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Analisi matematica. — A Note on one dimensional symmetry in Carnot groups. Nota (*)
di Isabeau Birindelli e Ermanno Lanconelli, presentata dal Socio G. Da Prato.

Abstract. — In this Note we extend Gibbons conjecture to Carnot groups using the sliding method
and the maximum principle in unbounded domains.
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Riassunto. — Proprietà di simmetria unidimensionale nei gruppi di Carnot. In questa Nota dimostriamo
che la congettura di Gibbons può essere estesa ai gruppi di Carnot nella direzione della base del gruppo
usando la tecnica di scivolamento dei domini.

1. Introduction

Recently the so called Gibbons conjecture has been completely proved simultaneously
by Barlow, Bass, Gui [2], Berestycki, Hamel and Monneau [4] and Farina [8]. Birindelli
and Prajapat in [6] have extended the result to the Kohn Laplacian in the Heisenberg
group Hn = (R2n+1; ◦). Precisely they obtain:

Theorem 1.1. Let u be a solution of

(1.1) −∆Hn u = u − u3 in Hn;

that satisfies |u| ≤ 1 together with the asymptotic conditions :

u(x1; · · · ; xn; y1; · · · ; yn; t ) → ±1 as x1 → ±∞

uniformly with respect to the other variables. Then @u
@x1

> 0 and u depends only on x1.

In the Euclidean case, when the limit is not uniform, this is a conjecture of De
Giorgi, which has been proved in the two dimensional space by Ghoussoub and Gui
in [9] and in the three dimensional space by Ambrosio and Cabré in [1].

The proof of Theorem 1.1 relies on the techniques developed in [4] that use the
sliding method (see [5]) and a maximum principle in unbounded domains.

In particular in [6] such a maximum principle is proved in sub domains of Hn

contained in half spaces by constructing suitable barrier functions in cones.
Using a completely different approach, Bonfiglioli and Lanconelli in [7] have gen-

eralized the maximum principle on unbounded domains to sub-Laplacian in Carnot
groups G = (RN ; ◦).

Namely they obtain the following result:

Theorem 1.2. Let Ω ⊂ RN be an open set whose complementary RN \ Ω contains a

(*) Pervenuta in forma definitiva all’Accademia il 10 settembre 2001.
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G-cone. Let c : Ω → R, c ≤ 0 and let u be a bounded above C 2(Ω) function satisfying

(1.2)

{
∆Gu + cu ≥ 0 in Ω;

lim sup
y→x

u(y) ≤ 0; ’x ∈ @Ω

then u ≤ 0 in Ω.

We have denoted by ∆G :=
∑p

k=1 X 2
k the sub Laplacian in G.

When G = Hn is the Heisenberg group, this Theorem corresponds to Proposition
2.1 in [6]. For the classical case see [3, Lemma 2.1].

We recall that a Carnot group G = (RN ; ◦) is the Lie group associated to a Lie
Algebra G nilpotent, stratified and with constant rank N . G admits a direct sum
decomposition

G = RN1 ⊕RN2 ⊕ · · · ⊕RNm

with N1 = p and N1 + N2 + · · · + Nm = N .
For more details on Carnot groups and definition of G-cone we refer to the next

section, nevertheless let us just make the following
Remark 1. The group action ◦ restricted to RN1 coincides with the Euclidean

action. Precisely denoting the elements of G by x = (x (1); x (2)) with x (1) ∈ RN1 and
x (2) ∈ RN−N1 , we have that

x ◦ y = (x (1) + y(1);σ)

where σ is an element of RN−N1 that depends on x and y.

This property and Theorem 1.2 allow us to use the sliding method to prove our
main result: Theorem 1.3 stated below.

In the next theorem we shall use the following notation for x ∈ G: x = (x1; x̂),
where x1 indicates any direction in RN1 and x̂ are the remaining variables i.e. x̂ ∈ RN−1.

Theorem 1.3. Let u be a solution of

(1.3) ∆Gu + f (u) = 0 in G

which satisfies |u| ≤ 1 together with the asymptotic conditions

(1.4) u(x1; x̂) → ±1 when x1 → ±∞

uniformly in x̂ ∈ RN−1. We assume that f is Lipschitz continuous in [−1; 1], f (±1) = 0 and
that there exists δ > 0 such that

(1.5) f is nonincreasing on [−1;−1 + δ] and on [1 − δ; 1]:

Then @u
@x1

> 0 and

u(x1; x̂) = U (x1):

The sliding method and the Maximum Principle on unbounded domains also allow
us to prove monotonicity results in all other coordinate directions, starting from the
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following property of the group law:

(1.6) (0; : : : ;
i
s; : : : ; 0) ◦ (x1; : : : ; xN ) = (x1; : : : ; xi−1; xi + s;σ)

for any i > N1. Here we have denoted by σ an element of RN−i .
In the next theorem we shall use the following notation for elements x ∈ G: x =

= (x̌; xi) where xi is any direction not in RN1 , and x̌ ∈ RN−1 are all the remaining
directions.

Theorem 1.4. Let u be a solution of (1:3) which satisfies |u| ≤ 1 together with the
asymptotic conditions

(1.7) u(x̌; xi) → ±1 when xi → ±∞

uniformly with respect to x̌ . If f satisfies the hypotheses of Theorem 1:3 then @u
@xi

≥ 0 and the

inequality is strict if @
@xi

commutes with the Xk fields.

2. Proofs and basic facts about Carnots groups

We recall that a Carnot group G = (RN ; ◦) is a Lie group whose associated Lie
Algebra G admits a direct sum decomposition of vector fields

G = V1 ⊕ : : : ⊕ Vm

with dimVj = Nj , [V1; Vj ] = Vj+1 for 1 ≤ j < m and [V1; Vm] = 0. Thus V1 generates
G as a Lie algebra.

More precisely, given a Lie algebra (G; [ : ]) satisfying the above conditions, consider
RN , where N =

∑l
j=1 Nj with the group operation ◦ determined by the Campbell-

Hausdorff formula

(2.8) η ◦ ξ = η + ξ +
1
2

[η; ξ] +
1

12
[η; [η; ξ]] +

1
12

[ξ; [ξ; η]] + : : :

Note that since G is nilpotent there are only a finite number of nonzero terms in the
above sum; precisely those involving commutators of ξ and η of length less than m.
Then (G; ◦) = (RN ; ◦) is the Lie group whose Lie algebra of left-invariant vector fields
coincides with (G; [ ; ]).

Remark 1 and (1.6) follow easily from the Campbell-Hausdorff formula (2.8).
For λ > 0 let us denote by δλ the dilations of G defined by:

δλ(x) = (λx (1);λ2x (2); · · · ;λmx (m))

where x (j) are the elements of RNj .

Definition 2.1. A subset K of G is said to be a G-cone with vertex at the origin if

δ
λ
x ∈ K; ’x ∈ K; ’λ > 0 :

If K is such a cone then xo ◦ K is a G-cone with vertex at xo.
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For what follows it is important to note that any half space of RN contains a G-cone,
hence the Maximum Principle of Theorem 1.2 holds for any open set Ω contained in
a half space.

An immediate consequence of this remark is the following comparison result:

Corollary 2.1. Let f be a Lipschitz continuous function, non-increasing on [−1;−1 + δ]
and on [1 − δ; 1] for some δ > 0. Assume that u1, u2 are solutions of

∆Gui + f (ui) = 0 in Ω

and are such that |ui | ≤ 1, i = 1; 2. Furthermore, assume that

u2 ≥ u1 on @Ω

and that either

u2 ≥ 1 − δ in Ω

or

u1 ≤ 1 + δ in Ω:

If Ω ⊂ G is an open set contained in a half space then u2 ≥ u1 in Ω.

Proof of Theorem 1.3. The proof of Theorem 1.3 is along the lines of Theorem 1
in [4] and Theorem 3.1 of [6]. Of course, here we use the group action ◦ of G, we
rely on the fact that the sub-Laplacian is invariant with respect to ◦ and on Remark 1.
Using the notations of Theorem 1.3, we begin by proving

Claim 1. For any y = (y1; ŷ) ∈ G with y1 > 0 and any s > 0, we have

(2.9) us(x) := u(sy ◦ x) ≥ u(x) for all x ∈ G:

Proof. Using the condition (1.4), for δ > 0 there exists N ∈ N such that

u(x1; x̂) > 1 − δ for x1 ≥ N(2.10)

u(x1; x̂) < −1 + δ for x1 ≤ −N :(2.11)

Hence, using Remark 1 of the Introduction, for s > 2N=y1, we have

(2.12) us(x) = u(sy1 + x1; ŝy ◦ x) > 1 − δ for x1 ≥ −N :

Furthermore, the function us satisfies the equation (1.3) and

us(−N; x̂) > u(−N; x̂) :

We now apply Corollary 2.1 to the functions us and u in the half spaces {x ∈G : x1≥−N }
and {x ∈ G : x1 ≤ −N } to conclude that

us(x) ≥ u(x) for all x ∈ G :

Let τ = inf{s : us(x) ≥ u(x) for all x ∈ G}. We claim that τ = 0. Since the proof
of this claim is identical to the same claim in Theorem 3.1 of [6] we skip it here and
Claim 1 is proved.
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Let Rx : G → G be the right multiplication by x : Rx y = y ◦ x , then from Claim 1
we conclude that

(2.13) du|x · (dRx )0(y) = lim
s→0

us(x) − u(x)
s

≥ 0

for any y such that y1 > 0. By continuity (2.13) still holds if we choose y such that
y1 = 0. Let W denote the subspace of G of y := (0; ŷ).

Since (dRx )0(−y) = −(dRx )0(y), then we have obtained that

(2.14) du|x · (dRx )0(y) = 0

for any y ∈ W .
Now we can conclude that u is a function of x1 alone. Indeed, since Rx is a

diffeomorphism then dRx is an isomorphism from the tangent space of G in 0: T0G = G
to TxG = G. Furthermore the stratified properties imply that dRx : W → W and
therefore the restriction of dRx to W is surjective, equation (2.14) becomes:

∇u · v = 0 ’ v ∈ W

and u is constant in all directions except x1.

To prove that @u
@x1

> 0, it is enough to choose in (2.13) y such that y1 = 1 and all

other variables are 0. Then one gets @u
@x1

≥ 0.
On the other hand, v := @x1

u satisfies ∆Gv + f ′(u)v = 0. As a consequence, by
the strong maximum principle @x1

u is strictly positive.
This concludes the proof of Theorem 1.3.

For the proof of Theorem 1.4 just proceed as in the proof of Theorem 1.3: Choose

y = (0; : : : ;
i
s; : : : ; 0) where i > N1 is the direction of the asimptotic condition and

define us(x) = u(sy ◦ x). Then it is easy to see, using (1.6), that us(x) ≥ u(x) for any
s ≥ 0. This implies that @xi

u ≥ 0. Furthermore if @xi
commutes with ∆G then @xi

u
satisfies a linear equation and by the maximum principle @xi

u > 0.
This concludes the proof of Theorem 1.4.
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