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Jonathan Arazy - Harald Upmeier

WEYL CALCULUS FOR COMPLEX AND REAL
SYMMETRIC DOMAINS

Abstract. — We define the Weyl functional calculus for real and complex symmetric domains, and
compute the associated Weyl transform in the rank 1 case.
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0. Introduction

In the theory of pseudo-differential operators the Weyl calculus (a quantization
method for the cotangent bundle T ](Rn)) is of basic importance since it allows the full
symplectic group Sp(2n;R) as covariance group and the relationship between operators
and symbols has optimal continuity properties. Unterberger [10, 11] has introduced
an analogous Weyl calculus for (curved) hermitian symmetric spaces of non-compact
type and computed the Weyl transform in the simplest case of the unit disk. The
higher dimensional case is more difficult. In this paper we define the Weyl calculus
for real symmetric domains and then determine the Weyl transform for all symmetric
spaces of rank 1. The new feature is the appearance of a hypergeometric function in
the spectral decomposition, indicating that the harmonic analysis underlying the Weyl
calculus involves (multi-variable) special functions in a significant way.

1. Real symmetric domains and quantization Hilbert spaces

Real bounded symmetric domains, as defined in [7], are those Riemannian symmetric
spaces D = G=K of non-compact type which are real forms of the well-known complex
hermitian bounded symmetric domains DC = GC=KC, where GC = Aut(DC)o is a real
semisimple Lie group of hermitian type and KC is a maximal compact subgroup. The
well-known Harish-Chandra embedding, in its Jordan theoretic form, realizes DC as the
open unit ball

DC =
{

z ∈ ZC : ‖z‖ < 1
}

of a complex vector space ZC≈Cn endowed with a Jordan triple product {uv∗w} [7, 13].
Now let z �→ z be a conjugation on ZC preserving the triple product and define

Z :=
{

z ∈ ZC : z = z
}

; D :=
{

z ∈ DC : z = z
}

=Z ∩ DC ;

G :=
{

g ∈ GC : g (z)=g (z) ’ z ∈ DC
}

=
{

g ∈ GC : g (D) = D
}

; K :=KC ∩ G :

Then D = G=K is called a real bounded symmetric domain which is a Riemannian
symmetric space under the reductive Lie group G . Up to a few low dimensional
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exceptions all irreducible Riemannian symmetric spaces of non-compact type can be
realized this way. Assuming that Z is irreducible one can show that the following cases
occur:

Case 1. DC is an irreducible hermitian domain with real form D.
We may also include the flat case

Case 2. DC = ZC ≈ Cn, endowed with the usual conjugation, so that D = Z ≈ Rn: In
this case we obtain (non-reductive) semi-direct products GC = U (n)/Cn, G = O(n)/Rn:

Case 3. D is itself a complex hermitian domain with complexification DC = D × D
endowed with the flip conjugation (z1; z2) := (z2; z1) for all z1; z2 ∈ D. In this case

GC =
{

( g1; g 2) : g1; g2 ∈ G
}
≈ G × G

where ( g1; g 2)(z1; z2) := ( g1(z1); g2(z2)):
For every real symmetric domain D as above there exists a scale of «quantization

Hilbert spaces» Hν of holomorphic functions on the complexification DC of D. These
Hilbert spaces constitute the «scalar holomorphic discrete series» of GC = Aut(DC)◦ via
irreducible unitary (projective) representations U

ν : GC → U (Hν) of the form
(
Uν( g−1)h

)
(z) = j( g; z) h

(
g (z)

)

for all g ∈ GC; h ∈ Hν and z ∈ DC. Here j(g; z) is a suitable automorphy factor.
For each irreducible complex bounded symmetric domain B of dimension n, define

the weighted Bergman spaces

H 2
β (B) :=

{
h ∈ L2(B; dµβ) : h holomorphic

}
:

Here β > p − 1 is a scalar parameter, where p is the genus of B. The probability
measure

(1.1) dµβ(z) :=
ΓΩB

(β)

πn ΓΩB
(β − n=rB)

∆(z; z)β−pdm(z)

involves the so-called Jordan triple determinant ∆(z; w) and the Gindikin Γ-function
of the positive cone ΩB associated with B. Moreover, rB is the rank of B and dm(z) is
Lebesgue measure. The reproducing kernel of H 2

β (B) has the form

K (z; w) = ∆(z; w)−β

for all z; w ∈ B. Returning to the real symmetric domain D with complexification DC,
we consider the different cases:

Case 1. If DC is an irreducible complex symmetric domain with real form D, we define

(1.2) Hν
:= H 2

νC
(DC); νC := 2rν=rC

where rC ≥ r is the rank of DC. We have j(g; z) = (Det g ′(z))νC=pC in this case, where
pC is the genus of DC.
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Case 2. In the flat case ZC = Cn, with real form Z = Rn, the quantization Hilbert
spaces are the Bargmann spaces

Hν := H 2
ν (Cn) =

{
h ∈ L2(Cn;µν) : h holomorphic

}

with respect to the probability measure

dµ
ν
(z) =

(ν
π

)n

e−ν(z|z) dm(z)

where (z |w) is the scalar product on Cn and dm(z) is the associated Lebesgue measure.
The reproducing kernel is

K (z; w) = eν(z|w)

for all z; w ∈ Cn and Uν is the Schrödinger representation of U (n)/Cn in the «complex
wave» realization, with its well-known multiplier j(g; z) [1].

Case 3. If D is itself a complex hermitian domain, with measure dµν as defined
in (1.1), we consider the product probability measure dµ(z1; z2) := dµν(z1) dµν(z2)
on DC = D × D and put

Hν :=
{

h ∈ L2(DC; dµ) : h sesqui-holomorphic
}

= H 2
ν (D) ⊗ H 2

ν (D)

realized via Hilbert-Schmidt operators

(hφ)(z) =

∫

D

dµν(w) h(z; w) φ(w)

for φ ∈ H 2
ν (D) and z ∈ D. This Hilbert space has the reproducing kernel

(1.3) K (z1; z2; w1; w2) = K (z1; w1) K (w2; z2) ;

with K the kernel function of H 2
ν (D), and

Uν
( g1; g 2) h = U

ν
( g1) h U

ν
(g2)∗

is the corresponding irreducible unitary (projective) representation of GC = G × G on
H

ν
, realized as Hilbert-Schmidt operators. We put j( g1; g 2; z1; z2) := j( g1; z1)j( g2; z2)

in this case.
In all cases the reproducing kernel K (z; w) and the (projective) multiplier j( g; z)

are related by

(1.4) j( g; z) K
(

g (z); g (w)
)
j( g; w) = K (z; w)

for all z; w ∈ DC and g ∈ GC. This implies

(1.5) Uν
( g ) Kz = j(g; z) Kg (z) :

2. The Weyl calculus and its basic properties

In [1, 2] a general concept of «covariant symbolic calculus» of symmetric domains has
been developed. In the (more general) real version [2] one considers a linear «symbol»
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map σ : H
ν
→ {functions on D} satisfying the covariance condition

(2.1) σ
(
U

ν
( g ) h

)
= (σh) ◦ g−1

for all g ∈ G ⊂ GC and h ∈ H
ν
. More precisely, the domain Dom(σ) should contain

all the kernel vectors

Kw(z) := K (z; w)

for w ∈ DC, and the condition (2.1) becomes

(2.2) j(g; w) σ(Kg (w)) = (σ Kw) ◦ g−1

for all g ∈ G and w ∈ DC. In addition we assume that the holomorphic function

I (z) := K (z; z)1=2

on DC, defined via the conjugation z �→ z and the holomorphic square-root on the
(simply-connected) domain DC, belongs to Dom(σ) and satisfies

(2.3) σI = 1 :

Since U
ν(g ) I = I for all g ∈ G; σI is a constant function according to (2.1) so

that (2.3) is just a normalization.
In [2], the so-called Toeplitz-Berezin calculus has been studied in detail (cf. also [3,

9, 15]). We now consider another covariant symbolic calculus, the Weyl calculus intro-
duced in the complex setting in [10]. For ζ ∈ D the symmetry sζ ∈ G is characterized
by the conditions

s2
ζ = id; sζ(ζ) = ζ; s ′ζ(ζ) = −Id :

Lemma 2.1. j(s
ζ; ζ) = 1 for all ζ ∈ D.

Proof. Since s2
ζ

= id we have 1 = j(s2
ζ
; ζ)= j(s

ζ
; s

ζ
(ζ)) j(s

ζ
; ζ)= j(s

ζ
; ζ)2 and hence

j(s
ζ
; ζ)∈{±1}. Since D is connected it follows that j(s

ζ
; ζ)= j(s0; 0)=1.

Lemma 2.2. For ζ ∈ D and z ∈ DC we have

j(sζ; z) =
K (z; ζ)

K (sζz; ζ)
:

Proof. By Lemma 2.1, we have j(s
ζ; z) K (sζz; ζ) = j(sζ; z) K (sζz; sζζ) j(sζ; ζ) =

= j(s
ζ
; z) K (s

ζ
z; ζ) = K (z; ζ).

As a special case of Lemma 2.2, we obtain

j(s; z) =
K (z; 0)
K (sz; 0)

for the origin ζ = 0 ∈ D and its symmetry s = s0.

Definition 2.1. The Weyl symbol mapω
ν

: span {Kz ; z ∈ DC} → C∞(D) is defined by

(2.4) (ων Kz )(ζ) = c−1
ν

K (ζ; z)1=2

K (ζ; s
ζ
z)1=2

K (z; sζz)1=2
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for all z ∈ DC and ζ ∈ D. Here z is the conjugate of z (so that (2.4) is anti-holomorphic
in z). The normalization constant c

ν determined by the condition

(2.5) ων I = 1

will be computed below. Note that Lemma 2.2 implies

(2.6) (ων Kz )(ζ) = c−1
ν j(sζ; z)1=2 K (sζz; z)1=2

as a holomorphic function in z ∈ DC. Together with (1.5), (2.6) implies

(2.7)
c
ν(ων Kz )(ζ) =

(
j(sζ; z) K (z; sζz)

)1=2
=
(

j(sζ; z) Ksζz (z)
)1=2

=

= (Uν(sζ) Kz )(z)1=2 = (K z |Uν(sζ) Kz )1=2 :

Example 2.1. In the product case DC = D ×D, with D complex hermitian, Hν can
be identified with the space of Hilbert-Schmidt operators acting on H 2

ν (D), and under
this identification

Kz1;z2
= Kz1

K ∗
z2

(z1; z2 ∈ D)

becomes a rank 1 operator [2, Example 3.1]. Therefore (2.7) yields

cν(ωνKz1;z2
)(ζ)= (Kz2;z1

|Uν(sζ)Kz1;z2
)1=2 = (Kz2

K ∗
z1
|Uν(sζ)(Kz1

K ∗
z2

))1=2 =

= (Kz2
K ∗

z1
|Uν(sζ)Kz1

K ∗
z2

Uν(sζ)∗)1=2 = (Kz2
K ∗

z1
|(Uν(sζ)Kz1

)(Uν(sζ)Kz2
)∗)1=2 =

= [(Kz2
|Uν(sζ)Kz1

)(Uν(sζ)Kz2
|Kz1

)]1=2= (Kz2
|Uν(sζ)Kz1

)= tr (Uν(sζ)Kz1
K ∗

z2
) :

Hence we have

c
ν(ωνT )(ζ) = tr (Uν(sζ) T )

for all (trace-class) operators T acting on H 2
ν (D). This coincides with the «Weyl symbol»

of T as defined in [10].

Proposition 2.1. The Weyl symbol (2:4) is covariant under G .

Proof. Let ζ ∈ D; g ∈ G and z ∈ DC. Then sg (ζ) = g sζ g−1 and (1.2) and (2.6)
imply

cν
[

j(g; z) (ων Kg (z))(g (ζ))
]2

= j(g; z)2 j(sg (ζ); g (z)) K (sg (ζ)(g (z)); g (z)) =

= j(g; z) j(g sζ g−1; g (z)) K (g (sζ(z)); g (z)) j(g; z) =

= j(sζ; z) j(g; sζ(z)) K (g (sζ(z)); g (z)) j(g; z) =

= j(sζ; z) K (sζ(z); z) = cν (ων Kz )(ζ)
2

since j(g; z) j(g sζ g−1; g (z)) = j(g sζ; z) = j(sζ; z) j(g; sζ(z)): Taking holomorphic
square-roots and conjugates it follows that j(g; z) (ων Kg (z))(g (ζ)) = (ων Kz )(ζ) which
yields covariance in view of (2.2).
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Given a covariant symbolic calculus σ one defines its adjoint σ∗ :{functions on D} →
→ Hν by assigning to a function f ∈ Dom (σ∗) the holomorphic function

(σ∗f )(z) :=
∫

D

dµ0(ζ) f (ζ) (σ Kz )(ζ)

on DC. Here dµ0 is the G -invariant measure on D normalized by the condition

(2.8)
∫

D

dµ0(ζ) I (ζ)−1 = 1 :

By [2, Proposition 4.4] σ∗ is the adjoint of σ with respect to L2(D; dµ0). According
to Definition 2.1 the adjoint f �→ ω∗

ν
f of the Weyl symbol map is given by

(ω∗
ν f )(z) =

∫

D

dµ0(ζ) f (ζ)(ων Kz )(ζ) = c−1
ν

∫

D

dµ0(ζ)f (ζ)
K (z; ζ)1=2

K (sζz; ζ)1=2
K (sζz; z)1=2 =

= c−1
ν

∫

D

dµ0(ζ)f (ζ)j(sζ; z)1=2K (sζz; z)1=2 = c−1
ν

∫

D

dµ0(ζ)f (ζ)(Uν(sζ)Kz )(z)
1=2

as a holomorphic function in z ∈ DC. Whereas the Toeplitz map f �→ τ ∗
ν f is well-

defined for f ∈ L∞(D), it is more difficult to find conditions on f ∈ C∞(D) such that
ω∗

ν f is well-behaved [11, 14].

Example 2.2. In the flat case D = Rn and DC = Cn, the ν-th Bargmann space
H 2

ν (Cn) has the reproducing kernel K (z; w) = exp ν(z |w) and

sζz = 2ζ − z

is the symmetry. Hence the Weyl calculus ω∗
ν : L2(Rn) → H 2

ν (Cn) has the form

c
ν (ω∗

ν f )(z) =

∫

Rn

d ζ f (ζ) · exp
ν

2

(
(z |ζ) + (sζz |z) − (sζz |ζ)

)
=

=

∫

Rn

d ζf (ζ) exp
ν

2

(
(z |ζ) + (2ζ − z |z − ζ)

)
=

=

∫

Rn

d ζf (ζ) exp
(

2ν(z |ζ) − ν

2
(z |z) − ν(ζ|ζ)

)
:

Since c
ν

= 2−n=4 in this case, we obtain the Bargmann transform [5, p. 40].

The link transform of a covariant symbolic calculus σ is defined as the map f �→
�→ (σ σ∗) f := σ(σ∗f ) acting on functions on D. By [2, Proposition 4.7] σ σ∗ is an
integral operator in L2(D; dµ0) with kernel

∫

DC

dµ
ν
(z)(σ Kz )(ξ)(σ Kz )(η)

for ξ; η ∈ D. For the Weyl transform ωνω
∗
ν we obtain the integral kernel

c−2
ν

∫

DC

dµ
ν
(z)

(
K (ξ; z) K (z; s

ξ
z) K (z; η) K (s

η
z; z)

K (ξ; s
ξ
z) K (s

η
z; η)

)1=2
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for ξ; η ∈ D. In comparison, the integral kernel of the Toeplitz transform τ
ν
τ ∗
ν

has the
much simpler expression [2, (5.4)]

K (ξ; η)

K (ξ; ξ)1=2 K (η; η)1=2
:

Since D = G=K is a Riemannian symmetric space there is an explicit Plancherel
decomposition [6]

L2(D;µ0) =

∫

a]
dλ |c(λ)|−2 〈G〉λ

in terms of the Hilbert spaces 〈G〉λ of the principal series of G with parameter λ∈a],
where c(λ) is Harish-Chandra’s c-function and we use an Iwasawa decomposition G =

= NAK with a := Lie (A). By covariance every covariant symbolic calculus σ yields a
multiplicity-free decomposition

H
ν ≈

∫
dσ0(λ) 〈G〉λ

of Hν , under the restricted action of G ⊂ GC. The defining measure dσ0(λ) depends
on the choice of calculus, more precisely on the eigenvalues

σ̃σ∗ (λ) := (σσ∗φλ)(0)

of the G -invariant link transform σσ∗, computed on the spherical function φλ of type
λ ∈ a]. Here 0 ∈ D is the origin. It is technically easier to use the NA-covariant
«exponential functions» e

λ, where

φλ(ζ) =

∫

K

dk eλ(kζ)

for all ζ ∈ D. For the Toeplitz-Berezin calculus τ
ν

the eigenvalues of τ
ν
τ ∗
ν

are given
by the integral

τ̃
ν
τ ∗
ν

(λ) = (τ ∗
ν

e
λ
)(0) =

∫

D

dµ0(ζ)e
λ
(ζ)(τ

ν
K0)(ζ) =

∫

D

dµ0(ζ)e
λ
(ζ)K (0; ζ)K (ζ; ζ)−1=2

which can be computed using the structure theory of Jordan triples [2, 15, 3, 9] yielding
a (complicated) product of classical Γ-functions. For arbitrary covariant symbolic calculi
σ1;σ2 on Hν there is a «product formula» [2, Theorem 4.9]

σ̃1σ
∗
2 (λ) =

(σ∗
1 eλ)(0)(σ∗

2 eλ)(0)
(τ ∗

ν
e
λ
)(0)

:

Thus the integral

(ω∗
νeλ)(0) =

∫

D

dµ0(ζ)eλ(ζ)(ων K0)(ζ) = c−1
ν

∫

D

dµ0(ζ)eλ(ζ)
K (0; ζ)1=2

K (ζ; sζ(0))1=2
K (0; sζ(0))1=2

is needed for the computation of the eigenvalues of ω̃νω
∗
ν (λ) of the Weyl transform.
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3. Polar coordinates and root decomposition

From now on we only consider the non-flat case. For a deeper study of the Weyl
calculus (and other covariant symbolic calculi) on real symmetric domains it is necessary
to recall the basic structure theory of symmetric spaces G=K (of non-compact type)
related to the root decomposition [6]

g = a⊕m⊕
∫

α∈Σ

g
α

induced by a Cartan subspace a ⊂ g. Here m is the centralizer of a in k and gα denotes
the root space associated with α ∈ a]. Put Σ := {α ∈ a] \ {0} : gα �= {0}}. According
to [7] every (irreducible) real symmetric domain D = G=K has an unbounded realization
as a real Siegel domain

D ≈
{

x + y + v ∈ X ⊕ Y ⊕ V : x − {e v∗v} ∈ Ω
}

:

Here X is a euclidean Jordan algebra of rank r , with unit element e and positive
cone Ω; X ⊕ Y is a semi-simple real Jordan ∗-algebra with self-adjoint part X and
skew-adjoint part Y , and the Peirce decomposition [7] of Z with respect to e has
the 1-eigenspace X ⊕ Y and the 1

2 -eigenspace V . Now choose a frame e1; : : : ; er of
minimal idempotents in X satisfying e1 + : : : + er = e and consider the joint Peirce
decomposition [7]

X =
∑

1≤i≤j≤r

Xij; Y =
∑

1≤i≤j≤r

Yij; V =
∑

1≤j≤r

V0j :

Then for 1 ≤ j ≤ r and 1 ≤ i < j ≤ r we have dim Xjj = 1 and

a := dim Xij; b := dim V0j; c := dim Yij

are independent of i; j and of the frame e1; : : : ; er . For the symmetric cones we have
Y = {0} = V . In all other cases (except root system D2, which is not considered in the
sequel) the classification yields dim Yij = a (1 ≤ i < j ≤ r): Hence the fine structure
of D is completely encoded in the numerical invariants a; b; c . In particular, we have
nX := dim X = r + a

2 r(r − 1), nY := dim Y = cr + a
2 r(r − 1), nV := dim V = br .

Returning to the bounded realization, the commuting completely integrable holomorphic
vector fields

(3.1) Mj :=
(
ej − {z e∗

j z}
) @

@z
(1 ≤ j ≤ r)

on DC [13, 7] leave D invariant and can be chosen as a basis of a. Let M ]
1; : : : ;M ]

r ∈ a]

denote the dual basis satisfying M ]
i (Mj ) = δij for 1 ≤ i; j ≤ r . Then, by [7, 15] the

positive restricted roots of g are the following:

(3.2) M ]
j − M ]

i ; multiplicity a (1 ≤ i < j ≤ r)

(3.3) M ]
j + M ]

i ; multiplicity a (1 ≤ i < j ≤ r)

(3.4) 2M ]
j ; multiplicity c (1 ≤ j ≤ r)
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(3.5) M ]
j ; multiplicity b (1 ≤ j ≤ r) ;

unless Z = X , in which case only (3.2) occurs. This case and also the root type D2

will be omitted in the sequel. For the half-sum of positive roots ρ we obtain

2ρ =
∑

α∈Σ+

m
α
α =

∑

1≤i<j≤r

a
(
M ]

j − M ]
i + M ]

j + M ]
i

)
+
∑

1≤j≤r

(c 2M ]
j + b M ]

j ) =

=
∑

1≤i<j≤r

2a M ]
j +

∑

1≤j≤r

(2c + b)M ]
j =

∑

1≤j≤r

2
(

(j − 1) a + c +
b
2

)
M ]

j

and hence

ρ =
∑

1≤j≤r

(
(j − 1) a + c +

b
2

)
M ]

j :

By [6, Theorem 5.8] there exists a Haar measure dg on G such that
∫

G

dg f
(

g (0)
)

=

∫

Rr
+

dt1 · · · dtr f
(

exp (Σj tj Mj )(0)
) ∏

α∈Σ+

sinh
(
α(Σj tj Mj )

)mα

holds for K -invariant functions of f on D = G=K . Here Σ+ denotes the set of positive
roots and m

α is the multiplicity of α ∈ Σ+. For each tripotent c = {c c∗ c} ∈ Z the
vector field

Mc :=
(
c − {z c∗ z}

) @
@z

satisfies exp (t Mc )(0) = tanh (t ) c for all t ∈ R [13, 7]. Similarly, we have

exp




r∑

j=1

tj Mj


 (0) =

r∑

j=1

tanh (tj ) ej

for the (commuting) vector fields (3.1). Using the coordinates

(3.6) xj = tanh2 (tj ) ∈ [0; 1]

satisfying
dxj

dtj
= 2x1=2

j (1 − xj ); the explicit root decomposition (3.2)-(3.5) yields
∫

G

dg f (g (0)) =

=

∫

Rr
+

∏

j

dtj sinh(2tj )
c sinh(tj )

b · f (Σj tanh(tj ) ej ) ·
∏

i<j

| sinh(tj − ti) sinh(tj + ti)|
a =

=

∫

[0;1]r

∏

j

dxj

2(1 − xj )x
1=2
j

(
2x1=2

j

1 − xj

)c (
xj

1 − xj

)b=2

·
∏

i<j

∣∣∣
xi − xj

(1 − xi)(1 − xj )

∣∣∣
a

· f (Σj x1=2
j ej ) =

= 2r(c−1)
∫

[0;1]r
dx1 · · · dxr ·

∏

j

(1− xj )
−1−c−b=2−a(r−1)x (c−1+b)=2

j ·
∏

i<j

|xi− xj |
a ·f (Σj x

1=2
j ej )=

=+ 2nY −nX

∫

[0;1]r
f (Σj x1=2

j ej )
∏

i<j

|xi − xj |
a ·
∏

j

dxj (1 − xj )
−(nX +nY +nV =2)=r x (nY −nX +nV )=2r

j :
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Let Ω be the positive cone of the euclidean Jordan algebra X . The Gindikin Γ-function
ΓΩ associated with Ω [4, Chapter VII] has the property [4, pp. 123 and 104]

(3.7) ΓΩ

(
α +

nX

r

)
= cΩ

∫

Rr
+

∏

i<j

|xi − xj |
a
∏

j

dxj e−xj xα

j ;

where cΩ is a constant depending only on Ω. Similarly for the Beta-integral [4, pp. 130
and 104] which is symmetric in α and γ:

(3.8)
ΓΩ

(
α +

nX

r

)
ΓΩ

(
γ +

nX

r

)

ΓΩ

(
α + γ +

2nX

r

) = cΩ

∫

[0;1]r

∏

i<j

|xi − xj |
a
∏

j

dxj xα

j (1 − xj )
γ :

Lemma 3.1. For ξ; η ∈ D ∩ X we have

K (ξ; η)−1=2 = ∆(e − {ξ e∗ η})ν :

Proof. In case DC is irreducible, we have

K (ξ; η)−1=2 = ∆C(ξ; η)νC=2 = ∆C(e − {ξ e∗ η})νC=2 ;

∆(e − {ξ e∗ η})rC νC=2r = ∆(e − {ξ e∗ η})ν :

In case DC = D × D, with D complex hermitian, (1.3) implies

K (ξ; ξ; η; η)−1=2 = K (ξ; η)−1 = ∆(ξ; η)ν = ∆(e − {ξ e∗ η})ν :

In both cases, the assertion follows.

Proposition 3.1. The measure µ0 normalized by (2:8) is given by

∫

D

dµ0(ζ) f (ζ) = cΩ 2nX −nY

ΓΩ

(
ν +

nX − nY

2r

)

ΓΩ

(
ν − nY + nV =2

r

)
ΓΩ

( n
2r

)
∫

G

dg f (g (0)) :

Proof. By Lemma 3.1 we have for ζ := Σj tanh (tj ) ej ∈ D ∩ X

I (ζ)−1 = K (ζ; ζ)−1=2 = ∆(e − {ζ e∗ ζ})ν =
∏

j

(1 − tanh2 (tj ))
ν =

∏

j

(1 − xj )
ν :

Since n − 2nY − nV = nX − nY , it follows that
∫

G

dg I ( g (0))−1 = 2nY −nX

∫

[0;1]r

∏

i<j

|xi − xj |
a ·

·
∏

j

dxj (1 − xj )
ν−(nX +nY +nV =2)=r x (nY −nX +nV )=2r

j =

= c−1
Ω 2nY −nX

ΓΩ

(
ν − nY + nV =2

r

)
ΓΩ

( n
2r

)

ΓΩ

(
ν +

nX − nY

2r

) :
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The spherical functions of the cone Ω, regarded as a reductive symmetric space,
can be expressed in terms of the so-called Jack polynomials Jm(x1; : : : ; xr ) associated
with an integer partition m = (m1; : : : ; mr ). Using the Jack polynomials and the
multi-variable Pochhammer symbol

(α)m :=
ΓΩ(α + m)

ΓΩ(α)

one defines the multivariable hypergeometric series [4]

2F1

(
α β

γ

)
(x1; : : : ; xr ) =

∑

m

(α)m (β)m

(γ)m (1)m

Jm (x1; : : : ; xr ) :

The multivariable hypergeometric function together with the Gindikin Γ-function yields
the following Selberg-type integral

(3.9)

cΩ ·
∫

[0;1]r

∏

j

dzj zα

j (1 − zj )
γ

(
1 −

zj

2

)−β∏

i<j

|zi − zj |
a =

=
ΓΩ

(
α +

nX

r

)
ΓΩ

(
γ +

nX

r

)

ΓΩ

(
α + γ +

2nX

r

) 2F1




α +
nX

r
β

α + γ +
2nX

r




(
1
2

; : : : ;
1
2

)

for (suitably restricted) scalar parameters α;β; γ. Since K (z; 0) = 1 in the bounded
setting, (2.4) implies

(3.10) (ω
ν

K0)(ζ) = c−1
ν

b
ν
(ζ) ;

where we define b
ν
(ζ) := K (s

ζ
(0); ζ)−1=2 for all ζ ∈ D.

Lemma 3.2. The K -invariant function bν on D satisfies

b
ν




r∑

j=1

tanh (tj ) ej


 =

r∏

j=1

[
1 − tanh2(tj )

1 + tanh2(tj )

]ν

=
r∏

j=1

(
1 − xj

1 + xj

)ν

:

Proof. By Lemma 3.1 we have K (ζ; s
ζ
(0))−1=2 = ∆(e −{ζ e∗ s

ζ
(0)})ν for ζ ∈ D∩X .

Applying geodesic reflection, it follows that for ξ :=
∑r

j=1 tanh (tj ) ej ∈ D ∩ X we have

sξ(0) =
r∑

j=1

tanh (2tj ) ej :
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By orthogonality of {ej}, we obtain

bν




r∑

j=1

tanh (tj ) ej


 = ∆


e −








r∑

j=1

tanh (tj ) ej


 e∗

(
r∑

k=1

tanh (2tk) ek

)





ν

=

=
r∏

j=1

(
1 − tanh (tj ) tanh (2tj )

)ν
=

=
r∏

j=1

(
1 − 2

tanh2 (tj )

1 + tanh2 (tj )

)ν

=
r∏

j=1

(
1 − tanh2 (tj )

1 + tanh2 (tj )

)ν

:

Proposition 3.2. The normalizing constant for the Weyl calculus at parameter ν is

c
ν = 2−ν

2F1


 ν − nY + nV =2

r
ν

ν +
nX − nY

2r



(

1
2

; : : : ;
1
2

)
:

Proof. By definition, cν is chosen such that ωνI = 1. Since the definition of ων

applies directly only to the kernel vectors we use the dual condition ω∗
ν1 = I . By (3.10)

we have

1 = (ω∗
ν1)(0) =

∫

D

dµ0(ζ)(ων K0)(ζ) = c−1
ν

∫

D

dµ0(ζ) bν(ζ)

and hence

c
ν =

∫

D

dµ0(ζ) bν(ζ) :

Applying Proposition 3.1 and Lemma 3.2 yields, putting zj = 1 − xj ,

ΓΩ

(
ν − nY + nV =2

r

)
ΓΩ

( n
2r

)

ΓΩ

(
ν +

nX − nY

2r

)
∫

D

dµ0(ζ) bν(ζ) = cΩ 2nX −nY

∫

G

dg bν(g (0)) =

= cΩ

∫

[0;1]r

∏

i<j

|zi − zj |
a ·
∏

j

dzj · z−(nX +nY +nV =2)=r
j (1 − zj )

(nY −nX +nV )=2r

(
zj

2 − zj

)ν

=

= 2−νcΩ

∫

[0;1]r

∏

i<j

|zi − zj |
a ·
∏

j

dzj zν−(nX+nY+nV =2)=r
j (1 − zj )

(nY −nX+nV )=2r

(
1 −

zj

2

)−ν

=

= 2−ν

ΓΩ

(
ν − nY +nV =2

r

)
ΓΩ

( n
2r

)

ΓΩ

(
ν+

nX − nY

2r

) 2F1


 ν − nY + nV =2

r
ν

ν+
nX − nY

2r



(

1
2

; : : : ;
1
2

)
:
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In the sequel the Laplace-Beltrami operator ∆ on D (not to be confused with the
Jordan determinant) will play a crucial role.

Proposition 3.3. Expressed in the coordinates

(3.11) yj := − sinh2 (tj ) (1 ≤ j ≤ r)

the Laplace-Beltrami operator ∆ on D has the K -radial part ∆̃ given by

−1
4

∆̃ =
r∑

j=1



yj (1 − yj )

@
@yj

+ a
∑

i �=j

yj (1 − yj )

yi − yj

+
1 + c + b

2
−
(

1 + c +
b
2

)
yj





@
@yj

:

Proof. For any Riemannian symmetric space G=K , the K -radial part of ∆ realized
on A

+ := exp (a+)(0) has the form [6, Proposition II. 3.9]

∆̃ = ∆A +
∑

α∈Σ+

mα coth (α)α]

where ∆A is the (euclidean) Laplacian on A and α] ∈ a is determined by 〈α]|H 〉 = α(H )
for all H ∈ a. Specializing to the root decomposition (3.2)-(3.5) we obtain

∆̃ =
∑

j

@2

@t 2
j

+
∑

j

(
c coth (2tj ) 2

@
@tj

+ b coth (tj )
@

@tj

)
+

+ a
∑

i<j

coth (tj − ti)

(
@

@tj

− @
@ti

)
+ coth (tj + ti)

(
@

@tj

+
@

@ti

)
=

=
∑

j


 @

@tj

+ 2c coth (2tj ) + b coth (tj ) + a
∑

i �=j

(coth (tj − ti) + coth (tj + ti)


 @

@tj

since − coth (tj − ti) = coth (ti − tj ). Since
dyj

dtj
= − sinh2 (tj ) we have

coth (2tj )
@

@tj

= − coth (2tj ) sinh (2tj )
@

@yj

= (2yj − 1)
@

@yj

;

coth (tj )
@

@tj

= − coth (tj ) sinh (2tj )
@

@yj

= 2(yj − 1)
@

@yj

;

(coth (tj − ti) + coth (tj + ti))
@

@tj

=
sinh (2tj ) sinh (2tj )

sinh (tj − ti) sinh (tj + ti)
@

@yj

;

4 cosh2 (tj ) sinh2 (tj )

sinh2 (tj ) cosh2 (ti) − cosh2 (tj ) sinh2 (ti)

@
@yj

= −
4yj (1 − yj )

yi − yj

@
@yj
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and
(

@
@tj

)2

=

(
dyj

dtj

)2(
@

@yj

)2

+
d 2yj

dt 2
j

@
@yj

= −4yj (1 − yj )

(
@

@yj

)2

+ (4yj − 2)
@

@yj

:

Substituting into the previous expression for ∆̃ yields the assertion.

4. The Weyl transform for rank 1 domains

The Weyl transform is harder to analyze than the Toeplitz-Berezin transform. Up
to now only the simplest case of the unit disk has been treated in detail [10]. In this
section we analyze the Weyl transform for an important class of higher-dimensional
symmetric domains, namely those of rank 1. This includes the unit ball in Cn, and
our main result is new even in this special case.

Let K denote one of the real division algebras R;C;H or O. Then Z := Km

becomes a real Jordan triple for m ≥ 1, with m = 2 in case K = O. The unit balls

D :=

{
(x1; : : : ; xm) ∈ Km :

m∑

i=1

xi x∗
i < 1

}

are precisely the real bounded symmetric domains of rank 1. Here x �→ x∗ is the natural
involution on K. We put

a := dimR K; n := dimR D = am :

The Peirce decomposition with respect to the tripotent e := (1; 0; : : : ; 0) ∈ Km has
the form

Km = X ⊕ Y ⊕ V

where

X = R× {0}m−1; Y = R⊥ × {0}m−1; V = {0} ×Km−1

and R⊥ := {x ∈ K : x∗ = −x}: The vector field

M :=
(
e − {z e∗ z}

) @
@z

generating a gives rise to the positive roots

(4.1) 2M ]; multiplicity c = a − 1

(4.2) M ]; multiplicity b = n − a :

For the half-sum ρ of positive roots we obtain

2ρ = (a − 1) 2M ] + (n − a) M ] =
(
−1 +

n + a
2

)
2M ] :

In terms of the coordinate y := − sinh2 (t ) ∈ (−∞; 0] the Laplace-Beltrami operator ∆
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on D has the radial part (Proposition 3.2)

(4.3) −∆̃

4
= y (1 − y)

(
d
dy

)2

+
(n

2
− n + a

2
y
) d

dy

when acting on K -invariant functions. Since (4.3) corresponds to the hypergeometric
equation it follows that the hypergeometric series

2F1

(
α β

γ

)
(y) :=

∑

k≥0

(α)k (β)k

(γ)k

yk

k!
;

yields the eigenfunctions (regular at y = 0):

−∆̃

4 2F1

(
α β

n=2

)
= αβ 2F1

(
α β

n=2

)

where

(4.4) α + β =
n + a

2
− 1 = 2ρ :

Using the coordinate x := tanh2 (t ) we obtain the spherical function

(4.5)
φλ(x1=2e) = φλ(tanh(t ) e) = 2F1

(
ρ+λ ρ−λ

n=2

)
(y) =

= 2F1

(
ρ+λ ρ−λ

n=2

)( x
x−1

)
= (1 − x)ρ+λ

2F1

(
ρ+λ λ−ρ + n

2

n=2

)
(x)

with eigenvalue

(4.6) −∆̃

4
φλ = (ρ2 − λ2)φλ :

Note that ρ = 1=2 for the unit disk. We are interested in the Weyl calculus acting on
H

ν
, where DC is the complexification of D. By [7, 12.18] Z has the complexification

ZC, of rank rC and the half sum of positive roots ρ, given by the following table

Z ZC rC ρ

Rm Cm 1 m−1
4

Cm Cm ×Cm
2 m

2

Hm C2×2m 2 m + 1
2

O2 C16
V 2 11

2

Here C16
V denotes the 16-dimensional exceptional Jordan triple not of tube type. For

rank 1 domains we have X = R and Ω = (0;∞). Hence ΓΩ is the usual Γ-function
and cΩ = 1. Since nX = 1; nY = a−1; nV = a(m−1) = n−a; 2ρ + 1 = (n + a)=2;
Proposition 3.1 shows

∫

D

dµ0(ζ) f (ζ) = 22−a
Γ
(
ν + 1 − a

2

)

Γ(ν − 2ρ)Γ
(n

2

)
∫

G

dg f (g (0))
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where, for K -invariant functions, we have

(4.7) 22−a

∫

G

dg f (g (0)) =

∫ 1

0
dx f (x1=2e) · (1 − x)−2ρ−1 xn=2−1 :

Specializing Proposition 3.2 yields the normalizing constant

(4.8) cν = 2−ν
2F1

(
ν − 2ρ ν

ν + 1 − a
2

)(
1
2

)

since nY + nV =2 = a − 1 + n−a
2 = 2ρ. The main result of this paper, leading to the

eigenvalues of the Weyl transform, is the following:

Theorem 4.1. Let D be a real bounded symmetric domain of rank 1 and dimension n. Then
the Weyl calculus ων satisfies

(ω∗
ν eλ)(0) =

Γ(ν − ρ + λ) Γ(ν − ρ− λ)
Γ(ν − 2ρ) Γ(ν)

2F1

(
ν − ρ + λ ν − ρ− λ

ν + n
2 − 2ρ

)(
1
2

)

2F1

(
ν − 2ρ ν

ν + n
2 − 2ρ

)(
1
2

) =

=
Γ(ν − ρ + λ) Γ(ν − ρ− λ)

Γ(ν − 2ρ) Γ(ν)

2F1

(
n
2 − ρ + λ n

2 − ρ− λ

ν + n
2 − 2ρ

)(
1
2

)

2F1

(
n
2 − 2ρ n

2

ν + n
2 − 2ρ

)(
1
2

) :

Proof. Using (4.7), (4.5) and Lemma 3.2, and applying [8, § 20.2, p. 399, (6)] to the
admissible parameters α = ρ + λ; β = λ− ρ + n

2 ; γ = n
2 ; ρ = ν + λ− ρ; σ = ν

and z = −1, we obtain

22−a

∫

G

dg φ
λ
(g (0)) b

ν
(g (0)) =

∫ 1

0
dx φ

λ
(x1=2 e) b

ν
(x1=2 e)(1 − x)−2ρ−1xn=2−1 =

=

∫ 1

0
dx(1 − x)ρ+λ

2F1

(
ρ+λ ρ− λ+ n

2

n=2

)
(x)

(
1 − x
1 + x

)ν

(1 − x)−2ρ−1 xn=2−1 =

=

∫ 1

0
dx 2F1

(
ρ + λ λ− ρ + n

2

n=2

)
(x) (1 − x)ν+λ−ρ−1 (1 + x)−ν xn=2−1 =

=
Γ
(n

2

)
Γ(ν − ρ+λ)Γ(ν − ρ− λ)

Γ
(
ν +

n
2
− 2ρ

)
Γ(ν)

2−ν

3F2

(
ν − ρ + λ ν − ρ− λ ν

ν +
n
2
− 2ρ ν

)(
1
2

)
;

with the 3F2-function reducing to 2F1. This implies the assertion, since (ω∗
ν

e
λ
)(0) is a

multiple of this integral normalized at λ = ρ.
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