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Equazioni a derivate parziali. — Estimates of weighted Holder norms of the solutions to
a parabolic boundary value problem in an initially degenerate domain. Nota (*) di Antonio
Fasano e Vsevorop Soronnikov, presentata dal Socio M. Primicerio.

AsstracT. — A-priori estimates in weighted Hélder norms are obtained for the solutions of a one-
dimensional boundary value problem for the heat equation in a domain degenerating at time # = 0 and
with boundary data involving simultaneously the first order time derivative and the spatial gradient.

Key worps: Heat equation; Boundary value problems of higher order; A-priori estimates in weighted
Halder spaces.

Ruassunto. — Stime della norma in spazi di Hilder con peso delle soluzioni di un problema al contorno per
equazioni paraboliche in un domino inizialmente degenere. Si ottengono stime a priori in opportune norme di
Halder con peso per le soluzioni di un problema unidimensionale per 'equazione del calore in un dominio
mobile che degenera per # = 0 e con una condizione al contorno in cui compaiono simultaneamente le due
derivate prime della funzione incognita.

INTRODUCTION

Boundary value problems for the heat equation in domains with a moving boundary
are frequently encountered in applications, particularly when the moving boundary is
a-priori unknown (phase change problems are typical examples). In some cases the
domain can be inidally degenerate, z.e. with zero thickness in the spatial direction.
This is precisely what happens during the first stage of infiltration of porous materials.
The analysis of a very peculiar flow problem through a porous medium with liquid
absorbing granules during the unsaturated regime leads to an extremely complex free
boundary problem for a parabolic equation with history-dependent coefficients that has
been presented and partially solved in [2, 3] under some severe restrictions (see also
the overview [4] and the extensions [1]). The basic model for the stage of unsaturated
penetration in one-dimensional geometry (in a half space x > 0) is summarized as
follows.

We introduce the main quantities:

» pressure,

Y saturation, X € (0, 1),

¢ porosity,

k(¢ , ¥) hydraulic conductivity,

¢,(¢) inflow rate at x = 0 as a function of time,

(*) Pervenuta in forma definitiva all’Accademia il 15 ottobre 2001.
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s(¢) penetration depth of the fluid, s(0) =0,
S, saturation threshold for penetration and adsorption,

O(x) inverse function of s(#), ie. the time instant at which the penetration front
x = s(¢) reaches the location x,

V(x, t) volume of hydrophile granules per unit volume of the system, V < V.

max "’

In the unsaturated regime the saturation is an increasing function of pressure S(p)
for p < p, (saturation pressure), owing to capillarity effects. The adsorption kinetics is
described by

= V= VIS =),

f being an increasing C' function such that £(0) = 0. Introducing the function

v
dy
(V)= | o,
=[5
Vo
V, being the initial value of V/, and its inverse 1), we can write
Vix, t) = 4(0©)

with
t

0,60, = /[S(x, )= §ldr, Y t>0(x)
0(x)
and consequently

Plx, 1) = ¢y + Vo, —¥(0),

¢, being the initial porosity.
At this point we can write the flow equation in the domain 0 < x < 5(#), 0 < £ < %
(#5 being the onset time of the saturation regime)

1\ OP : 9 9\ _
¢S (P)E + (1 =Y (O)(Sp) - S) — O (/f(d), S)a) =0
with boundary conditions

—Ie@— (1), x=0, 0<t<y,

ax_%
ps(2), 1) =0,
f(t):—/::ﬁ?o)g‘i, x=s(2),0<t<t.

Note that the last boundary condition, expressing the wetting front velocity, is
precisely the Stefan condition. We stress the fact that ©, appearing in the flow equation
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through £ also in the main coefficient is a functional of S(p) which depends also on
the unknown function 6(x). Therefore the scheme above represents a free boundary
problem that, despite the familiar conditions on the free boundary, is quite new and
particularly difficult.

The first step in the study of the general case, which has been synthetized in [5]
(a detailed presentation will appear in a forthcoming paper), is the transformation of
the unknown domain 0 < x < 5(#), #> 0 into the fixed domain 0 < z < /i, > 0,
/y being the initial slope $(0) = % through the mapping x = z + n(2)[s(z) — 4],
where 7(&) =0 for £ < [, n(€) =1 for £ > L(0 </ < [, < /) and is monotone and
smooth.

Next the problem is reformulated for the difference

a0 =z, 0 = pyn (2) (1) = ),
where

p(;:_qT and  p(z, 1) = plx, 1).
0

Since for z = /fr we have r = fp(l)(s(t) — [y#) = 7(#), the Stefan boundary condition
in the original problem can be read as a condition on a linear combination of the
derivatives 4 and 2 on the rectilinear boundary z = /z.

In spite of the complexity of the partial differential equation, the key point in the
proof of the existence theorem for the free boundary problem is the derivation of some
a-priori estimates in suitable Hélder spaces in a domain of the type 0 < 2 < /¢ for a
problem for the heat equation with a Neumann boundary condition for z =0 and a
condition on z = /¢ consisting in assigning the value of a linear combination of the
z-derivative and of the derivative of the unknown along the boundary, which, in view
of the parabolicity of the equation, is effectively a condition of higher order in the space
derivative.

This is a strong motivation for the present paper.

We observe that such estimates are by far not trivial and require original techniques,
due to the concurrence of two difficulties: the degeneracy of the domain and the
presence of a higher order boundary condition.

Therefore we thought that their derivation has a mathematical interest in itself and
we decided to devote a self-contained paper to this subject.

2. AUXILIARY ESTIMATES FOR A LINEAR PROBLEM IN A WEDGE

The problem to be studied is the following
(1) u,—u =f(x, 1, in Q
(2) u (0,1 =g(1, 0<r< T

3) u,(2) + bu (kr, 1) = h(2), 0<t< T
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where 4 and £ are positive constants and

(4) () = u(kt, t).
In order to state our main result, let us define the weighted Holder norms we are going
to use.
Let
QL ={ e :0<7 <t<7,<T}, and [, ={0 < x < kr}

for £ € (0, 7). For any positive number / we consider the usual Hélder norms

NPy, e+ b)) P ux, 1)
PR - W2

12+14/2)

[u]g;l]/%) = sup [u(, Al + sup  sup b

te(ry,1)) te(ry,mp) he(0,m—1)

>

_ Mu(e,r)  Mulx,t
[u( > t)]<lf) = sup |X _.y| s (U] ) - ([1] )
x,y€ly 8)6' ax

>

then we define C"Y 2(QT) as the space of the functions #(x, #) such that the following
norm is finite

[u](/vl/z) /

.

+ sup ¢ suplu(-, 2)].

l#llzrpg,) = su
cH@) €0, 1€(0,7) I

T)

We also need weighted Holder norms of functions defined on the interval (0, 7):

] 1]
_ |4 u(t + ) d7ulz) Y
Hu”E‘/(o,T)— sup sup sup h W — 0 + sup ¢ |u(t)|
(0, T) te(r/2,7) he(©,t—7) dr dr €0, 7)

At this point we assume that the function f belongs to the weighted Holder space
C&’Q/Z(QT) and the data g, 4 belong to cU+o 2, 7).

We want to prove the following

Tueorem 1.1. Let u be a solution of (1)-(3). Then

H u HEHa,Ha/Z(QT) + H ﬁz HE(H“)/Z(O,T) <

< C(HfHana/Z(QT) =+ ||g||6(l+a)/2(o,r) + H /7H6(1+a>/2(o,r))~

The proof goes through two basic steps. First we work on an interval (¢, 7) excluding
the origin and we obtain an estimate of the desired quantity involving the specified
norms of f; g, b, and the L,-norm of (-, #) over intervals (0, 4z) (see (39)), multiplied
by t—5/2—a
weighted Hélder norms of f, g, /. An important tool will be the estimates for the

. Then we show that also the latter norm is estimated in terms of the same

solutions of a similar problem in a trapezoidal domain, whose proof is placed in the
Appendix.
Theorem 1.1 can be slightly generalized, as we shall see in the sequel.
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3. ESTIMATES EXCLUDING THE ORIGIN

-

For a fixed 7 € (0, 7) we consider the interval (¢, 7), with € = Z and we perform
the following rescaling

) Ulx, t) = u(ex, €t)

(6) F(x, 1= ezf(ex, €r) , G(1) =egler) , H(r) =eh(er)

so that (1)-(3) become

7) eU-U_ =F, 0<x<kht, 1 <t<4,
®) U,n=0aG, 1<t<4,
9) U,(t) + bU (kt, 1) = H_, 1<r<4
with

(10) U(r) = Ulke, 1).

From (7)-(9) we can derive an initial-boundary value problem in the same domain by
introducing a cut-off function &, (#) defined for each A € [0, 1] as follows

E@W=1forr>2+ X, &(1)=0 for t<2+%

(1) EL €] < e,

for some constant ¢ > 0. We remark that [EA]E?‘?@ < e, [E;]E?)z}) < A7 for
ac(0,1).
The product

(12) V(x; t) = U(.X', t)g)\(t)

satisfies the following problem

(13) ev,— v, = F¢& +eUE,, 0<x<kt, 1<r<4,
(14) v(x,1)=0, 0< x<k,
(15) v,(0,)=Gg,, 1<t<4,
(16) 7.(8) + bo(kt, )= HE +UME,, 1<1<4,

to which the estimate (A.7) of the Appendix can be applied.
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Thus, setting / = {x € (0, £7)}, we obtain

€ sup [v,(, Dlcag,y + sup |00, T|crvag,) <
re.4) re.4)

< C{ sup  |E.(, T)|gag, + sup |EleA™2 +eX'e sup  |UC, eag,y T
T€(2+% ,4) T€(2+% ,4)

o

€ —a o (5) —a
+ ysup | U] /2+62<[F VG iaa.g +sup [F [eA™ +

€ (5
+€X[U](22+% 4)+

TR

sup l~](7')|c)\%> +

T€(2+% ,4)

JETY [ _lta
+ sup [G(T)]+e€ 2 [G€]<l+%)4)+ sup  |G.(T)]|eA” 7 | +

re(l+3 ,4) TEQ+3 .4

+  sup |Hé(7')|+§ sup l~/(7)|+e(5<[H](3)2’ +

TeQ+3 .4 Te@+3 .4)
o C . ~4(92) ~ oo
+ sup (@A 101, s (D@l )}
Te@+3 .4 . Te@+3 .4

which can be simplified to

e sup |v.(-, T)cag,) + sup [0(, D2,y <
T€(2,4)

bl
< C{ sup |}76("7')|Ca(/7-)<1 + <§> ) +
TE(2+%,4)

a =~ ($) €
+e[F 7+ sup GE(T)|<1 + (X) ) +
27 T€(2+%,4)
(17) L
Lta (L2 € 5
tet sy +Te<§jg,4>|H€(T)|<l i <X> ) Fel (2“ ot

>l o

1 €
sup  [UC, Dleag,) + Y sup (T)(l + ()\) > +
TEQ+3 .4) TEQ+3 .4)
o
>\

Now we use the following elementary inequality

$ N\
(18) [0} 4)§< sup |(7T(T)|> (2 sup |U(T)|)

rEQ+% ,4) TEQ+3 .4

NI>«

in connection with Young’s inequality, to get

I e (%) ~ « -2)y - ~
A 162[U]<2+/\ P 25"‘6)\ ! sup  |U_(1)] + (l 2)5 1/a-5) 31 sup |U(7)]

TEQ+S .4) €@+ ,4)
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and choosing o = A6, for some §, < 1, we obtain
(19) A e3P, <% T @l+2(1- s TIaTT 0|
(2+%’4)_§16 sup _(7)] —5)0% sup |U(7)].
TEQ+2 ,4) TEQ+S .4
In addition we have

(20) |U_(1)] < sup |U.(x, 7)| + ksup |U.(x, 7)|,

x€/r x€Jr

and we use the interpolation inequalities

_1_g,
(U Dag,y < GLUIT +66, 27 Ul »

_1
| UG, ) < 657 UIE 4+ 66, 2| U |y »

1
that, taking &; = §,A, 657 =§,A""%, for some &, < 1, can be rewritten in the form

a

1) ATUC, M < 6,UC, T + @A I3 U I, -

Spa

o _3*t3
(22) AT sup [Ule, | < 6, [UC, DI + cOIN =7 Ul
Jr
Finally we use the estimate
(23) sup  sup |U,(x, 7)[ < C([U]Z-M) + |l UHLZ(/,))
TE(2+% ,4) x€Jr
in order to complete the estimation of all terms containing U on the r.hs. of (17),
namely:
€ o _S5_«a
(24) v sup UG, Dlgag, < 6(54[U]}3+ '+ (G )N U||L2(/.,.))
TG(Z‘}’% ,4)
(consequence of (21)),
_ $ e

[Nl

25) A sup |[U[SATT sup [[UIFTY 4 cOON A Ul

]7'
TEQ+S .4) TEQ+S .4

(following from (22)),

Ales]® <{5le[ sup  |U(,7)[+4C sup  [UIZT 4] Ul |+

C+3.4—
2 TEQ+S .4 TEQ+2 ,4)

(26)

+c(6,) sup [Q[U]ﬁﬂ‘) + (@YX 1= U HLZ(/T)

T€(2+% ,4)

(use first (19) and then (20), (23) and (22)).
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At this point, we recall the definitions (11), (12) of £, and of », and we deduce
from (17) the basic inequality

€ sup | UT ( P T)|ch(]7_) +  sup | ug, T)‘C2+a(/_r) <
TEQR+A,4) TEQ+AN.4)

e

< C{ sup |FE(',T)|CQ(]T)<1 + <§> ) +6%[ﬁe]iz%+)%,4) T

TE(2+%)4)
4o
G , €\ ? Lo o ()
< jaoi(ie (5) ) ek
)2 1 € 2 STH (5)
+ sup [H.(D||1+ Y T e [H] s 5t
TEQ+3 .4 ’
27) 5
+e<54 sup [U];i+a)+c(54)>\_r% sup ||U|L2(/,)> +
re@+3 4 TEQ+3 4
o S5, a
S o) _3t9% €\7
+ATEG sup [UITTY 4 (@)X et sup | Ul H‘(X) +
‘re(2+% 4) 76(2+% ,4)
€ )
+ <1 + X) {516[ sup  |U.(-,7)]+ C sup ([U];TZ + | U|L2(/T))} +
TE@+) .4 TEQ+3.4)
54 a
+ ¢(6,)0 { sup  [UIPTY + ¢(6 )A’lizz“ sup 1] H}
1794 P A 4 1% L(Jr) :
T6(2+% ) TE(Z“F% ,4)
Setting

its
(28) f()\) == >\ 70‘2/4 (6 Sup |U7—( > T)|Co¢(/7_) + Sup |U( > T)|C(2+a) (].,-)) >

7€+ ,4) TEQ+S ,4)

we realize that (27) implies that

1 A 1 A —
2 N < —F = K = —f| = K
@ W< gr(3) K U, =5 (3) +
where K dominates the sum of all terms not including U, i.e.
K=C F $IF 2 Gl+et G,
= sup | e|C0¢(/T) +e2] e](2,4) + sup |G |+e [ e](2,4) +
re@,4) re@,4)

(30)
©osup |H)+ e‘f[HJE;,l))-

T€2,4)

Indeed it suffices to choose 0, small enough and after that ¢, small enough in order to

get the coefficient % in front of f(3). Of course the constants denoted by C include

the dependence on 4, , d,.
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Recursive application of (29) lead to the inequality

and eventually to

(31) f(\) <2K.

Setting A =1 in (31) we conclude that

(32 e sup |U.C,MDlcag,y + sup [UC, Dlag,y < C(K+ sup || U|L2(/.,))'
T€(3,4) T€(3,4) T€(2,4)

Now we use (7)-(9) to get
(33) ST UAR ST/ RS 17 R U

76,80 4 = xx

where

>

[f]i,%g)“: sup sup A I|fx, T+ B) = flx, 7)

(x,7)€Q3 4 he(0,4—7)

and

(34) (0155 < (105 4005
ey = 3.4 G4 >

(35) sup | U.| < sup || + bsup |T,].

We can estimate the norms of U__, U, appearing in (33), (34) by means of interpolation

xx

inequalities as follows

(36) 6%[ljxx]§,%ﬂ)3 < C <e sup |U (> T)lcag,y + sup [UC, T)|C2+QUT)>
o T€(3,4) Te(3,4)

l+a  ~ _(lto
37) € [0],5 < C<e sup |U.(, Dl gagy + sup |U(-,T)|C2+QUT)>,
T€(3.,4) T€(3,4)

In this way we can put all the estimates together and write

€ sup |UT(',T)|CQUT)+ sup |U(',T)|C2+a(/f)+

re(3,4) re(3,4)
7719 Moo (H2) 7
+61+2[U‘r]t,293]4+6 ’ [UT](S,ZZI) + sup |U-r| S
T€(3,4)
a (%)
(38) s ¢l sup [F(CLDlcag,) T e[, +
T€(2,4) ’
Lo - o(4e)

+ sup |G(T)|+e 2 [Gl,5 + sup |H]|+

Te(2,4) Te(2,4)

lia (42
+e 2 [H]l, % ) + C sup [|U(,7) HLZ(/T)‘
Te(2.4)
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Returning to the original variables we deduce

I u||62+a,1+%m% + || % ", I e, <
3., ¢ i
(39 5
—3—a
< (1 ety + 181 5050 1Pt o+ 7 sl )

4. ConcLUSION OF THE PrROOF OF THEOREM 1.1

We turn our attention to || |, ).

Using (1)-(3) we can derive the equality

(40) %% /uzdx—l-bqi?z —|—/uﬁ xzbilh'ﬁ—gu(o,t)—i-/ﬁdx—klgﬁz,
J(®) J(0) (2

in which we replace

k
(0, by () f/ux(x, t) dx
0

and
kt

/fuaﬁx by u(t)/fx t)dx—/f(x t) /ug(é,t)dg dx .
J(@) J (@) J( x

Using the estimate

/-

we obtain the differential inequality

=

(41) % /uzafx—i- b 'u’ /u dx < |b~ I/7—&— g\|u|+/—€u + C(g)* + 1 If\
J(® J(®)
with I, = [ f dx.
J(®)
We can use (41) as a Gronwall type inequality for sup__," (after time integration),
arriving at the estimate

(42) sup |7(7)| < Crsup(|g| + |h| + 1 \f\
T<t T<t
We only need to replace

/’bl/]—i—]fg
0

liz|dT by icsup'i,?2 +
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Let us now consider the quantity

2

(43) t‘2/u2dx:/ {t‘lﬁ(t)—t‘l//au)3 dg] dx.

J(® J(2) x

Using the inequality (2 — b)* < 2(a* + b*) and

i
S —

t
we obtain

(44) %t_z/uzdxgé +k2/ dx.
J(@) J(®)

1

/uﬁdx)z

/(@)

t

Thanks to (44), by adding %ﬁz to (41) we can derive an inequality not containing
I ui dx, in which we can make use of (42), thus obtaining

J(@®)

(45) 7 / %2 - /uzdxg Culr) — 26" "ua,
J(@)

with

(46) (o) = sup(g” + A + L)t

T<t

Now we need an estimate of 7,.

From (1)-(3) we find immediately

%lu jt wds =1 + 6" h—g+ kil — b7,
J(®

Le.

-l d -1 ~
(47) b ut:7$[u+{f‘+b h—g+ ki,
implying
b\, = —%(W,) v+ (L + b h— g + k)i =

d d B B B -

which can be read as

48) 26w, = _%(2% 02 + 2060, + WU, + b h— g + k).
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Thus, going back to (45) we obtain

% (/uzdxzmuwj) +2/:2 2/u24x§
(49) r

7 )0
< Cpule) + 2(6|1,| + a1 + b'h— g+ kill.

Since qu < kt f o dx, we have
/(@)

(50) 20u) || < %/uz dx + 2ktii* < %/u2 dx + CEu(s),
J @) J (@)
where we have used (42) and the definition (46) of p(z). At this point (49) leads to

(51) % ( /uzde’ﬁ[ublf) + §2 ( /uzafx%?[ub[f) < Cu(?).
t

J(®) J()

Indeed we know how to dominate the added term t_z(ZﬁIu + b]j) in terms of a

fraction of #~* Ik u’dx and of Cpu(z). Moreover, on the r.hs. of (49) we have again
J(®)

terms like %” and 2|#| |7, |, while we may eliminate the linear terms in |7 |, 7| by using

G|+ () [ + 67" h + gl < %(b]1,| + |@])* + Cp(s). Multiplying by e~ “" we can

integrate, obtaining

t

/uz dx —2ul, — bluz < Cfc/’/,u(t)fc/T dr <
(52) J(®) 0
< Ce"sup u(rm *C/T = sup(u(7)7),
T<t T<t

which brings us very close to our final estimate, since it gives

1
2
(53) /uzdxgsup (1)) +\/_( /uz afx) Qi + L)),
7 m 70
and in turn
(54) /u2 dx < C {sup(u(T)Tz) + (@] + IZ)} )
Tt
7@

Once again we recall that |#] is estimated by (42). It remains to estimate /,. Integrating
(47) we get

t t
(55) 1u:7wa+/(1f+b*l/afg)dxw/mf,

0
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which, together with (42) and (54), gives
56) 11y < Csup gl + [ + [,

Now, in order to conclude the proof of the theorem, all we have to do is to recall (39)
and to evaluate

Nl gy < Ce ' sup (Ig| + |4l + 1
v \fl

(57) < C{sup 7~ - “lg(r |+sup7’ - AT +supm *|f(x, T)|}. O

J(7)

The theorem just proved can be slightly refined by replacing the spaces ch 2(Q,),
C'0, T) with the spaces Cﬂl’I/Z(QT) , CI(O, T) whose respective norms are

I uHAII/Z(QT) = sup 7°[ ](l ST sup £ lulx, )|,
Cs 7€(0,7) Qe Qp
-2/
H”HQQ(O,T): sup 77[u ]Er/z T osup ¢ P lu(a)|
T7€(0,7) te(0,7)
with 8 > 0.
ArpENDIX

Auxiliary estimates for a linear problem in a trapezoidal domain

Here we derive the estimate we have used for problem (13)-(16)

TreorEM A2, Let V (x, t) solve the problem

(A.1) V.-V, . =Fx, 1), O<x<kht, 1<t<4,
(A.2) Vix,1)=0, 0< x<k,
(A.3) V(0,1 = G(2), 1<t<4,
(A.4) V.(t) + bV (kt, 1) = H(), 1<1t<4,

where V(£) = V (kt, ). Suppose that F € c*%,Ge c® ,He C?% and that

(A.5) Flx,1)=0, 0<x<k,
(A.6) G(1)=H(@1)=0.
Then we have

€ SUP |‘/7-( |Co¢(/>+ Sup |V( T|C2+‘1(/)—

Te(l,n) Te(l,9
(A7) < C< 5‘(11P)|F(" Dleagy + 6%[F](l n T 51(11P)|G(7')| +
Tell,z, z,

o (152) $ren's)
+e€ 2 [G](l’,) + sup ‘H(T)‘—i_ez[H](l,t) ’

Te(l,1)



36 A. FASANO - V. SOLONNIKOV

where F(t) = F(k(?), 1), J. denotes the interval (0, kT), and c¢ is a constant independent of
the data.

The philosophy of the proof is based upon the observation that while interior es-
timates are standard, the basic contribution comes from the behaviour near the lateral
boundaries. Also we can say that if we make transformations letting lower order terms
appear in the equation, they can be absorbed in the source term, since it will be easy
to eliminate them from the right-hand side of the final estimate (A.7).

In view of this remark we may confine ourselves to studying the following pair of
problems in the half strip x> 0, 1 < #< 4, thanks to a localization procedure, utilizing
multiplication by suitable cut-off functions.

Prosrem 1.
(A.8) eV, - Vi.=Fk 1, x>0, 1<r<4,
(A.9) Vi(x,1)=0, x>0,
(A.10) V.0, =G, 1 <t<4.

ProsrEm 2.
(A.11) eV, =V, . =Flx,1), x>0, 1<r<4,
(A.12) Vy(x,1)=0, x>0,
(A.13) V,,00,0) =6V, (0,0)=H(), 1<r<4.

The functions £, , F, may be supposed to have the same regularity as F in (A.1).
Problem 2 comes actually from mapping the domain x < 4z, 1 < # < 4 into x > 0,
1 < < 4 by means of a linear transformation which generates a convective term,
incorporated in the same term F,.

The first problem is standard and for it we have the estimate

2
€ sup [Vh(-n’)]i{?r + sup [1/1(~,T)]§{ra) <
Te(l,) Te(l,n)

l1+a (H-T&)

(A.14)
SC(&W[E@Tma+62[QUﬁ>, 1< r<4.

Te(l,r)

Coming to Problem 2, let us represent its solution in the form
(A.15) V,= W+ W,
where W, W] solve.

ProsLEM 3.
(A.16) eW, - W, . =FEkx,1, x>0, 1<r<4,
(A.17) Wi(x,1)=0, x>0,

(A.18) Wi(0,2) =0, 1< t<4.
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PrOBLEM 4.
(A19) W, -W_=0, x>0, 1<t<4,
(A.20) Wix,1)=0, x>0,

(A.21) W, — bW (0,1)=H(@) + bW, (0,0)=H (1), 1<t<4
Again we have a standard estimate for Problem 3 (see [6]):

e sup (W, () + sup (W(, DIgH <

Te(l,1) Te(l,0)

(A.22)

< ( sup (B, 1Y + eF R0, M1 t)>

T7e(l,1)
The solution of Problem 4 has an explicit representation:
(A.23) Wi(x, t) = / G (x,t—T1)H'(1)dT,
where
(A.24) G (x, 1) = —2/F€x(x + bu, t — u) du,
0
with
1 t 1 2

_1 i —ex?/(40)
(A.25) I (x, ) EF(X, e) —Zﬁe ,
so that —2I"_(x, #) = /e e_”‘z/(4’>.

2yl
The kernel G. is constructed in such a way that it behaves as a double layer potential

for the boundary operator £ — 4. Indeed

0
(E —x) _2/3 U (x+bu,b—u)du=-2T_(x,1),
so that the function W(x, #) defined by (A.23) satisfies condition (A.21) and is a
solution of Problem 4.

We can now evaluate W_ by observing that

t

G :—26/F€xt(x+ bu,t — u)du=

EXX

/8 oot bu,t—u) du— b/ (x+bu,t—u)duy=—2el'_(x, 1) +€bG._,

and that
G .= —2el', + €bG.

€x
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by similar calculations, so that

G . =—2¢ {Fw + eb<I‘E - gGﬁ)} )

which finally gives

t t
W, = —ZE/FEX()C, t—7T)H (1) dT + ezb/(—Zf‘e(x, t—7)+ bG (x, t—71)H (1) dT.
1 1
From (A.26) we derive the estimate
e o n($ o i
LA c<el+z HE 4 wp <r>> <
Te(l,2)
1+2 (%) 3ta
(A.27) <cleT 2 [H]], +e 2 sup|H[) +
1+2 () 3fa
tcle z[vylx(o")](l,l)—’—6 s osup ‘Mx(O’TN .
Te(l,1)
Noting that
3 3 3ta | lia ifa
ETEW, 0,1 + €7 sup [W(0,7)] < cete S [W,0, ], 2

Te(l,9)

and using the interpolation inequality
H'TQ W. (0 (HTG) < W (a) 174 2+a)
(Wi, (0, 9] 5 <ele supl 17—("7—>]R+ + sup [ 1("7—)]R+ ’

Te(l,2) Te(l,2)

from (A.27) we obtain
e sup [W.(, DI, + sup [W(, DRI <
Te(l,1) 7e(1,1)
<l THIT, € sup |HE)
(A.28) <cle @ e ?(llp>| ol +
T 51,

+ ez <e sup [WIT(-,T)]Ki +2 sup [Wl(-,T)]g:“)).
Te(l,r) Te(l,1)

Putting together (A.14), (A.22), (A.28), we deduce that the solution V(x, #) of (A.1)-

(A.4) satisfies

€ sup [V.(, Dlcag,y + sup [V, Dcrrag,) <
Te(l,1) Te(l,1)

o= (9)

< c( sup |[F(-, T)|Co¢(/'7_) +e2 [F](lz,t) +
Te(l,n)

(A.29) o - (1

+ GT[G](I,Zt) ) + 61+%[H]§1%,1) + GHTQ sup |H(T)> +

2
+ CZ sup sup \D)’;V(x, T)

=0 Te(l,t) x€J-

>
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where the presence of the last sum is the consequence of the localization procedure.
The latter term can be replaced by an estimate of the Z,-norm of V, thanks to the
interpolation inequality

2

(A.30) Z sup sup DV (x,7)| <k sup [V(, 7')]}?” + e(k) sup [V, DL,

=0 Te(l,t) x€/r Te(l,z) Te(l,1)

k being a positive constant which can be taken as small as desired.
Thus it remains to estimate the Z,-norm of V. Using the identity

VWV + V2= (V.V), + FV

we can write

ket
%% € /Vzaier 6 V? +/szdx:(b’lH—G)VJr%kevzwLG/dexwL/Fde,
J(@®) J(@®) 0 J@®

and adding and subtracting /. V, with 7 . = [ Fdx, we can rewrite the right-hand side
as follows "

ke b
(A3)  GTH- GV 4 eV G/ Ve /Fdx/ V(e ) de .

0 J(@) x

This allows to derive the inequality

ld 2 17,2 1 2

(A.32) 7@ J@

< %ke|l7\2 6T H = G L V] + (G 1),
yielding in particular

(A.33) sup [V(7)| < ¢ sup (|G| + |H| + | L))

Te(l,n) Te(l,n

At this point (A.32) provides the desired L, estimate, if we can estimate ‘7:‘ To this
end we start from the equality

d,. d B ~ ~
(A.34) eglv—eﬁ/de—]FfG—i-/eeV—l—b (H-V))
J (@)

and we multiply both sides by V, obtaining

bV, = _GV%JV + VU, — G+ keV + b H).
We note that
4 d ~ _
v, =SV~ 1,7,
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and we use once more (A.34), so to get

t

T, = e (V}V + éz;) VU, G+ ke + b H) +
dt 2
(A.35)
+ bel (I, + b"H — G + keV).
Putting this expression in (A.31), using estimate (A.32) and defining

(A.36) po(8) = sup (1G] + |H| + 1),

Te(l,1)

we get the inequality

e% /VzaffoV]Vfbe]‘z, +6/V2dx§
(A.37) 7 J(®
< cpg(®) + 2(el Ly + VDU gy + b7V H| + |G| + ke[ V]).
Setting
(A.38) Z(r) = / Vidx -2V, —el},

J@

for € small enough and using once more (A.32), we can write

(A.39) Ef{—f—FcZSc,uo , l<t<4,

and remembering that Z(1) = 0, we conclude that

t
(A.40) Z(2) gg sup uO(T)/e_(”/E)(’_T) dt < ¢ sup fuy(7).
1

Te(l,1) Te(l,1)

Going back to (A.38), recalling again (A.32) and for € small enough we obtain an
algebraic inequality, which finally leads to

(A41) 1Vl = € swp | 1H@I+ 1601+ [ 171ds
Te(l,z)
J()

At this point, remembering (A.29), (A.30), we obtain the desired estimate (A.7). Hence
the theorem is proved, actually in a shghtly stronger form, since the coefficient of
[H]a , turns out to be €'*% instead of €2 .
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