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Equazioni differenziali ordinarie. — Totally bounded differential polynomial systems in
R2. Nota di Roberto Conti e Marcello Galeotti, presentata (*) dal Socio R. Conti.

Abstract. — Totally bounded differential systems in R2 are defined as having all trajectories bounded.
By Dulac’s finiteness theorem it is proved that totally bounded polynomial systems exhibit an unbounded
«annulus» of cycles. The portrait of the remaining trajectories is examined in the case the system has, in R2,
a unique singular point. Work is in progress concerning the study of totally bounded polynomial systems
with two singular points.

Key words: Polynomial systems; Total boundedness; Petals.

Riassunto. — Sistemi differenziali totalmente limitati in R2. Si definiscono i sistemi differenziali total-
mente limitati in R2 come quelli di cui tutte le traiettorie sono limitate. Applicando il teorema di finitezza
di Dulac, si dimostra che i sistemi polinomiali totalmente limitati sono caratterizzati dall’esistenza di un
«anello» illimitato di cicli. La configurazione delle restanti traiettorie viene studiata nel caso che il sistema
possieda, al finito, un unico punto singolare. Ricerche in corso riguardano lo studio di sistemi polinomiali
totalmente limitati con due punti singolari.

1. Definitions

A polynomial differential system in R2 is a pair of ordinary differential equations

(1.1) ẋ = X (x; y); ẏ = Y (x; y)

where ẋ = dx=dt; ẏ = dy=dt; t ∈ R and X (x; y); Y (x; y) are polynomials of (x; y) ∈
∈ R2 with real coefficients.

Usually, t is referred to as time.
The system is of degree n if n is the maximum of the degrees of X (x; y); Y (x; y).
We shall study the class of polynomial differential systems satisfying

Definition 1. We say that (1:1) is totally bounded if each trajectory is bounded.

2. Degree and total boundedness

An important contribution to the study of polynomial systems comes from a result of
M. Galeotti and M. Villarini [3]. They proved in fact that, if n is even, the polynomial
system (1:1) has one unbounded trajectory at least.

It follows

Theorem 1. The degree of a totally unbounded polynomial system is odd.

(*) Nella seduta dell’8 febbraio 2002.
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3. Singular points

If (1:1) has no singular point, then by Bendixson theorem it has no cycle either, so
that each trajectory is open, with empty limit sets, hence unbounded.

Therefore we have

Proposition 1. A totally bounded polynomial system has one singular point at least.

Actually, the singular points may be infinitely many.
As it is wellknown, it took more than sixty years to prove Dulac’s finiteness theorem

asserting that polynomial differential systems in R2 have at most a finite number of limit
cycles: see, for instance, [2, 4].

As an immediate consequence of finiteness theorem, an isolated singular point of a
polynomial system, totally bounded or not, must be a center, a focus, or a tangential
limit point, i.e., the limit point S of trajectories γ whose tangent line at P ∈ γ tends
to a line through S as P tends to S along γ:

4. Annular region

As a consequence of finiteness theorem on totally bounded systems, we have

Theorem 2. If (1:1) is totally bounded, a limit cycle cannot surround all the singular points.

Proof. Let γ be a limit cycle and let the singular points all belong to the region
interior to γ. By the analyticity of Poincaré return map there must exist a neighborhood
of γ whose exterior part is covered by open trajectories which spiral around γ towards
γ (away from γ).

Such trajectories, bounded by assumption, must be contained in the region interior
to a limit cycle γ′ surrounding γ and spiral away from γ′ (towards γ′).

This argument can be repeated starting from γ′ and gives rise to an infinite sequence
of (expanding) limit cycles, against the finiteness theorem.

Totally bounded polynomial systems are characterized by

Theorem 3. A polynomial system (1:1) is totally bounded if and only if there exists a family
of cycles covering an annular region whose «outer» boundary in R2 is empty.

Proof. The «if» part is obvious.
To prove the «only if» part let there exist r > 0 such that the circle Γr : x2 + y2 = r2

contains in its interior all the trajectories which are closed, i.e., all the cycles and all
the singular points. Γr cannot be invariant.

Let P be a point exterior to Γr . Then the trajectory γP is open.
If one of its limit sets is empty then γP is unbounded. If both the limit sets of γP

are non empty they are interior to Γr , so both the trajectories γ−
P , γ+

P must cross Γr .
Since (1:1) is a polynomial system, the crossing points with the circle Γr are finite in
number.
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Let Pk = (0; kr ) and let Qk be the intersection of γ+

Pk
(or, indifferently, of γ−

Pk
) with

Γr nearest to Pk . As k → ∞ the sequence
{

Qk

}
has a limit Q∞ and the trajectory

γQ ∞
is unbounded.

From now on the annular region covered by cycles of a totally bounded polynomial
system will be referred to as the annulus A of the system. We shall denote by @A the
«inner» boundary of A.

Clearly @A is a finite union of singular points and open trajectories, homoclinic
and/or heteroclinic, oriented concordantly with the cycles of A. Let Σ denote the
Poincaré sphere in R3 associated to (1:1) and let Σ∞ denote the equator of Σ.

If the system is totally bounded Σ∞ is the «outer» boundary on Σ of the annulus
A. Σ∞ may be a cycle on Σ or contain singular points at infinity.

Problem 1. If (1:1) is totally bounded, may Σ∞ consist uniquely of singular points at
infinity ?

Remark 1. Let (1:1) be totally bounded. Any cycle from A surrounds all the singular
points. Therefore, if they are finite in number, the sum of their indices is equal to one.

5. Petals and Flowers

Independent of total boundedness it is convenient for polynomial systems to intro-
duce the following notion.

Definition 2. Let γ be an open trajectory of the polynomial system (1:1) homoclinic at a
singular point S and such that the Jordan region J interior to γ ∪{S} does not contain singular
points.

If there is no trajectory surrounding γ with the same properties as γ we shall say that the
closure of J is a petal of (1:1) at S .

In other words a petal at S is the closure of a maximal elliptic region at S .

Theorem 4. Petals of a polynomial system are finite in number.

Proof. Let S be a singular point with petals. For simplicity let S = (0; 0). Since
(1:1) is a polynomial system of degree n, a circle Cr : x2 + y2 = r2 is invariant or it
has at most 2(n + 1) contacts with (1:1), i.e., points (x; y) satisfying

x2 + y2 = r2; xX (x; y) + yY (x; y) = 0

If there existed infinitely many petals at O the circle Cr , for r sufficiently close
to zero, would have more than 2(n + 1) contacts, so it would be invariant, which is
impossible.

Definition 3. The union of all petals at S will be called a flower at S .
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6. A unique singular point

We shall now consider in some detail the simplest class of totally bounded polyno-
mial systems, namely that of totally bounded systems with a unique singular point.

Recall first that a center S is, by definition, a global center if all the trajectories �= {S}
are cycles.

Using Section 3 it is easy to verify

Theorem 5. Let (1:1) be a totally bounded polynomial differential system with a unique
singular point S .

Then :
a) there are no limit cycles ;
b) S is not a focus nor a saddle point ;
c) if S is a center, S is a global center ;
d ) all the open trajectories, if any, are homoclinic at S ;
e) the inner boundary @A of the annulus A is {S} or it is the union of {S} with a finite

number of open trajectories.

Using Definitions 2 and 3 we have

Theorem 6. Under the assumptions of Theorem 5 the compact set R2\A either reduces to
{S} and S is a global center, or R2\A is a flower at S .

7. Example of petal

In the linear case (n = 1) the system is totally bounded if and only if O is a global
center. When n = 3; 5 : : : there are other possibilities.

For instance let us consider

(7.1)
{

ẋ = x(ax + by) + (x2 + y2)y

ẏ = (ax + by)y − x(x2 + y2):

Using polar coordinates ρ, θ, (7:1) becomes ρ̇ = (a cos θ + b sin θ)ρ2, θ̇ = −ρ2, so the
trajectories are represented by graphs of functions θ �→ ρ(θ)

(7.2)
{

ρ(θ) = −a sin θ + b cos θ + r0

r0 = ρ(θ0) + a sin θ0 − b cos θ0

and θ0 satisfies

a cos θ0 + b sin θ0 = 0:

Returning to x; y coordinates we see from (7:2) that the trajectories are the bicircular
(hence bounded) quartics (lemniscates)

(7.3) (x2 + y2)2 + 2(ay − bx)(x2 + y2) +
[
(ay − bx)2 − r2

0 (x2 + y2)
]

= 0

depending on the parameter r2
0 , orthogonally symmetrical with respect to the line ax +

+ by = 0.
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O is a double point of (7:3) with tangents (b2 − r2
0 )x2 − 2abxy + (a2 − r2

0 )y2 = 0.
The trajectories are homoclinic at O for r2

0 < a2 + b2, cycles for a2 + b2 < r2
0 , and

@A corresponds to a2 + b2 = r2
0 .

Example 1. a = 1, b = −1
{

ẋ = x2 − xy + x2y + y3

ẏ = xy − y2 − x3 − xy2:

Fig. 1.

8. Number of petals

Theorem 6 is refined by

Theorem 7. Under the assumptions of Theorem 5 the number of petals can be
1; 2; : : : ; n − 2.

Proof. Let us consider the system of degree 2m + 1

(8.1)
{

ẋ = xHh(x; y) + (x2 + y2)my

ẏ = Hh(x; y)y − x(x2 + y2)m

where h; m are integers satisfying

(8.2) m = 1; 2 : : : ; 1 ≤ h ≤ 2m − 1
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and Hh(x; y) is a homogeneous polynomial of degree h

(8.3) Hh(λx;λy) = λhHh(x; y); λ ∈ R

non divisible by x2 + y2.
O is the unique singular point of (8:1): In fact

ẋ2 + ẏ 2 = ρ2h+2
[
H 2

h (cos θ; sin θ) + ρ4m−2h
]

= 0 ⇔ ρ = 0:

In polar coordinates (8:1) can be written

ρ̇ = ρh+1Hh(cos θ; sin θ):

Hence the trajectories of (8:1) are represented by graphs of functions θ �→ ρ(θ) > 0
satisfying

(8.4)
d
d θ

ρ2m−h = −(2m − h)Hh(cos θ; sin θ);

i.e.,

(8.5) ρ2m−h = −(2m − h)
∫ θ

0
Hh(cosϕ; sinϕ)dϕ + r2m−h:

Then (8:1) is totally bounded if and only if

(8.6)
∫ 2π

0
Hh(cosϕ; sinϕ)dϕ = 0:

Therefore if (8:1) is totally bounded the equation

(8.7) Hh(cosϕ; sinϕ)dϕ = 0

has at least one root ϕ0.
Actually, if ϕ0 is a root of (8:7), also ϕ0 + π is a root, because of (8:3). According

to (8.4) the pair of roots ϕ0, ϕ0 + π corresponds to a pair of limit tangent lines at O
oppositely oriented to each other, hence it corresponds to a petal at O.

The assertion follows from (8:2).

Figures 2, 3, 4 represent examples of phase portraits of (8:1) with m = 2 (n = 5).
Theorem 7 is completed by

Theorem 8. Under the assumptions of Theorem 5 the number k of petals satisfies the
inequality

(8.8) k ≤ n − 2

Proof. Write
X (x; y) = Xh(x; y) + higher order terms

Y (x; y) = Yh(x; y) + higher order terms

with Xh(x; y), Yh(x; y) homogeneous polynomials of degree h and

X 2
h (x; y) + Y 2

h (x; y) �≡ 0:
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Fig. 2. –





ẋ = −xy + x4y + 2x2y3 + y5

ẏ = −y2 − x5 − 2x3y2 − xy4
(Hh(x; y) = −y).

Fig. 3. –





ẋ = −x2y + x4y + 2x2y3 + y5

ẏ = −xy2 − x5 − 2x3y2 − xy4
(Hh(x; y) = −xy):
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Fig. 4. –





x = −3x3y + xy3 + x4y + 2x2y3 + y5

ẏ = −3x2y2 + y4 − x5 − 2x3y2 − xy4
(Hh(x; y) = −3x2y).

It is clear that (1:1) cannot be homogeneous, therefore n > h.
On the other hand, a result of A.N. Berlinskii [1] states that, if S is a singular

point of an analytical system having ne elliptic sectors and nh hyperbolic sectors, then
ne + nh ≤ 2h.

In our case ne = nh = k and thus h ≥ k.
Suppose first

yXh(x; y) − xYh(x; y) ≡ 0:

Then

Xh(x; y) = xZh−1(x; y); Yh(x; y) = yZh−1(x; y)

with Zh−1(x; y) homogeneous polynomial of degree h − 1.
Any circumference x2 + y2 = ε2, with ε sufficiently small, has at least 2k contacts

with the vector field (ẋ; ẏ ). This implies h − 1 ≥ k, hence n ≥ k + 2, i.e. (8:8).
Suppose now

yXh(x; y) − xYh(x; y) �≡ 0:

The limit tangent lines at S are finite in number. If ax + by = 0 is not one of
them, it is easily seen to have, in a sufficiently small disc centered at S , an odd number
of contacts with (1:1).

Then h is an odd number.
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If k is even, n > h > k implies n ≥ k + 2 (in fact n > k + 2, as n is odd). If k is
odd then, possibly, h = k. However, as n is odd and greater than h, it holds n ≥ k + 2
again and the proof is complete.

Remark 2. A far more general result, of which Theorem 8 is a particular case, can
be proved, namely

Theorem 9. Let (1:1) be a polynomial system of degree n with a singular point S having
k > 1 equally oriented elliptic sectors. Then, except possibly for (1:1) homogeneous of degree 3,
k ≤ n − 2, i.e. (8:8):
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Università degli Studi di Firenze
Viale Morgagni, 67/A - 50134 Firenze

M. Galeotti:
DiMaD - Dipartimento di Matematica per le Decisioni
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