Bergman projection P,.

We do not know whether this condition is sufficient for the boundedness of the
Bergman projection. Nevertheless, it is sufficient to have a reproducing formula for 477
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functions in terms of the Bergman kernel: for f'€ 427 and z€ T,, we may write
(4.1) flz) = / B,(z— w)f(w)A(lmw)" ™" dw.
To

Indeed, this identity is valid for £ € A2. Such functions are dense in 4’7, and we can
pass to the limit since B, (z — ) is in Lﬁ/’q/.

Let us now consider Problem 2. We will only consider the values of p for which
p>2+ (2- 1), and refer to [4] for other values. We prove first that there is
no Hardy inequality for ¢ > g, . Indeed, there exists a function which is in 47,
and which is annihilated by the O operator. It is sufficient to consider the function
Az + ie)"7 %1, and to use again Lemma 2.6. When ¢ =79, " (we only consider here
the case when ¢, < 00), the proof is more technical: one considers the function

==

Fa)=A((z+ie)/i) " (1 + logAllz + ie)/)) 1, z€T,.

It is possible to compute explicitly (JF, and to see that, in its expression, the Logarithm
appears with a square (see [8, p. 142]). It is also possible to compute the 7’7 norms
of both functions, and see that F has an infinite norm, while O0F has a finite one.
Similar computations are done in [4] for another counterexample which is used later.
We conclude that, as for Problem 1, one can find easily that Problem 2 has a negative
answer above the large critical index.

Let us mention a related problem, the injectivity of the O operator. We have seen that,
for g > ﬁu,[, and p>2 + (2 - 1)7", there exists a function F € A such that OF = 0.
Can one prove that it is not the case for the other values such that ¢ < ?V, P? For
9<4q, » using the representative formula (4.1), we can write that

O"F(z) = ¢ / B, (z—w)F(w)A(Im w)"" 7 dw.
T

We used the fact that 0"A™% =A™, which implies that 0" B ((—w)=¢B, ,, (-—w).
To prove that there does not exist such a function with O0”F = 0, it is sufficient to
prove the density of the functions B, i =) in A £ Indeed, if it is the case and
if O"F(z) = 0 for all z, then the scalar product of F with B (z — ) is also 0, which
implies, by the representative formula, that F is identically 0. For m large, the density
follows from the fact that the projection P, is bounded in 121, see [5]. We have
proved that the [J operator is injective for g < g, . It remains to consider the other
cases, for which we have no conjecture.

Let us finally consider Problem 3, and the Besov spaces that we have introduced
in Section 2. For F a closed set in V, let us denote by S, = S,(V) the space of
tempered distributions with Fourier transform supported in F. It is clear that the
natural definition for B”'? is the following.

Dermvirion 4.1, Given v € R, 1 < p, g < oo, we define B.'? as the space of
equivalence classes of tempered distributions:

Bt ={f € S| If s < o0} / She -
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One would like to identify an element of B.'? with a representative of the equiva-

lence class, and also to define its Fourier-Laplace transform. Again, we claim that this
g

possibility is related with the condition ¢ < g, » This is based on the next proposition.

Prorosition 4.2. Let ( ]f ) a sequence of functions on V. such that ]]” has spectrum in B, (fj),
and

S AE) A < oo

Then, if q <79, » the series Z]. ]5 converges in S'. Moreover, this property holds for all such
sequences only if q < g, .

Proor. Let us prove the necessary condition. Assume that ¢ is a smooth function
whose Fourier transform has compact support, and is 1 in a neighborhood of 0. Since
the series ). (f., ¢ ) converges for any order which is chosen on the s, it means that
Z]. \(jj[ , ¢)| converges, with the sum taken for § in a neighborhood of 0. Ifjj[. has
spectrum in B, (&), then this means that Zj K¢ ]]” » ;)| converges. Using the action

of G, we may assume that wj. is equal to A(ﬁj)_gwog, and take also fj = dfog, where
f is a fixed function whose spectrum is contained in B, ,(e) and such that (f, ¥)
is not zero. We take for ¢ an element of G such that f . = ge. Then, we have that

Z]- |4;| < oo whenever 3~ A(¢))

ZA(&,W%% <o,

where the sum is taken for ¢; in a neighborhood of 0. Using Proposition 2.4, the fact
that this sum is finite is equivalent to the fact that

/ A(y) Tt 7' dy < 0.
yeVilyl<e

This last inequality is valid if and only if 4< ¢, .

We refer to [4] for the proof of the fact that, whenever ¢ < %, , and ¢ belongs
to S’, then the semi-norm of ¢ in B{V’Z,//q is finite. So the series Z](]?, ) is absolutely
convergent. i

Assume that ¢ < 'qVV,P. If we use the previous proposition for ]]” = fx wj, with
f € Sg such that |||z < oo, we see that 37 f x 1), converges in S’ to an element
f * which depends only on the equivalence class of f. The mapping f — f# defines a
mapping from B’’7 to S’. Moreover, it is an injective mapping. To prove this, it is
sufficient to prove that f ¢, = 0 for all j whenever #*=0. Bug, then

Fra ) = (=) <Zf*wkw<x—>>:<f#,wj<x—~>>=o

In the previous identities, the infinite sum on 4 can be replaced by a finite one, because
of the finite intersection property, and this allows to pass to the limit. This means that,
below the large critical index, B”*? identifies with a space of tempered distributions.
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One may also define the space of holomorphic functions B2 as the Fourier Laplace
transform of B.'?. Indeed, for f € B27 with ¢ < %,P, we can define L(f) = L(f#) =
= Z]‘ L(f = wj). As before, to prove that this last sum is well defined, it is sufficient to
prove that, for y € Q, the function whose Fourier transform is exp(—(y|-) has a finite
semi-norm in B’ /V’Z,/ Iy The computation is nearly the same as the previous one, and it
is the case when ¢ <7, "

When ¢ < ?V’p, it makes sense to ask whether B2 is equal to A'7. This is

Problem 3.

5. In BETWEEN; RESULTS AND OPEN QUESTIONS

We now state the results, and refer to [4] for the proofs. Let us first consider
Problems 2 and 3 for ¢ < 2. The next theorem gives a complete answer.

Tueorem 5.1. For g < 2 and for all p € [1, 00), the spaces A2'7 and BL'? coincide.

ive i m s an i ; p-q 724
Moreover, for m a positive integer, the L1" operator is an isomorphism between A" and A'! .

We will only sketch the proof for Problem 2, to show again the importance of
representation formulas. Remember that "B, (- —w) = ¢B, (- —w). For F a function
in A fqm, which may be written as

Flz) = / B, . (z— ) F(w)A(Imw)" " " dw,
To
a natural solution of Equation 0" G = F is given by
Glz) = / B,(z — @) F(w)A(Im w)" ™" " dw .
Ta

It remains to see that this makes sense, and gives the only solution (remember that we
have proved the uniqueness).
In the next theorem, we state the equivalence between Problems 1, 2 and 3.

TheorEm 5.2, Let p € [1,00) and 2 < g <7, » Then there exists an integer my such
that the three properties are equivalent:

1. The projection P, extends into a continuous operator in 2’7,

2. A holomorphic function F belongs to AL? if and only if it may be written as L(f), with
feB.

3. Forsome m larger than my, then there exists a constant C such that the Hardy inequality

of order m,
1Fll 0 < C,, [IA(Im w)"0"F|l p.a
holds for all F € A1
Moreover, if one of the properties is satisfied, then inequalities of Hardy are valid ar all orders.

We do not know whether 7, can be taken equal to 1, or whether there exists a
range for which the Hardy inequality of order 1 holds, while Hardy inequalities of
higher order do not.
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It follows from this theorem and Theorem 1.3 that Problems 1, 2 and 3 have a
positive answer in the range [2, ¢ ). It remains to explore the range [g, ,ﬁy, P). The
next theorem will give a partial answer. Let us first consider another related problem,
which has its own interest.

ProsLem 4. Besov spaces for v = 0, and purely Fourier analysis approach. Up to now,
we only considered values of v for which v > 2 — 1. Such values are related to the
weighted Bergman spaces. The case v = 0 is related to Hardy spaces: by this, we mean
that Laplace transforms of functions which are in L*(V) are functions of the Hardy
space H?, and conversely.

Once one has a Whitney decomposition of the cone €2, one may ask whether there
is an associated Littlewood-Paley inequality for functions in Z?(V), that is, whether
there exists a constant C such that, for f € I7(V),

2
(.1) Sl || < Clifl, -
’ ?
By duality, it implies that, for ]j with spectra in B, (fj), one has the inequality

1

2

o Il [>T
J Vs J ”

For p # 2, both Littlewood-Paley inequalities for p and p’ cannot be valid in the same
time, since the characteristic function of the cone €2 is not a Fourier multiplier.

We shall in fact consider a different property, which is weaker when p < 2 and
s > 2: the existence of some constant C such that

1

5

(5.2) Sl | < CIfl,.

J

Such an inequality can only be valid for s > 2. Indeed, take f with disjoint spectra
in B% (Sj) and f =Y ¢ f.]i, where the 6j’s are independent +1 given by Rademacher
functions. Then, using Khintchine inequalities and assuming that (5.2) holds, we find
that

DWfxudy ) =Cl| P

J

We test this last inequality on IV functions f; with same modulus (taking translations
of the same function on the Fourier side) to find a contradiction if s < 2.

In the other direction, (5.2) is certainly valid for s = max(p, '), by interpolation
between the cases p = 1 or p = oo, for which it is a consequence of the fact that the
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norms of v, in L' are uniformly bounded, and p = 2, for which it follows from the
finite intersection property.

By duality, it is equivalent to the fact that, for a finite sequence of functions f]'
whose Fourier transforms are supported in B, (gj), one has the inequality

¥

S =S
j » j

We call (Cp/ (s")) this last property. This means in particular that, when (Cp(s)) holds,

one has the following inclusion related to the Besov space for v = 0:
B c 2(V).

Problem 4 consists in finding the critical index for (C P(s)), between min(p, p') and 2.
Let us remark that (C P(:)) implies, in particular, that infinite sums Z]. ]5 for which
Zj. |[/2\| , is finite, converge in &'. This indicates, by Proposition 4.2, that s < ¢, , =
= 7~ This constraint is only interesting when this number is smaller than 2, that
'
is p> %
We will answer to Problem 4 when p < 2: then p is the best possible index. For
p > 2, it seems to be a difficult problem, which is related to the other ones, as it can

be seen in the next theorem.

Treorem 5.3. If the condition (C P(s)) holds, then Problems 1, 2 and 3 have a positive
answer for q in the range (2, sq,). It is the case, in particular, when s = min(p, p').
Moreover, this last result is optimal when p < 2.

Again, we refer to [4] for the proof. The counterexamples are given, as before, by
functions of the determinant function which involve powers and logarithms. We also
prove there that a necessary condition for a positive answer to Problems 1, 2 and 3 is
the existence of a constant C such that, for all finite sequences of functions ]5 whose
Fourier transforms are supported in B,(¢,), one has the inequality

(5.3) > jo: <> AR

where the sum is restricted to those &’s which are of Euclidean norm less than 1.
An easy consequence of this, using Khintchine inequalities as before, is the necessary
condition ¢ < 24, for all p: the larger range is obtained for p = 2.

These results leave a gap, for Problems 1 to 3, as well as for Problem 4, for p > 2. It
is possible that solving the problems in the gap is of considerable difficulty. Moreover,
the sufficient conditions given by Problem 4 and the necessary conditions (5.3) seem
very close, and give a purely Fourier analysis formulation of the different problems.
Indeed, work in progress allows to fill part of the gap when using it for the forward
light cone in dimension 3.
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Among other open problems, let us mention the boundedness of the projection P,
for the limit case v = 2 —1 (see [10]). One does not know whether there is an interval
of values of p for which it is bounded in Z7.
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