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Geometria algebrica. — Theta loci and deformation theory. Nota (*) di Claudio

Fontanari, presentata dal Socio E. Arbarello.

Abstract. — We investigate deformation-theoretical properties of curves carrying a half-canonical
linear series of fixed dimension. In particular, we improve the previously known bound on the dimension
of the corresponding loci in the moduli space and we obtain a natural description of the tangent space to
higher theta loci.
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Riassunto. — Luoghi definiti da serie lineari semicanoniche e teoria delle deformazioni. In questo lavoro
si prendono in esame alcune proprietà infinitesimali delle curve con una serie lineare semicanonica di
dimensione prefissata. In particolare, si migliora la stima presente in letteratura sulla dimensione dei luoghi
corrispondenti nello spazio dei moduli e si perviene a una naturale descrizione dello spazio tangente ai luoghi
definiti da serie lineari sottocanoniche di ordine superiore.

1. Introduction

The slang expression in the title refers to some very natural but still mysterious
subvarieties of the moduli space of curves. Namely, define Thr

g = {C : there exists

a line bundle L on C with h0(C; L) = r + 1 such that L ⊗ L = KC } ⊆ Mg . The
first steps towards a purely algebraic theory of theta-characteristics were moved as usual
by David Mumford, in the paper [6] going back to 1971. About ten years later, Joe
Harris laid once for all in [5] the fundations of the subject, so giving a strong impulse
to further investigations. In particular, he posed the following question: «What is the
dimension of the subvarieties Thr

g of moduli? Is it the case that if g >> r then Thr
g

has codimension r(r + 1)=2 in Mg ?» (see [5, p. 617]). In [9] Montserrat Teixidor i
Bigas was able to answer affirmatively Harris’ question at least for r ≤ 4; indeed, the
solution of the case r = 4 was obtained as a by-product of the following more general
result:

Theorem 1 [9, (2.13)]. If r ≥ 4 and g ≥ max(12r − 22; 1
2 (r2 + 3r + 2)), then

dimThr
g ≤ 3g − 4r + 3.

In the paper [9] it is also observed that «the bounds given are not the best possible
and could be improved by ad hoc methods». Of course this fact is not relevant in order
to address Harris’ question, but the search for sharper numerical hypotheses, which is
essentially the subject of the present Note, turns out to be interesting from other points
of view. Here it is our best result in this direction:

Theorem 2. If r ≥ 3 and g ≥ 6r − 11, then dimThr
g ≤ 3g − 4r + 3.

(*) Pervenuta in forma definitiva all’Accademia il 29 ottobre 2001.
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Although we apply the same deformation-theoretical methods, developed by Enrico
Arbarello and Maurizio Cornalba in [1] and [2], our approach is quite different from
Teixidor’s; the spirit of our proof is perhaps closer to the old paper [8] of Beniamino
Segre. Moreover, we make essential use of the following result, proved in Section 3,
which generalizes previous work by Nagaraj (see [7]):

Theorem 3. Set Thr
g;m = {C : C is a smooth curve of genus g with a line bundle L̃ such

that h0(C; L̃ ) = r + 1 and 2mL̃ = K }. Define

µ̃ : H 0(C; L̃ ) ⊗ H 0(C; K − L̃ ) −→ H 0(C; 2K )

σ ⊗ τ �−→ (2m − 1)σd τ − τdσ :

Then TC

(
Thr

g;m

)
= (Coker µ̃)∗.

We work over the field C of complex numbers.

2. Notation and preliminaries

Almost all the technical tools needed in the present work are already contained
in the well-known paper [1] by Enrico Arbarello and Maurizio Cornalba. Here we
limit ourselves to briefly recall the set-up, by translating into English (almost verbatim)
some salient passages from [1]. We will be interested in the deformation theory of
couples (C; L), where C is a smooth, complex, irreducible algebraic curve and L is
a line bundle on C . By an infinitesimal deformation of L → C we will mean the
datum of a deformation of C , X → SpecC[ε], and of a line bundle L on X whose
restriction to C is isomorphic to L. Now, let ΣL be the rank 2 locally free OC -module
whose sections are the differential operators, of order at most equal to one, acting on
sections of L. To every infinitesimal deformation of L → C is associated an element of
H 1(C; ΣL), which is called its Kodaira-Spencer class. This association induces a bijective
correspondence between the set of equivalence classes of infinitesimal deformations of
L → C and H 1(C; ΣL). Now, given σ ∈ H 1(C; ΣL), let L → X → SpecC[ε] be the
corresponding infinitesimal deformation of L → C . We have a natural cup product

(1) H 1(C; ΣL) ⊗ H 0(C; L) → H 1(C; L)

and an exact sequence

0 → OC → ΣL → ΘC → 0

where ΘC is the tangent sheaf on C . We recall also the fundamental applications

µ0 : W ⊗ H 0(C; K − L) −→ H 0(C; K )

where W ⊆ H 0(C; L) is a (r + 1)-dimensional subspace, and

µ : W ⊗ H 0(C; K − L) −→ H 0(C; K ⊗ Σ∗
L)

defined by duality from (1). The linear map

µ1 : Kerµ0 −→ H 0(C; 2K )
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is defined by the following commutative diagram:

0
�

W ⊗ H 0(C; K − L)
µ0−−−−→ H 0(C; K )

∥∥∥
�

W ⊗ H 0(C; K − L) µ−−−−→ H 0(C; K ⊗ Σ∗
L)

�
�

Kerµ0
µ1−−−−→ H 0(C; 2K )

�

0
(see [1, p. 18]); locally we have µ1(σ⊗ τ ) = dσ⊗ τ = τdσ. As in [2], let us denote by
M1

g;k the subvariety of Mg whose points correspond to curves admitting a linear series
of degree k and dimension one. There is a natural identification:

(2) TC (M1
g;k) = (Cokerµ1)∗

(see [3, 8.22]). Moreover, if W =< s; t >⊆ H 0(C; L), the Base-Point-Free Pencil
Trick (see [4, p. 126]) provides an explicit isomorphism:

H 0(C; K − 2L) �−→ Kerµ0

ρ �−→ s ⊗ ρt − t ⊗ ρs

and the map µ1 may be rewritten as follows:

µ1 : H 0(C; K − 2L) −→ H 0(C; 2K )

ρ �−→ ρt 2d (
s
t

) :(3)

3. Tangent spaces to higher theta loci

This section is entirely devoted to the proof of Theorem 3. The argument naturally
splits into three steps. In the first and the third one we closely follow the proof of
Theorem 1 in [7]; in the second step, instead, we develop a completely independent
treatment, which seems to be more direct and geometric in nature.

3.1. First step.

Here we fix the set-up. Chosen an affine covering {U1; U2} of C such that

L̃ (U1) ∼= OC (U1)e1

L̃ (U2) ∼= OC (U2)e2
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we have

K (U1) ∼= OC (U1)hda ∼= OC (U1)e2m
1

K (U2) ∼= OC (U2)h′da′ ∼= OC (U2)e2m
2

where hda and h′da′ are 1-forms which locally generate the canonical sheaf K . More-
over, if α12 ∈ OC (U1 ∩ U2)∗ is the transition function of L̃ , then α2m

12 is the transition
function of K .

If D ∈ H 1(C; TC ) ∼= H 0(C; 2K )∗, D defines a derivation D : OC (U1 ∩ U2) →
→ OC (U1 ∩ U2) and so an infinitesimal deformation C [ε] of C , obtained by gluing
together Spec(OC (U1) ⊗C[ε]=(ε2)) and Spec(OC (U2) ⊗C[ε]=(ε2)) along Spec(OC (U1 ∩
∩U2) ⊗C[ε]=(ε2)) via the function f �→ f + εD(f ).

Lemma 1. Let K [ε] be the canonical bundle of C [ε]. Then the transition function of K [ε]
is given by

α2m
12

(
1 + ε

(
d (D(a))

da
+

D(h)
h

))
:

Proof. This is just a straightforward verification; if β12 is the sought-for cocycle,
then

β12h′da′ = (h + εD(h))d (a + εD(a)) = hda + εD(h)da + εd (D(a))h =

= hda

(
1 + ε

(
d (D(a))

da
+

D(h)
h

))

and the thesis follows.

Corollary 1. Let L̃ [ε] be the deformation of L̃ on C [ε] induced by the deformation of
C . Then the transition function of L̃ [ε] is given by

α12

(
1 +

ε

2m

(
d (D(a)

da
+

D(h)
h

))
:

3.2. Second step.

Now we discuss the crucial point of the argument. The following simple lemma is
probably well-known, but we restate and reprove it here for completeness’ sake.

Lemma 2. The section s ∈ H 0(C; L̃ ) extends to a section of L̃ [ε] when the curve C
deforms up to the first order in the direction D ∈ H 1(C; TC ) if and only if D(s) = 0 in
H 1(C; L̃ ).

Proof. Let s1, s2 be local sections of H 0(C; L̃ ) such that α12s2 = s1. Their first
order deformations s1 + εt1, s2 + εt2 patch together to give a global section of L̃ [ε] if
and only if

(4) γ12(s2 + εt2) = s1 + εt1
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where

γ12 = α12

(
1 +

ε

2m

(
d (D(a))

da
+

D(h)
h

))

is the transition function of L̃ [ε]. Since γ12(s2) = s1 + εD(s1), condition (4) becomes
D(s1) = t1 −γ12t2, which represents a coboundary and as such is 0 in H 1(C; L̃ ).

To apply Lemma 2 in our context an explicit formulation for D(fe1) is needed. This
is provided by the following

Lemma 3. Let fe1 ∈ L̃ (U1) be a local section of L̃ . Then

D(fe1) =

(
f

2m

(
d (D(a))

da
+

D(h)
h

)
+ D(f )

)
e1:

Proof. Since

α12e2 = e1

and

α12

(
1 +

ε

2m

(
d (D(a))

da
+

D(h)
h

))
e2 = e1 + εD(e1);

it follows that

D(e1) =
1

2m

(
d (D(a))

da
+

D(h)
h

)
e1

and

D(fe1) = f D(e1) + D(f )e1 =

(
f

2m

(
d (D(a))

da
+

D(h)
h

)
+ D(f )

)
e1;

as claimed.

Corollary 2. Define

ν̃ : H 1(C; TC ) −→ Hom(H 0(C; L̃ ); H 1(C; L̃ ))

D �−→
(

fe1 �→
(

f
2m

(
d (D(a))

da
+

D(h)
h

)
+ D(f )

)
e1

)
:

Then TC

(
Thr

g;m

)
= Ker ν̃ .

3.3. Third step.

We will obtain the thesis from Corollary 2, as soon as we show that ν̃ = (µ̃)∗ (up
to a scalar multiple). Chosen σ = fe1 and τ = ge2m−1

1 , in order to prove the duality
between ν̃ and µ̃ we have to verify that ν̃ (D)(σ) · τ = D · µ̃(σ ⊗ τ ) in H 1(C; K ), or
that res(ν̃ (D)(σ) · τ ) = res(D · µ̃(σ ⊗ τ )), where res : H 1(C; K ) −→ H 0(C;OC ) ∼= C is
the duality homomorphism.
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On one hand,

ν̃ (D)(σ) · τ =

(
f

2m

(
d (D(a))

da
+

D(h)
h

)
+ D(f )

)
e1ge2m−1

1 =

=

(
fg
2m

(
d (D(a))

da
+

D(h)
h

)
+ D(f )g

)
e2m

1 =

=
fgh
2m

d (D(a)) +
fgD(h)

2m
da + D(f )ghda =

=
fgh
2m

d (D(a)) +
fgD(a)

2m
dh + hD(a)gdf =

=
1

2m
d (fghD(a)) − 1

2m
hD(a)fdg − 1

2m
hD(a)gdf + hD(a)gdf =

=
hD(a)

2m

(
(2m − 1)gdf − fdg

)
+

1
2m

d (fghD(a)):

Hence for every p ∈ C \ U1 we have

resp(ν̃ (D)(σ) · τ ) = resp

(
hD(a)

2m

(
(2m − 1)gdf − fdg

))
:

On the other side,

D · µ̃(σ ⊗ τ ) = D ·
((

(2m − 1)gdf − fdg
)

hda
)

=
(
(2m − 1)gdf − fdg

)
hD(a):

Hence we deduce

res(D · µ̃(σ ⊗ τ )) =
∑

p

resp

((
(2m − 1)gdf − fdg

)
hD(a)

)
= res(2mν̃ (D)(σ) · τ )

where the sum runs over p ∈ C \ U1.
Theorem 3 is now completely proved.

4. Dimension of theta loci

In this section we turn to the proof of Theorem 2. Fix a general point P in
an irreducible component of Thr

g ; P corresponds to a smooth curve C of genus g

with a theta-characteristic L such that h0(C; L) = r + 1. Consider the natural map
µ :

∧2 H 0(C; L) → H 0(C; 2K ) defined by µ(σ ∧ τ ) = σd τ − τdσ. The elements in∧2 H 0(C; L) of the form σ ∧ τ are called decomposable (see [9, Definition 2.9]); the
projectivization of the set of decomposable elements is indeed a Grassmannian G of lines
in Pr . We denote by S(G) the secant variety of G and we recall that dimS(G) = 4r −7.

If PKerµ ∩ S(G) = ∅, then dim Kerµ + dimS(G) + 1 ≤ dim
∧2 H 0(C; L) =

= dim Kerµ + dim Imµ, so dimS(G) + 1 ≤ dim Imµ. By applying Nagaraj’s theorem
(i.e. Theorem 3 with m = 1) we get:

dimThr
g ≤ dim TP (Thr

g ) = 3g − 3 − dim Imµ ≤ 3g − 3 − dimS(G) − 1 = 3g − 4r + 3

i.e. the thesis.
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Now assume that PKerµ ∩ S(G) �= ∅. In this case we have µ(s ∧ t − u ∧ v) = 0
for some s, t , u, v. We take the two (distinct) unidimensional linear subseries of the
half-canonical g r

g−1 defined by < s; t > and < u; v > and we focus our attention on
the morphism:

ψ = (f1; f2) : C −→ P1 × P1

obtained as the product of the two morphisms associated to the above linear subseries.
It is a direct consequence of the theory of the normal sheaf to a morphism as developed
in [1, 2], that ψ cannot be birational to the image (in [9, p. 110] the interested reader
will find all the details). Hence ψ factors through another curve Γ:

ψ : C −→ Γ −→ P1 × P1:

If g (Γ) > 0 then C is a degree δ ≥ 2 covering of a genus γ ≥ 1 curve, so it depends
only on 2g − 2 − (2δ − 3)(γ − 1) moduli.
If instead g (Γ) = 0, then the half-canonical series is composed with a pencil, i.e. there
exists a g 1

k ⊆ PH 0(C; L̃ ) with mg 1
k = g r

g−1.
If m = 1 we have

ψ = (f1; f2) : C
k−→ P1 (1;1)−→ P1 × P1

so ψ should be composed with the diagonal morphism and f1 = f2, which is excluded.
So we may assume m ≥ 2 and k = g−1

m ≤ g−1
2 < g

2 + 1. Hence dimM1
g;k = 2g + 2k−5

(see [2, eq. (2.3), p. 346]) and using (2) we obtain

(5) 2g + 2k − 5 = dimM1
g;k ≤ dim TP (M1

g;k) = 3g − 3 − dim Imµ1 :

If m = 2 just notice that 2L̃ = L, so K − 2L̃ ∼ L and h0(C; K − 2L̃ ) = r + 1. From
(3) it follows that dim Imµ1 = r + 1, so (5) gives

2g + 2
g − 1

2
− 5 ≤ 3g − 3 − r − 1

i.e. r ≤ 2, which is excluded by hypothesis.

Lemma 4. Let

µ̃ : H 0(C; L̃ ) ⊗ H 0(C; K − L̃ ) −→ H 0(C; 2K )

σ ⊗ τ �−→ τ 2

σ2m−2 d

(
σ2m−1

τ

)
:

Then dim Im µ̃ ≥ g − k + 1.

Proof. Fix σ ∈ H 0(C; L̃ ), σ �= 0, so that σ2m−1 ∈ H 0(C; K − L̃ ). Complete
σ2m−1 to a basis of H 0(C; K − L̃ ): (σ2m−1; τ1; : : : ; τs), where s = h0(C; K − L̃ ) − 1.
We claim that µ̃(σ ⊗ ·) embeds < τ1; : : : ; τs > into H 0(C; 2K ). In fact, assume on
the contrary that µ̃(σ ⊗

∑s
i=1 aiτi) = 0 with some ai �= 0. Then locally it should be

d
(

σ2m−1∑s
i=1 aiτi

)
= 0 and so

∑s
i=1 aiτi − cσ2m−1 = 0, whence a1 = : : : = as = 0. By the

claim we may conclude just applying Riemann-Roch.



142 c. fontanari

At last we are in position to prove Theorem 2 also for m ≥ 3. In this case, we have
k ≤ g−1

3 , so Lemma 4 yields the following estimate:

dim Im µ̃ ≥ 2g + 4
3

:

From Theorem 3 we deduce:

dimThr
g ≤ dimThr

g;m ≤ dim TP (Thr
g;m) = 3g − 3 − dim Im µ̃ ≤ 3g − 3 − 2g + 4

3
:

To get the thesis, it will be sufficient to check that

3g − 3 − 2g + 4
3

≤ 3g − 4r + 3;

but such an inequality is a straightforward consequence of the numerical hypothesis
g ≥ 6r − 11. So the proof is over.
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