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Teoria dei numeri. — A Note on squares in arithmetic progressions, I1. Nota di Exrico
Bowmsiert € UmBERTO ZANNIER, presentata (¥) dal Socio E. Bombieri.

AsstracT. — We show that the number of squares in an arithmetic progression of length V is at
most ¢; N 3/ S(Iog N)?2, for certain absolute positive constants ¢, ¢,. This improves the previous result of
Bombieri, Granville and Pintz [1], where one had the exponent % in place of our % The proof uses the
same ideas as in [1], but introduces a substantial simplification by working only with elliptic curves rather
than curves of genus 5 as in [1].

Key worps: Diophantine equations; Elliptic curves; Arithmetic progressions.

Ruassunto. — Una Nota sul numero di quadrati in una progressione aritmetica, II. Si dimostra che il

numero di quadrati in una progressione aritmetica di lunghezza NV non supera ¢; N 35 (log N)2, per due
costanti positive assolute ¢, ¢;. Questo teorema migliora il precedente risultato di Bombieri, Granville e
Pintz [1], dove si aveva 'esponente % al posto del nuovo esponente % La dimostrazione si basa sulle idee
introdotte in [1], con una importante semplificazione ottenuta lavorando con curve ellittiche invece che
con curve di genere 5 come in [1].

1. THE MAIN RESULT

Let Q(IV; ¢, a) denote the number of squares in the arithmetic progression gn + 4,
n=1,2,...,N, and let Q(V) be the maximum of Q(V;g, a) over all non-trivial
arithmetic progressions ¢gn + . Rudin conjectured that Q(N) = OWN), and it is
quite likely that Q(N) ~ \/ng as IV tends to oo. The most optimistic conjecture
is that Q(N) = Q(N;24, —23) for every sufficiently large V. We refer to [1] for a
discussion of Rudin’s conjecture and evidence for these bounds.

The bound Q(N) = o(NV) follows, as observed by Szemerédi [2], from Szemerédi’s
theorem on arithmetic progressions (in this case, length 4 suffices) and Euler’s result,
already stated by Fermat in 1640, that no four squares can form an arithmetic pro-
gression. The main result of [1] states that Q(N) < N 3(log N)‘/ for two positive
absolute, and computable, constants ¢, ¢’ and represents a substantial improvement over
the qualitative bound obtained through the use of Szemerédi’s theorem.

In this paper we prove

Treorem 1. We have Q(N) < ¢, N*/*(log N)? for two positive absolute, and computable,

constants 6.

(*) Nella seduta dell’8 febbraio 2002.
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2. FIRST REDUCTIONS AND LEMMAS

We begin by stating certain elementary reductions which restrict the ranges to be
considered for g and a, referring to [1] for the easy proofs.

First of all, there is no loss of generality in assuming that ¢ and # are coprime [I,
p. 371], and moreover we need only consider the case in which ¢ is rather large with
respect to /V, namely

ey g> eV,

as shown in [1, p. 371], using a large sieve argument. Indeed, the large sieve proves
that Q(NV; g, 2) < \/ﬁlogN uniformly in ¢, unless ¢ is divisible by at least half of
the primes up to 3v/N. Therefore, the crux of the matter consists in dealing with very
large values of 4 with many small prime factors.

As in [1], we consider first two solutions gn, + a = mf, i=0,1and 1 < <N,
for two squares in the progression g7 + a. Then n, and », are uniquely determined by
the rational point on P! with homogenous coordinates (7 : 7,), as long as ¢ > 2N and
GCD(q, a) =1 (see [1, p. 372]). This remark establishes a one-to-one correspondence,
once ¢ and a are fixed, between certain rational points (m, : m,) and pairs (7, , n,) of
solutions.

Next, consider a third solution ¢n, + 2 = m§ By eliminating @ we obtain
2) (n, — nz)m(z) + (n, — no)mf + (ny — nl)mg =0,

which is the equation of a conic in the projective plane P2, with a rational point
with projective coordinates (z, : m, : m,). By the previous remark, the rational point
(my : my : m,) determines uniquely 7,, 7, and n,.

There are too many rational points on a conic for this result to be directly useful,
hence we consider a fourth solution g7, + 2 = mg, yielding as before an equation

(3) (n, — n3)mf + (ny — nl)m§ + (n, — nz)mg =0.

Now we interpret the system of equations (2) and (3) as the intersection of two quadrics
in projective space P, giving an elliptic curve C with a rational point (,: m,: m,: m;) in

homogeneous coordinates. Again, such a rational point determines uniquely 7, ,..., 7.

We have (m, + m].)(mi — mj) = ml2 — mj2 =q(n, — nj), from which it follows

) ;| < qN

for every 1.
From (2) and (3) we deduce

((”2 - ”1)””07”3)2 = ((”2 - ”o)mf + (n, — ”1)7”;) ((”2 - ”3)””% + (3 — ”1)7”;) ’
which, after multiplying both sides by (7, — 710)2(;12 — n3)2mf m2_6, becomes

) Y2 = X(X 4+ A(X + B)
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with
2
©) X =(nm—n)n—n) (”“) S Y = (= m)(m, — ), — ) 2
m, m,
and
7) A= (ny—n)(n,—ny), B=(n —n)(n —n).

Note that B — A = (n, — n,)(n, — ny).
Equation (5) gives us an elliptic curve E with integer coefficients, of discriminant
_ 2
(8) A =16 - n).
i<j
The associated morphism C — E has degree 4.
Up to now, we have followed the arguments in [1]. The new observation is that,

since ml2 = a2 (mod ¢), the rational point (X, ¥) on the elliptic curve E satisfies the
additional constraint

9) X = (n, — ny)(n, — ny) (mod g).
Moreover, an easy estimate using (4) shows that
(10) h(1:X:Y)<3logg+ 6log V.
The key step in the proof will be a uniform bound for the number of rational points
of E satisfying (9) and (10).

We may also work with the Néron-Tate height A(P) = lim4 "/(2"P) rather than
the absolute logarithmic height A(P) of a point P. Explicit bounds for the difference of
the two heights have been obtained by Zimmer in [3], for curves given in Weierstrass

model yz = 4x° — %% —g. There is no problem in adapting Zimmer’s bound to curves
as in (5), and for our curve £ and any rational point P = (1:X:Y) on E we obtain

1) |h(P) = h(P)| < ¢;log N

for an explicitly computable (and not too large) absolute constant ¢;. Since we assume
log g > /N, these corrections by an amount proportional to log NV are negligible com-
pared to logg as soon as IV is sufficiently large. Therefore, given € > 0 and assuming

N > N, (e) sufficiently large as a function of € alone, we need only compute the number
of rational points P = (1:X:Y) of E satisfying (9) and

(12) h(P) < (3 +2)logg.
The key lemma is
Lemma 1. Ler X be the set of rational points of E satisfying the congruence (9) and let
€ > 0. We assume N > N, (€), ¢ > VN, where N, (€) is a certain computable function of .
Let P, P, , Py € X be three distinct points such that P, + PJ # O for every i # j. Then

we have
mljax h(P. — P].) > (1 —¢)logg.
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Proor. By (11), since g > /Y and N > N, (¢) it suffices to prove the statement

with the absolute logarithmic height 4 in place of the canonical height b
We write X(P), Y(P) for the (X, Y)-coordinates of a point P of E, not equal to
the origin O at co. Let 7,7 € {1,2, 3}, i # j. By the addition formula on £, we have

Y(P)+ Y(P)

X(P)—X(P)

2
) - X(P) = X(P)~ A B
J

(13) X@-@:(

note that X(P,) — X (P/) # 0 because P, # :i:Pj by hypothesis. The congruence (9)
shows that

(14) X(P) - X(P].) =0 (mod ¢).

Moreover, since (1, — n,)(n, — n;) is an integer, the congruence (9) shows that for any
P € X the denominator of X(P) is coprime with g, hence the same holds for the other
coordinate Y (P).

Let (1)

q; = GCD(Y (P) + Y(P]) » Qs

then by (13) and (14) we see that the denominator of X (Pl.fP].) is divisible by (g/ ql.].)z.
Therefore, the denominator of Y(2, — Pj) is divisible by (g/ qri].)3 and a fortiori

(15) h(P, - Pj) > 310g(q/ql.j).

If the lemma were false, (15) would imply g, > q%Jr% and, since each g, divides ¢,
we would get

(16) 4= GCD(qy, , gy » 43) > 4572 = .

Now ¢, divides the numerator of each Y (P) 4 Y(P) and summing over distinct pairs
ij we see that g, divides the numerator of 2(Y' () + Y(P,) + Y(P;)). Hence g, divides
the numerator of each fraction 2Y(P), i=1,2, 3.

On the other hand, by (9) we see that for P € X we have
4Y(P)* = 4X(P)(X(P) + AX(P) + B) = 4(n, — n))*(n, — n))*(n, — m;)* (mod ).

Since ¢, divides both g and 2Y(P), we conclude that ¢, divides 4(n, — ;10)2(;12 —
—nl)z(nz—n3)2, hence ¢, < 4N°. Since q> ¢¥N, this contradicts (16) for N sufficiently
large as a function of ¢, completing the proof. O

Let r = rankQE (Q). As usual, the real vector space R = R® E(Q) can be equipped
with the euclidean norm |x| defined by |x| = \///;(P) if x is the class of P € E(Q)

modulo torsion and extending it by continuity and linearity to all of R’.

(1) If u/v is a rational fraction in lowest terms with GCD(v, q) = 1, we define GCD(u/v, q) =
= GCD(u, g).
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Levma 2. Suppose N > N, (¢). Then the number of points of X whose image in R @ E(Q)
lies in any given ball of radius p := %(1 —o)'/2, /log q is at most 4.

Proor. If we had five points of X with image in such a ball, three of them, say
P, P,, P, would satisfy P, + P] # O for every 7 # j. By Lemma 1, there would

be such a pair 7, with Z(Pi - P]) > (1 - E)l/zx/logq = 2p. This contradicts the
triangle inequality, proving what we want. O

CoROLLARY. Let € = ﬁ and N > ]\/1(%) Let 6 be the GCD of the differences n; — n;
Jor0<i<j<3.

Then the number of points of X with E(P) < (3 + ¢)loggq does not exceed (2) 4 x
XSZK/ w((n]-—nl-)/é)‘

Proor. Since 6% divides both A = (ny — n)(ny — ny) and B = (n, — n;)(ny — m,) in
(5), the change of variables X = X', Y =8 Y shows that the curve E is isomorphic
over Q to the elliptic curve £’ obtained by replacing 4, B by A/6* and B/§*. By [1,
Lemma 5], the Q-rank r of E, which is the same as the rank of E’, does not exceed

r < w(d/6%) + w(B/&) + w((B—A)/6%) < wlln; —n)/9).

i<j

Let us abbreviate R := (3 + &)/ 2\/log g. By a well-known covering argument (3), the
ball of radius R can be covered with not more than [(1 + 2R/p)"| balls of radius p.
With € = Wlo we have 1 + 2R/p < 8, and the result follows from Lemma 2. O

3. Proor oF THEOREM 1

We conclude the proof of Theorem 1 using the same combinatorial argument as in
[1]. Let us fix g and 4, coprime with g > 2NN. Let Z be a set of Z integers in the
interval [1, N] such that gn + 2 is a square. For 4 > 1 let us define

Zd,l)=={n€e Z:n=1[ (mod 4)};

Z(d, [) is the number of elements of Z(d, /).

Let n:= (n,,... , n;) be a quadruple of distinct points of Z(4, /). Then n deter-
mines a point m on the elliptic curve intersection of the two quadrics (2) and (3). Note
that each ng=m—n, is divisible by ; therefore, the homogeneous vector with coor-
dinates 7, 0 < i< j < 3, has an integral representative k with coordinates k; = 7,/d,
hence with [;[ < N/d. Conversely, let k be a homogeneous vector of integers k;; with
/el.j + /ejl. =0, /el.]» + /eﬂ + k,; =0 for every 7,7, / and ki]‘ # 0 if 7 # j. Then k determines
two quadrics as in (2), (3) and, by the remark immediately preceding (2), given a point

(3) Here w(/) is the number of distinct prime factors of /.
(3) It suffices to take a maximal set of disjoint balls of radius p/2 in the ball of radius R + p/2; doubling
the radius of these balls we obtain a covering.
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(my = my : m, : my) on the resulting elliptic curve C(k) there is at most one point n
with integer coordinates such that gn, + 2 = (¢m,)* with rational ¢ and k;; proportional

ton —mn.
’ J

Any such elliptic curve C(k) determines another elliptic curve E(k) as in (5) and, as
remarked before, a morphism C(k) — E(k) of degree 4 and a set X' (k). Therefore, the

number of rational points m on C(k) we are concerned with is not more than 4 times

the number of points counted in the Corollary to Lemma 2, namely 16 x g2i<j ki)

Let D > 1 to be chosen later. As in [1, Lemma 6], we obtain this time

d
S 2797 = 5 rexs,

D<d<2D I=1 k<N/D

Since ky, , ky, » ky; determine every other k;, using the inequality between arithmetic

and geometric means
Sl _ 1 6uky)
g < Z ok
<j
and the elementary bound
Z " <« x(log P L

m<x

we get
3
Z 16 x 8%i<i“t) « (%) (logN)86_1.
k<N/D
This gives

d 3
Z Z (Z(Z’ Z)) < (%) (logN)Sé_l.

D<d<2D [=1

The contribution to Z = Y7, Z(d, /) from terms with Z(d4, /) < 4 is not more than
4d, while

(Z(d, 0

! ) > 7(d, 1)

whenever Z(d, [) > 5. Hence

d 3
pz< Y (44 +3° (Z(‘i’ D)) <D+ (%) (log N)*" .
=1

D<d<2D
The theorem, with ¢, = 8° — 1, follows by choosing D = N3/, |
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