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Calcolo delle variazioni. — On the unique extension problem for functionals of the calculus
of variations. Nota di Luciano Carbone e Riccardo De Arcangelis, presentata (*) dal
Socio M. Miranda.

Abstract. — By drawing inspiration from the treatment of the non parametric area problem, an abstract
functional is considered, defined for every open set in a given class of open subsets of Rn and every function
in C∞(Rn), and verifying suitable assumptions of measure theoretic type, of invariance, convexity, and
lower semicontinuity. The problem is discussed of the possibility of extending it, and of the uniqueness
of such extension, to a functional verifying analogous properties, but defined in wider families of open sets
and less smooth functions. A suitable extension is constructed, and minimal sufficient conditions for its
uniqueness are proposed. The results are applied to some examples in Calculus of Variations.

Key words: Extension of functionals; Uniqueness; Lower semicontinuous envelopes; Inner regular
envelopes.

Riassunto. — Sul problema dell’estensione unica per funzionali del Calcolo delle variazioni. Traendo
ispirazione dalla trattazione del problema dell’area non parametrica, si considera un funzionale astratto,
definito per ogni aperto in un assegnato insieme di sottoinsiemi aperti di Rn ed ogni funzione in C∞(Rn),
verificante opportune ipotesi di tipo mensurale, di invarianza, convessità e semicontinuità inferiore, e si
discute il problema della sua estendibilità, e dell’unicità di tale estensione, ad un funzionale verificante
proprietà analoghe, ma definito su famiglie più ampie di aperti e di funzioni meno regolari. Si costruisce
un’opportuna estensione e si forniscono condizioni sufficienti minimali per la sua unicità. I risultati sono
applicati a diversi esempi in Calcolo delle variazioni.

1. Introduction and presentation of the main results

Starting from the well celebrated example of H.A. Schwarz (in 1880) and G. Peano
(in 1882), the problem of the definition of the concept of area of a surface and of the
study of its properties, both in the parametric and non-parametric cases, and possibly
also in the non continuous framework, interested many important mathematicians.

The researches developed produced a great amount of fruitful ideas and techniques.
We refer to the book of Cesari (cf. [8]) for a survey and a bibliography up to 1956,
and to [14, 17, 19, 20, 26, 29, and the references quoted therein], even if it must be
pointed out that researches on the subject are still in progress.

To analyse the problem, various kinds of approaches were proposed, among which
also some of axiomatic type in which conditions on an abstract functional, defined on
sets of «generalized surfaces» and furnishing the value of the area on the smooth ones,
were proposed in order to identify it as unique extension to non smooth surfaces. These
last approaches were essentially based on the topological (e.g. lower semicontinuity) and
the measure theoretic properties of the area functional.

(*) Nella seduta del 12 gennaio 2001.
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The success of Caccioppoli and De Giorgi definition (cf. [4, 11, 12]), and the equiv-
alence established between this and the Lebesgue one for continuous surfaces (cf. [27]
for the equivalence result, see also [28] and [13] for a historical sketch), induced math-
ematicians to partially shelve the problem of area definition.

About this question it is useful to report an old Caccioppoli’s idea on the intrin-
sic uniqueness of the different definitions (cf. [3]): «Per un’altra ragione ancora ho
rinunziato ad analizzare qui i rapporti fra la mia definizione e quelle di Lebesgue e
Radò: perché ritengo che l’identità che affermo non sia casuale, come potrebbe far
credere una faticosa verifica diretta, ma dipenda da circostanze semplici ed assoluta-
mente generali. Per una curva non v’ha che una definizione ammissibile di lunghezza:
cioè il funzionale lunghezza ammette, a partire del campo delle poligonali, un unico
prolungamento per semicontinuità inferiore. Un risultato analogo deve potersi stabilire
per le superficie, previa opportuna definizione della proprietà additiva del funzionale
area.

«Lo scetticismo che desta spesso la molteplicità delle definizioni di area sarebbe però
infondato: per l’area interna, dotata cioè della semicontinuità inferiore, proprietà che
ci si accorda oggi tutti a ritenere fondamentale, vi sarebbe un’unica determinazione
ammissibile, cui condurrebbe ogni definizione che avesse un minimo di verosimiglianza
geometrica, conferitole dalla proprietà additiva».

In this Note, we want to make some remarks in order to obtain uniqueness of the
extension for classes of functionals, including the area one, in an axiomatic context. So,
having in mind the non-parametric area case, and by studying in depth some remarks
in [5], we enlarge the classical point of view by keeping into account also a vectorial
property of the area functional: the convexity.

Then, we consider an abstract functional, say F , given on a collection of elementary
smooth functions and open sets, and propose sets of conditions fulfilled by F that
select classes of functionals, defined on spaces of less smooth functions and open sets,
in which F possesses a unique extension. This (unique) extension turns out to be
strongly linked to the relaxed functional of F in the L1-topology introduced, in the
case of integral functionals, in [31] and [32], and represented in [22] (for an exposition
on relaxation theory see also [2, 16, 29]). We point out that the idea of relaxation
seems to have been introduced by Lebesgue for the non-parametric area functional in the
framework of uniform convergence, by Fréchet in an abstract context, and essentially by
Caccioppoli again in the surface area context but in the framework of L1 convergence
(for this case see also [21]).

To present the results precisely, we need to give some definitions.
Let us denote by A0 the set of the bounded open subsets of Rn.
For every A, B ∈ A0 we write A ⊂⊂ B if A is a compact subset of B.
For every O ⊆ A0, every set U , Φ : O × U → [0; + ∞], and E ⊆ O, we introduce

the E-inner regular envelope ΦE− of Φ as the function defined by

ΦE− : (Ω; u) ∈ A0×U �→
{

0 if {A ∈ E : A ⊂⊂ Ω} = ∅
sup{Φ(A; u) : A ∈ E; A ⊂⊂ Ω} if {A ∈ E : A ⊂⊂ Ω} �= ∅;



on the unique extension problem for functionals : : : 87

and say that Φ is E-inner regular, or simply inner regular when E = O, if

Φ(Ω; u) = ΦE−(Ω; u) for every (Ω; u) ∈ O × U:

For every function u on Rn, x0 ∈ Rn we set

T [x0]u : x ∈ Rn �→ u(x + x0):

If O is such that x0 + Ω ∈ O whenever x0 ∈ Rn; Ω ∈ O, and U is a set of
functions on Rn such that

(1.1) T [x0]u ∈ U whenever u ∈ U; x0 ∈ Rn;

we say that Φ is translation invariant if

Φ(Ω − x0; T [x0]u) = Φ(Ω; u) for every Ω ∈ O; x0 ∈ Rn; u ∈ U:

For every topological vector space U , we say that Φ is convex if for every Ω ∈ O,
Φ(Ω; ·) is convex, and say that Φ is U -lower semicontinuous if for every Ω ∈ O,
Φ(Ω; ·) is U -lower semicontinuous.

We observe that the above notions are classical in the framework of area definition.
Indeed the notion of inner regular envelope is of measure theoretic nature, the one of
translation invariance is of geometric type (cf. [18, 24, 23]), and the one of lower
semicontinuity is classical and well recognized when dealing with extension procedures
(cf. [18]). We also point out that the notion of convexity is linked to energy and statis-
tics type considerations: in fact the convexity property that we will exploit is essentially
the feature of a functional to take values on averages of configurations smaller than the
corresponding average of the ones on the single configurations (Jensen inequality).

Finally, we denote again by L1
loc(R

n) and C ∞(Rn) the usual topologies of L1
loc(R

n)
and C ∞(Rn) that make them Fréchet spaces, i.e. metrizable complete locally convex
topological vector spaces, and, for every E0 ⊆ A0 and Φ : E0 ×C ∞(Rn) → [0; + ∞], we
denote by Φ the relaxed functional of Φ in the L1

loc(R
n)-topology defined by

Φ : (Ω;u) ∈ E0×L1
loc(R

n) �→ inf
{

lim inf
h→+∞

Φ(Ω;uh) : {uh} ⊆ C ∞(Rn); uh → u in L1
loc(R

n)
}

;

i.e. the greatest L1
loc(R

n)-lower semicontinuous functional on L1
loc(R

n) less than or equal
to Φ(Ω; ·) on C ∞(Rn).

We recall that, given Φ as above, Φ is L1
loc(R

n)-lower semicontinuous.
For every D, O ⊆ A0 we say that D is dense with respect to O if for every A, B ∈ O

with A ⊂⊂ B there exists D ∈ D such that A ⊂⊂ D ⊂⊂ B.
The extension uniqueness result is then the following.
Let E0 ⊆ A0 be dense with respect to A0 and satisfying

(1.2) x0 + Ω ∈ E0 whenever x0 ∈ Rn; Ω ∈ E0;

and let F : E0 × C ∞(Rn) → [0; + ∞] be inner regular, translation invariant, convex,
and C ∞(Rn)-lower semicontinuous. Then, for every E ⊆ A0 satisfying

(1.3) x0 + Ω ∈ E whenever x0 ∈ Rn; Ω ∈ E;
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such that E0 ⊆ E , and for every Hausdorff locally convex topological vector space U
satisfying (1.1), and

(1.4) C ∞(Rn) ⊆ U ⊆ L1
loc(R

n);

(1.5) C ∞(Rn) is finer than the topology of U; the topology of U is finer than L1
loc(R

n);

(1.6) for every u ∈ U; y ∈ Rn �→ T [y]u ∈ U is continuous;

the restriction of (FE0−
)A0−

to E × U is the only inner regular, translation invariant,
convex, U -lower semicontinuous functional from E×U to [0; + ∞] that agrees with F
on E0 × C ∞(Rn) (cf. Theorem 4.6).

We point out that the above result can be no more true if the convexity assumption
is dropped, as already observed in [1] and [5].

Roughly speaking, we can say that convexity gives the necessary uniformity to en-
sure essentially that the relaxed functional of F in the L1

loc(R
n)-topology is the unique

semicontinuous extension of F .
As corollary, we deduce a unique extension result for the integral functional

F : (Ω; u) ∈ E0 × C ∞(Rn) �→
∫

Ω

f (u;∇u;∇2u; : : : ;∇ku)dx;

where k ∈ N, f : R × Rn × Rn2 × : : : × Rnk → [0; + ∞] is convex and lower semicon-
tinuous, and ∇k is the k-th partial derivatives operator (cf. Proposition 6.1).

We also give a result on the uniqueness and the representation of the extension of
the integral functional

F : (Ω; u) ∈ E0 × C ∞(Rn) �→
∫

Ω

f (∇u)dx;

where f : Rn → [0; + ∞] is convex and lower semicontinuous. Indeed, we prove that
the functional

F̃ : (Ω; u) ∈ A0 × BVloc(R
n) �→

∫

Ω

f (∇u)dx +

∫

Ω

f ∞
(

dDsu
d |Dsu|

)
dDsu

is the only inner regular, translation invariant, convex, L1
loc(R

n)-lower semicontinuous
extension of F to A0 × BVloc(R

n), where BVloc(R
n), f ∞, and the other symbols are

defined in section 2.2 (cf. Proposition 6.2).
Eventually, we deduce that the functional

Â : (Ω; u) ∈ A0 ×L1
loc(R

n) �→





∫

Ω

√
1 + |∇u|2dx + |Dsu|(Ω) if u ∈ BV (Ω)

+ ∞ if u ∈ L1
loc(R

n) \ BV (Ω)

is the only inner regular, translation invariant, convex, L1
loc(R

n)-lower semicontinuous
functional on A0 × L1

loc(R
n) equal to the non-parametric area functional on elementary

open sets and functions (cf. Corollary 6.3).
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We point out that the above results are still valid if we replace the inner regularity
assumption with the requirement that for every u ∈ C ∞(Rn), F (·; u) is the restriction
of a Borel measure. In this case the extension is unique in the smaller class of the
functionals that, for every u ∈ U , are restrictions of Borel measures.

For close results, but from a different point of view, and with different aims, cf.
also [10, Chapter 23].

2. Preliminaries

2.1. Some remarks on the definition of a functional on functions and on their equivalence classes.

In the following we will consider functions and equivalence classes of functions that
we will need to compare. To do this it is necessary to make some simple considerations.

First of all we recall that L1
loc(R

n) is a space of equivalence classes of functions
defined on Rn, being two such functions equivalent if they agree everywhere on Rn

except possibly for a set of Lebesgue zero measure, and that, as usual, its elements
are thought as functions defined almost everywhere in Rn. Thus, when considering a
subspace W of L1

loc(R
n), we will regard its elements as equivalence classes of summable

functions on Rn, or to functions defined almost everywhere in Rn.
In particular this holds when W = C ∞(Rn).
On the other side, C ∞(Rn), especially if endowed with the C ∞(Rn)-topology, is

naturally a space of functions defined everywhere in Rn, therefore a way to identify its
elements with their equivalence classes, and to introduce the corresponding topology on
this set, is needed.

To do this, let us denote, for the moment and for sake of clearness, by C ∞
fct (Rn) the

set of the C ∞-functions on Rn, and by C ∞
cls (Rn) the one of the equivalence classes of

the elements of C ∞
fct (Rn). Then it is obvious that for every u ∈ C ∞

cls (Rn) there exists a
unique J u ∈ C ∞

fct (Rn) such that J u ∈ u.
By virtue of this, the map J : u ∈ C ∞

cls (Rn) �→ J u ∈ C ∞
fct (Rn) turns out to be well

defined, linear, and one to one. Consequently {J −1(A) : A open set in C ∞(Rn)} turns
out to be a topology on C ∞

cls (Rn) that makes it a Fréchet space, and J an isomorphism
between topological vector spaces.

Then, given F : C ∞
fct (Rn) → [0; + ∞], we identify it with the functional Fcls = F ◦J

defined on C ∞
cls (Rn) preserving its vectorial and topological properties, and keep to

denote Fcls by F .
So, given u ∈ C ∞

fct (Rn), we allow F to act directly on all the functions in J −1u, by
defining F (v) = F (u) for every v ∈ J −1u. In this sense, we can say that if u ∈ C ∞

fct (Rn)
and v ∈ L1

loc(R
n) is such that v = u a.e. in Rn, then F (v) = F (u).

Obviously, now C ∞
fct (Rn) and C ∞

cls (Rn) can be identified and denoted by C ∞(Rn).
This standard identification procedure is fundamental: it allows to translate problems

defined on regular classes of functions into «regular» Lebesgue equivalence classes.
We also point out that in some situations such identification procedure is impracti-

cable. For example, the classical total variation functional can produce different values



90 l. carbone - r. de arcangelis

when evaluated on two functions, one of which possibly smooth, differing just in one
point.

2.2. Notations and recalls.

Let Ω be an open subset of Rn. By BV (Ω) we denote the set of the functions
in L1(Ω) having distributional partial derivatives that are Borel measures with bounded
total variations in Ω.

For every u ∈ BV (Ω), we denote the Rn-valued measure gradient of u by Du, and the
total variation of Du by |Du|. Moreover, according to Lebesgue decomposition theorem,
we have Du(E ) =

∫
E
∇udx + Dsu(E ) for every Borel subset E of Ω, where ∇u is the

density of the absolutely continuous part of Du, and Dsu is the singular part of Du,
both with respect to Lebesgue measure. We also denote by dDs u

d |Ds u| the Radon-Nikodym
derivative of Dsu with respect to its total variation |Dsu|.

By BVloc(R
n) we denote the set of the functions in L1

loc(R
n) that are in BV (Ω) for

every Ω ∈ A0.
We refer, for example, to [20] and [34] for a survey on BV spaces, here we only

recall that BVloc(R
n) is a Fréchet space.

It is well known that, for every f : Rn → [0; + ∞] convex and z0 ∈ Rn such that
f (z0) <+ ∞, the limit limt→+∞

f (z0+tz)−f (z0)
t exists for every z ∈ Rn, therefore we define

the recession function of f by

f ∞ : z ∈ Rn �→ lim
t→+∞

f (z0 + tz) − f (z0)
t

:

We recall that the definition of f ∞ does not depend on z0 when it varies in the set
where f is finite.

2.3. Integral of functions with values in locally convex topological vector spaces.

For any subset E of Rn we denote by |E | the Lebesgue measure of E .
In the sequel we will make use of the notion of integral of a function with values

in a topological vector space (cf. [30]).
Let W be a Hausdorff locally convex topological vector space, and {pθ}θ∈T be a

family of seminorms defining the topology of W .

Definition 2.1. Let E be a Lebesgue measurable subset of Rn, and f : E → W . We say
that f is W -integrable on E if for every Lebesgue measurable subset S of E , u(S ) ∈ W can be
found such that for every θ ∈ T and η > 0 there exists a subdivision {BS;θ;η;j}j∈N of E into
measurable, pairwise disjoint sets whose union is E , and JS;θ;η ⊆ N finite such that, whenever
J ⊆ N is finite and contains JS;θ;η, it results

sup



p

θ


∑

j∈J

f (yj )|S ∩ BS;θ;η;j | − u(S )


 : yj ∈ BS;θ;η;j for every j ∈ J



 < η :

The vector u(S ) is the value of the integral of f on S , and is denoted by (W )
∫

S
f (y)dy.
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Remark 2.2. It is clear that, if V is another Hausdorff locally convex topological
vector space containing W and having a topology less fine than the one of W , if E is
a Lebesgue measurable subset of Rn, and if f : E → W is W -integrable on E , then f
turns out to be also V -integrable on E , and

(V )
∫

E

f (y)dy = (W )
∫

E

f (y)dy:

The following result is proved in [30, Corollary 5.2].

Theorem 2.3. Let W be a Hausdorff locally convex topological vector space, E be Lebesgue
measurable, f : E → W be W -integrable on E , and L ∈ W ′. Then 〈L; f 〉 is Lebesgue
summable on E , and ∫

E

〈L; f (y)〉dy =

〈
L; (W )

∫

E

f (y)dy

〉
:

We now recall the definition of regularization of a function in L1
loc(R

n).
Let B1 = {x ∈ Rn : |x | < 1}, ρ ∈ C ∞(Rn) be such that ρ ≥ 0, spt(ρ) ⊆ B1,

and
∫
Rn ρ(y)dy = 1. For every u ∈ L1

loc(R
n), and ε > 0 we define the regularization uε

of u as

(2.1) u
ε : x ∈ Rn �→ 1

εn

∫

Rn

ρ
(x − y

ε

)
u(y)dy:

It is well known that uε ∈ C ∞(Rn), whenever u ∈ L1
loc(R

n), and ε > 0.
We now study the convergence properties of the regularizations of a function with

values in a locally convex topological vector subspace W of L1
loc(R

n).

Proposition 2.4. Let W be a Hausdorff locally convex topological vector space satisfying
(1:1), (1:4)-(1:6) with U = W . Let ρ be the function appearing in (2:1), then, for every
u ∈ W and ε > 0, ρ(·)T [ε·]u is W -integrable on Rn, and

(
(W )

∫

Rn

ρ(y)T [εy]udy

)
(x) = uε(x) for a.e. x in Rn;

uε being defined in (2:1).

Proof. Let us denote by Ŵ the completion of W , then Ŵ is a complete Hausdorff
locally convex topological vector space such that, by the right-hand side of (1.4) and
the right-hand side of (1.5) with U = W , Ŵ ⊆ L1

loc(R
n).

Let u ∈ W , ε > 0, then (cf. [9, Proposition 3.1]) ρ(·)T [ε·]u is L1
loc(R

n)-integrable
on Rn, and

(2.2)
((

L1
loc(R

n)
)∫

Rn

ρ(y)T [εy]udy

)
(x) = u

ε
(x) for a.e. x in Rn:

Moreover, we also recall that (cf. for example [9, Proposition 2.4]), being Ŵ a
sequentially complete Hausdorff locally convex topological vector space, and, by (1.6)
with U = W , ρ(·)T [ε·]u continuous with compact support, ρ(·)T [ε·]u turns out to be
Ŵ -integrable on Rn.
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On the other side, by the right-hand side of (1.4) and the right-hand side of (1.5)
with U = W , and by Remark 2.2, we have that

(2.3) (Ŵ )
∫

Rn

ρ(y)T [εy]udy =
(
L1

loc(R
n)
)∫

Rn

ρ(y)T [εy]udy;

from which, together with (2.2), we deduce that (Ŵ )
∫
Rn ρ(y)T [εy]udy ∈ C ∞(Rn).

By virtue of this, and by the left-hand side of (1.4) with U = W , we get that
ρ(·)T [ε·]u is actually W -integrable on Rn, and that

(W )
∫

Rn

ρ(y)T [εy]udy =
(
Ŵ

)∫

Rn

ρ(y)T [εy]udy;

from which, together with (2.3) and (2.2), the thesis follows.

Proposition 2.5. Let W be a Hausdorff locally convex topological vector space satisfy-
ing (1:1), (1:4)-(1:6) with U = W . For every u ∈ W and ε > 0 let uε be defined by (2:1),
then for every u ∈ W , {uε}ε>0 converges to u in W as ε tends to 0.

Proof. Let u ∈ W , then Proposition 2.4 yields that for every ε > 0, ρ(·)T [ε·]u is
W -integrable on Rn.

Let {pθ}θ∈T be a family of seminorms defining the topology of W , θ ∈ T , η > 0,
and let ε > 0. Then, since (W )

∫
Rn ρ(y)T [εy]udy belongs to the closure in W of the

convex hull of {T [εy]u : y ∈ B1} (cf. [9, Proposition 3.2]), we can find λ1; : : : ;λm ∈
∈ [0; 1] with

∑m
j=1 λj = 1, and y1; : : : ; ym ∈ B1 such that

(2.4) p
θ


(W )

∫

Rn

ρ(y)T [εy]udy −
m∑

j=1

λjT [εyj ]u


 <

η

2
:

Moreover, by (1.6) with U = W , there exists εθ;η > 0 such that

(2.5) sup{pθ(T [εy]u − u) : y ∈ B1} <
η

2
for every ε ∈]0; εθ;η[:

Therefore, by (2.4) and (2.5), we conclude that

pθ

(
(W )

∫

Rn

ρ(y)T [εy]udy − u

)
≤

≤ p
θ


(W )

∫

Rn

ρ(y)T [εy]udy −
m∑

j=1

λjT [εyj ]u


 + p

θ




m∑

j=1

λjT [εyj ]u −
m∑

j=1

λj u


 <

<
η

2
+

m∑

j=1

λj pθ(T [εyj ]u − u) < η for every ε ∈]0; εθ;η[;

that is the convergence in W of {(W )
∫
Rn ρ(y)T [εy]udy}ε>0 to u as ε goes to 0.

By virtue of this, and by Proposition 2.4, the thesis follows.
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Eventually, we prove the following Jensen type inequality in the framework of locally
convex topological vector spaces.

As usual, for every f : Rn → [0; + ∞], the symbol
∫
∗Rn f (y)dy denotes the lower

integral of f on Rn.

Theorem 2.6. Let W be a Hausdorff locally convex topological vector space, Φ : W →
→ [0; + ∞] be W -lower semicontinuous, and ρ : Rn → [0; + ∞[ be Lebesgue measurable
and such that

∫
Rn ρ(y)dy = 1. Then Φ is convex if and only if for every w : Rn → W such that

ρw is W -integrable on Rn it results

(2.6) Φ

(
(W )

∫

Rn

w(y)ρ(y)dy

)
≤

∫

∗Rn

Φ(w(y))ρ(y)dy:

Proof. Let us assume first that Φ is convex. In this case the proof is based on well
known separation arguments, and follows, for example, the outlines of the proof of [10,
Lemma 23.2].

Let w : Rn → W be such that ρw is W -integrable on Rn. By the convexity and the
W -lower semicontinuity of Φ, and by separation arguments in locally convex topological
vector spaces (cf. for example [33, Chapter 18; 16, Proposition 3.1: p. 14]), it follows
that for every t < Φ((W )

∫
Rn w(y)ρ(y)dy) there exists L ∈ W ′ and c ∈ R such that

(2.7) t <

〈
L; (W )

∫

Rn

w(y)ρ(y)dy

〉
+ c; 〈L; v〉 + c ≤ Φ(v) for every v ∈ W:

Consequently, by the right-hand side of (2.7) we deduce that

〈L; w(y)〉 + c ≤ Φ(w(y)) for every y ∈ Rn;

from which, once observed that the W -integrability of ρw and Theorem 2.3 imply the
summability of 〈L; w(·)ρ(·)〉, we have

(2.8)
∫

Rn

〈L; w(y)〉ρ(y)dy + c ≤
∫

∗Rn

Φ(w(y))ρ(y)dy:

In conclusion, by the left-hand side of (2.7), Theorem 2.3, and (2.8), it turns out
that

t <

〈
L; (W )

∫

Rn

w(y)ρ(y)dy

〉
+ c =

∫

Rn

〈L; w(y)〉ρ(y)dy + c ≤
∫

∗Rn

Φ(w(y))ρ(y)dy;

from which (2.6) follows.
Let us assume now that (2.6) holds for every w : Rn → W such that ρw is W -

integrable on Rn. Let w1, w2 ∈ W , t ∈ [0; 1], E ⊆ Rn be Lebesgue measurable and
such that

∫
E
ρ(y)dy = t , and let w = χE w1 + χRn\E w2, then ρw turns out to be

W -integrable on Rn, Φ(w(·))ρ(·) Lebesgue measurable, and, by (2.6),

Φ
(
tw1 + (1 −t )w2

)
=Φ

(
(W )

∫

Rn

w(y)ρ(y)dy

)
≤
∫

Rn

Φ(w(y))ρ(y)dy = tΦ(w1) + (1−t )Φ(w2);

that is the convexity of Φ.
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3. Some measure theoretic results

Let O ⊆ A0.
Given P ⊆ A0, we say that P is perfect with respect to O if for every Ω ∈ P , A ∈ O

with A ⊂⊂ Ω there exists P ∈ P such that A ⊂⊂ P ⊂⊂ Ω.
It is clear that if D is dense with respect to O, and D ⊆ O, then D is also perfect

with respect to O.
Let now α : O → [0; + ∞].
We say that α is increasing if

α(Ω1) ≤ α(Ω2) for every Ω1; Ω2 ∈ O such that Ω1 ⊆ Ω2:

For every E ⊆ O, we define the E-inner regular envelope αE− of α as the function
defined by

αE− : Ω ∈ A0 �→
{

0 if {A ∈ E : A ⊂⊂ Ω} = ∅
sup{α(A) : A ∈ E; A ⊂⊂ Ω} if {A ∈ E : A ⊂⊂ Ω} �= ∅;

and say that α is E-inner regular, or simply inner regular when E = O, if

α(Ω) = αE−(Ω) for every Ω ∈ O:

It is clear that, given E ⊆ O, αE− is increasing.

Proposition 3.1. Let O ⊆ A0, and α : O → [0; + ∞]. Then
a) if P ⊆ A0 is perfect with respect to O,

(
αO−

)
P− (Ω) = αO−(Ω) for every Ω ∈ P;

b) if α is increasing, D ⊆ O, and D is dense with respect to O,

αO−(Ω) = αD−(Ω) for every Ω ∈ O:

Proof. Let us prove a).
Being αO− increasing, it is clear that

(3.1)
(
αO−

)
P− (Ω) ≤ αO−(Ω) for every Ω ∈ A0:

On the other side, let Ω ∈ P , and A ∈ O with A ⊂⊂ Ω, then, being P perfect with
respect to O, there exists B ∈ P such that A ⊂⊂ B ⊂⊂ Ω. Therefore we have

α(A) ≤ αO−(B) ≤
(
αO−

)
P− (Ω) for every Ω ∈ P;

from which, together with (3.1), condition a) follows.
Let us prove b).
Since D is dense with respect to O, and α is increasing, it is easy to deduce that

α(A) ≤ αD−(Ω) for every Ω; A ∈ O with A ⊂⊂ Ω;

from which it follows that

(3.2) αO−(Ω) ≤ αD−(Ω) for every Ω ∈ O:



on the unique extension problem for functionals : : : 95

By (3.2), being D ⊆ O and consequently

αD−(Ω) ≤ αO−(Ω) for every Ω ∈ A0;

condition b) follows.

Let O ⊆ A0.
We introduce the following condition

(3.3) Ω \ A ∈ O for every Ω; A ∈ O such that A ⊂⊂ Ω:

Moreover, given {An} ⊆ O, and Ω ∈ O such that An ⊆ Ω for every n ∈ N, we say
that {An} is well increasing to Ω if An ⊂⊂ An+1 for every n ∈ N, and ∪∞

n=1An = Ω. We
say that {An} is well decreasing to the empty set with respect to Ω if {Ω \ An} is well
increasing to Ω.

Let now α : O → [0; + ∞]. We recall the notions of superadditivity and sub-
additivity (cf. [15]), and introduce some variants of them that will be useful in the
sequel.

We say that α is superadditive if

α(Ω1) + α(Ω2) ≤ α(Ω) for every Ω; Ω1; Ω2 ∈ O with Ω1∪Ω2 ⊆ Ω and Ω1∩Ω2 = ∅;

subadditive if

α(Ω) ≤ α(Ω1) + α(Ω2) for every Ω; Ω1; Ω2 ∈ O such that Ω ⊆ Ω1 ∪ Ω2;

boundary superadditive if

α(A) + α(Ω \ B ) ≤ α(Ω) for every Ω; A; B ∈ O such that A ⊂⊂ B ⊂⊂ Ω;

boundary subadditive if

α(Ω) ≤ α(B) + α(Ω \ A ) for every Ω; A; B ∈ O such that A ⊂⊂ B ⊂⊂ Ω:

Proposition 3.2. Let O ⊆ A0 satisfy (3:3), and α : O → [0; + ∞]. Assume that α is
inner regular, and boundary superadditive. Then
i) for every Ω ∈ O for which α(Ω) <+ ∞, α is vanishing along the sequences in O that are

well decreasing to the empty set with respect to Ω,
ii) for every Ω ∈ O for which α(Ω) =+ ∞, α is diverging along the sequences in O that are

well increasing to Ω.

Conversely, assume that O is perfect with respect to A0, that α is increasing, boundary
subadditive, and that i) and ii) hold. Then α is inner regular.

Proof. We prove the first part of the thesis.
Let Ω ∈ O be such that α(Ω) <+ ∞, and let {An} be a sequence in O well decreasing

to the empty set with respect to Ω, then by (3.3), and the boundary superadditivity of
α it follows that

α(An+1) ≤ α(Ω) − α(Ω \ An);

from which, together with the inner regularity of α, i) follows.
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Moreover, the inner regularity of α implies condition ii), and the thesis.
Let us now prove the second part of the thesis.
Since α is increasing, it follows that

(3.4) αO−(Ω) ≤ α(Ω) for every Ω ∈ O:

Let now Ω ∈ O, and assume for the moment that α(Ω) <+ ∞. Let K ∈ A0 with
K ⊂⊂ Ω, then, being O perfect with respect to A0, there exists A, B ∈ O such that
K ⊂⊂ A ⊂⊂ B ⊂⊂ Ω.

By virtue of this, (3.3), the boundary subadditivity of α, and being α increasing,
we conclude that

α(Ω) ≤ α(B) + α(Ω \ A ) ≤ αO−(Ω) + α(Ω \ A );

from which, together with assumption i), the opposite inequality to (3.4) and the inner
regularity of α at Ω when α(Ω) <+ ∞ follow.

In conclusion, being by assumption ii) α inner regular at Ω also when α(Ω) =+ ∞,
the inner regularity of α follows.

Eventually, we prove a variant of the De Giorgi-Letta extension result in our setting.

Theorem 3.3. Let O ⊆ A0 be dense with respect to A0, and α : O → [0; + ∞] be
increasing. Then α is the restriction to O of a Borel measure if and only if α is inner regular,
superadditive, and subadditive.

Proof. It is clear that if α is the restriction to O of a Borel measure, then it is inner
regular, superadditive, and subadditive.

Conversely, it is easy to verify that αO− is inner regular, and that the density of O
with respect to A0 and the assumptions on α imply that αO− is superadditive and
subadditive.

If αO−(∅) �= 0, then, by using the superadditivity and subadditivity properties
of αO−, it must necessarily result αO−(∅) =+ ∞, and α turns out to be the restriction
to O of the Borel measure that is identically equal to + ∞.

If αO−(∅) = 0, the De Giorgi-Letta extension theorem (cf. [15, Théorème 5.6])
applied to αO− yields that αO− is the restriction to A0 of a Borel measure from which,
together with the inner regularity of α, the thesis follows.

4. The unique extension result for inner regular functionals

In the present section we prove the main results of this paper on the existence and
the uniqueness of the extension of a given functional defined on elementary functions
and open sets, under inner regularity assumptions.
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4.1. An approximation result.

In this subsection we prove a general approximation in energy result by smooth
functions. This will be done by using a regularization via convolution argument, an
idea already exploited in [32] and, in more general contexts, e.g. in [16, 25, 7, 10, 5].

Theorem 4.1. Let O ⊆ A0 be such that x0 + Ω ∈ O whenever x0 ∈ Rn, Ω ∈ O, W be
a Hausdorff locally convex topological vector space satisfying (1:1), (1:4)-(1:6) with U = W ,
and Φ : O×W → [0; + ∞] be translation invariant, convex, and W -lower semicontinuous.
Then

Φ(A;u
ε
)≤ΦO−(Ω;u) for every Ω ∈ A0; A∈O with A⊂⊂ Ω; ε∈]0; dist(A; @Ω)[; u∈W:

Proof. Let Ω, A, ε, u be as above, and ρ as in (2.1), then by Proposition 2.4 we
get that (W )

∫
Rn ρ(y)T [εy]udy exists in W .

By Theorem 2.6 applied to Φ(A; ·), once observed that (1.6) and the U -lower
semicontinuity of Φ imply the lower semicontinuity and, consequently, the measurability
of Φ(A; T [ε·]u), we deduce that

(4.1) Φ

(
A; (W )

∫

Rn

ρ(y)T [εy]udy

)
≤

∫

Rn

Φ(A; T [εy]u)ρ(y)dy:

On the other side, being Φ translation invariant, by (4.1) it follows that

Φ

(
A; (W )

∫

Rn

ρ(y)T [εy]udy

)
≤

∫

spt(ρ)
Φ
(
A + εy; u

)
ρ(y)dy ≤

≤
∫

B1

ΦO−(Ω; u)ρ(y)dy = ΦO−(Ω; u);

from which, together with Proposition 2.4, the thesis follows.

4.2. The uniqueness result.

In the present subsection we prove the results about the uniqueness of the extension.

Proposition 4.2. Let E0 ⊆ A0 satisfy (1:2), U be a Hausdorff locally convex topological
vector space satisfying (1:1), (1:4)-(1:6), and G; H : E0 × U → [0; + ∞]. Assume that H
is translation invariant, convex, that G and H are U -lower semicontinuous, and that

(4.2) G (Ω; u) ≤ H (Ω; u) for every (Ω; u) ∈ E0 × C ∞(Rn):

Then

GE0−
(Ω; u) ≤ HE0−

(Ω; u) for every (Ω; u) ∈ A0 × U:

Proof. The thesis is clearly true if {A ∈ E0 : A ⊂⊂ Ω} = ∅.
Otherwise, let (Ω; u) ∈ A0 × U , then by (4.2), and Theorem 4.1 applied with

O = E0, W = U , Φ = H , we get

G (A; uε)≤H (A; uε)≤HE0−
(Ω; u) for every A∈E0 with A ⊂⊂ Ω; ε∈]0; dist(A; @Ω)[;
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from which, together with the U -lower semicontinuity of G , and Proposition 2.5, the
thesis follows.

Theorem 4.3. Let E ⊆ A0, E0 ⊆ E be dense with respect to E , and satisfying (1:2).
Let U be a Hausdorff locally convex topological vector space satisfying (1:1), (1:4)-(1:6), and
G; H : E × U → [0; + ∞]. Assume that G and H are inner regular, that their restrictions
to E0 × U are translation invariant, convex, U -lower semicontinuous, and that

G (Ω; u) = H (Ω; u) for every (Ω; u) ∈ E0 × C ∞(Rn):

Then

G (Ω; u) = H (Ω; u) for every (Ω; u) ∈ E × U:

Proof. By a double application of Proposition 4.2 to the restrictions of G and H
to E0 × U , we infer that

(4.3) GE0−
(Ω; u) = HE0−

(Ω; u) for every (Ω; u) ∈ A0 × U:

On the other hand, by b) of Proposition 3.1 we immediately deduce that

GE−(Ω; u) = GE0−
(Ω; u); HE−(Ω; u) = HE0−

(Ω; u) for every (Ω; u) ∈ E × U;

from which, together with the inner regularity of G and H , and (4.3), the thesis
follows.

4.3. The existence and uniqueness result.

We now deal with the existence of the extension.

Lemma 4.4. Let E0 ⊆ A0 satisfy (1:2), and F : E0 × C ∞(Rn) → [0; + ∞] be trans-
lation invariant, convex, and C ∞(Rn)-lower semicontinuous. Then FE0−

is L1
loc(R

n)-lower
semicontinuous.

Proof. Let Ω ∈ A0, u ∈ C ∞(Rn), {uh} ⊆ C ∞(Rn) be such that uh → u in L1
loc(R

n).
It is clear that, if {A ∈ E0 : A ⊂⊂ Ω} = ∅, then

FE0−
Ω; u) = 0 = lim inf

h→+∞
FE0−

(Ω; uh):

Otherwise, for every h ∈ N, ε > 0, let uh;ε be the regularization of uh .
Let A ∈ E0 be such that A ⊂⊂ Ω, and ε ∈]0; dist(A; @Ω)[, then uh;ε → u

ε
in

C ∞(Rn). By Theorem 4.1 applied with O = E0, W = C ∞(Rn), Φ = F , and by the
C ∞(Rn)-lower semicontinuity of F , we get

(4.4) F (A; u
ε) ≤ lim inf

h→+∞
F (A; uh;ε) ≤ lim inf

h→+∞
FE0−

(Ω; uh):

By (4.4), and again the C ∞(Rn)-lower semicontinuity of F , once observed that
u
ε
→ u in C ∞(Rn), we conclude that

F (A; u) ≤ lim inf
ε→0+

F (A; uε) ≤ lim inf
h→+∞

FE0−
(Ω; uh) for every A ∈ E0 with A ⊂⊂ Ω;

from which the thesis follows.
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Proposition 4.5. Let E0 ⊆ A0 satisfy (1:2), and F : E0 ×C ∞(Rn) → [0; + ∞]. Assume
that F is inner regular, translation invariant, convex, and C ∞(Rn)-lower semicontinuous.
Then (FE0−

)A0−
is translation invariant, convex, and agrees with F on E0 × C ∞(Rn),

for every locally convex topological vector space U satisfying (1:1), (1:4)-(1:6), its restriction to
A0 × U is U -lower semicontinuous, and, for every E ⊆ A0 perfect with respect to A0, its
restriction to E × L1

loc(R
n) is inner regular.

Proof. It is easy to verify that (FE0−
)A0−

is translation invariant and convex.
Moreover, by Lemma 4.4, we have that

FE0−
(Ω; u) = FE0−

(Ω; u) for every (Ω; u) ∈ A0 × C ∞(Rn);

from which, together with the remark that A0 is perfect with respect to E0, a) of
Proposition 3.1, and the inner regularity of F , we deduce the identity of (FE0−

)A0−
with F on E0 × C ∞(Rn).

Let now U be as above, then, by using also the right-hand side of (1.5), it is easy
to deduce that the restriction of (FE0−

)A0−
to A0 × U is U -lower semicontinuous.

Finally, given E as above, a) of Proposition 3.1 yields
((

FE0−

)
A0−

)

E−
(Ω; u) =

(
FE0−

)
A0−

(Ω; u) for every (Ω; u) ∈ E × L1
loc(R

n);

from which the inner regularity of the restriction of (FE0−
)A0−

to E × L1
loc(R

n)
follows.

We can now prove the existence and uniqueness result.

Theorem 4.6. Let E0 ⊆ A0 satisfy (1:2), and F : E0 × C ∞(Rn) → [0; + ∞]. Assume
that F is inner regular, translation invariant, convex, and C ∞(Rn)-lower semicontinuous.
Then, for every E ⊆ A0 perfect with respect to A0, having E0 as a dense subset, and satisfying
(1:3), and for every locally convex topological vector space U satisfying (1:1), (1:4)-(1:6), the
restriction of (FE0−

)A0−
to E × U is the only inner regular, translation invariant, convex, U -

lower semicontinuous functional from E×U to [0; + ∞] that agrees with F on E0×C ∞(Rn).

Proof. Follows from Proposition 4.5, and Theorem 4.3.

5. The unique extension result for measure like functionals

In Theorem 4.6 a central role is played by inner regularity assumptions. In the
theorems below we propose some results in the same order of ideas of Theorem 4.6,
but under groups of assumptions implying inner regularity conditions, and determining
again closed classes of functionals in which carry out the extension processes.

For every O ⊆ A0, every set U , and Φ : O × U → [0; + ∞], we say that Φ

is increasing, boundary superadditive, boundary subadditive if so is Φ(·; u) for every
u ∈ U . We also say that Φ is a Borel measure if for every u ∈ U , Φ(·; u) is the
restriction to O of a Borel measure.
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Proposition 5.1. Let E0 ⊆ A0 satisfy (1:2), (3:3) with O = E0, and F : E0×C ∞(Rn) →
→ [0; + ∞]. Assume that F is increasing, translation invariant, convex, C ∞(Rn)-lower
semicontinuous, boundary superadditive, boundary subadditive, and satisfying the following
conditions

i) for every (Ω; u) ∈ E0 × C ∞(Rn) such that F (Ω; u) <+ ∞, F is vanishing along the
sequences in E0 that are well decreasing to the empty set with respect to Ω,

ii) for every (Ω; u) ∈ E0 × C ∞(Rn) such that F (Ω; u) =+ ∞, F is diverging along the
sequences in E0 that are well increasing to Ω.

Then, for every E ⊆ A0 perfect with respect to A0, having E0 as a dense subset, and
satisfying (1:3) and (3:3) with O = E , and for every locally convex topological vector space U
satisfying (1:1), (1:4)-(1:6), the restriction of (FE0−

)A0−
to E × U is the only functional from

E × U to [0; + ∞] that

a) is equal to F on E0 × C ∞(Rn),

b) is increasing, translation invariant, convex, U -lower semicontinuous, boundary superaddi-
tive, boundary subadditive,

c) vanishes along the sequences in E that are well decreasing to the empty set with respect to Ω,
for every (Ω; u) ∈ E × U in which it is finite,

d ) diverges along the sequences in E that are well increasing to Ω, for every (Ω; u) ∈ E × U in
which it is not finite.

Proof. Let E , U be as above.

It is clear that E0 too is perfect with respect to A0, therefore by Proposition 3.2,
the inner regularity of F follows.

By virtue of this, and of the assumptions on F , Theorem 4.6 applies and we conclude
that the restriction of (FE0−

)A0−
to E×U is the only inner regular, translation invariant,

convex, U -lower semicontinuous functional from E ×U to [0; + ∞] that is equal to F
on E × C ∞(Rn).

We now prove some additional properties of (FE0−
)A0−

.

Obviously (FE0−
)A0−

is increasing.

Let us prove that the restriction of (FE0−
)A0−

to E × U is boundary superadditive.

Let Ω, A, B ∈ E , with A ⊂⊂ B ⊂⊂ Ω, u ∈ U , and, by using the properties
of E0 and E , let Ω′, B ′ ∈ E0, be such that B ⊂⊂ B ′ ⊂⊂ Ω′ ⊂⊂ Ω. Then by a)
of Proposition 3.1, Theorem 4.1 applied with O = E , W = U , and Φ = (FE0−

)A0−

restricted to E×U , by the properties of (FE0−
)A0−

, the inner regularity and the boundary
superadditivity of F , and by (3.3) with O = E0 we get that

(5.1)

(
FE0−

)
A0−

(Ω;u)=
((

FE0−

)
A0−

)

E−
(Ω;u)≥

(
FE0−

)
A0−

(Ω′; uε)=FE0−
(Ω′; uε)=

=F (Ω′;uε)≥F (A;uε)+F (Ω′\B ′;uε)≥FE0−
(A;uε)+FE0−

(Ω′\B ′;uε)

for every ε > 0 sufficiently small:
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By (5.1), and Proposition 2.5 we conclude that
(

FE0−

)
A0−

(Ω; u) ≥
(

FE0−

)
A0−

(A; u) +
(

FE0−

)
A0−

(Ω′ \ B ′; u)

for every Ω′; B ′ ∈ E0 with B ⊂⊂ B ′ ⊂⊂ Ω′ ⊂⊂ Ω;

from which, together with the density of E0 with respect to E , the boundary superad-
ditivity of (FE0−

)A0−
follows as Ω′ increases to Ω and B ′ decreases to B.

Let us prove now that the restriction of (FE0−
)A0−

to E×U is boundary subadditive.
Let Ω, A, B ∈ E , with A ⊂⊂ B ⊂⊂ Ω, u ∈ U , and, by the density of E0 with

respect to E , let Ω′, A′, B ′ ∈ E0, be such that A ⊂⊂ A′ ⊂⊂ B ′ ⊂⊂ B ⊂⊂ Ω′ ⊂⊂ Ω.
Then, by the same arguments used above, we get that

(
FE0−

)
A0−

(B;u)=
((

FE0−

)
A0−

)

E−
(B;u)≥

(
FE0−

)
A0−

(B ′;uε)=F (B ′;uε)(5.2)

for every ε > 0 sufficiently small:

Analogously, by (3.3) with O = E0 we also deduce that

(5.3)
(

FE0−

)
A0−

(Ω \ A; u) ≥ F (Ω′ \ A′; uε) for every ε > 0 sufficiently small:

Therefore by (5.2), (5.3), and the boundary subadditivity of F we conclude that

F (Ω′; uε) ≤ F (B ′; uε) + F (Ω′ \ A′; uε) ≤
(

FE0−

)
A0−

(B; u) +
(

FE0−

)
A0−

(Ω \ A; u)

for every Ω′ ∈ E0 with Ω′ ⊂⊂ Ω; ε > 0 sufficiently small;

from which, together with Proposition 2.5, we obtain as ε decreases to 0 that
(

FE0−

)
A0−

(Ω′; u) ≤
(

FE0−

)
A0−

(B; u) +
(

FE0−

)
A0−

(Ω \ A; u)(5.4)

for every Ω′ ∈ E0 with Ω′ ⊂⊂ Ω:

By (5.4), and the density of E0 with respect to E the boundary subadditivity
(FE0−

)A0−
follows as Ω′ increases to Ω.

Finally, by Proposition 3.2, the vanishing of (FE0−
)A0−

along the sequences in E
that are well decreasing to the empty set with respect to Ω for every (Ω; u) ∈ E ×U for
which (FE0−

)A0−
(Ω; u) <+ ∞, and the diverging of (FE0−

)A0−
along the sequences in E

that are well increasing to Ω for every (Ω; u) ∈ E×U for which (FE0−
)A0−

(Ω; u) =+ ∞
too follow.

In conclusion, since by Proposition 3.2 every functional satisfying a)-d ) is inner
regular, also the uniqueness part of the thesis follows.

By Proposition 5.1 we deduce the following result.

Proposition 5.2. Let E0 ⊆ A0 be dense respect to A0 and satisfy (1:2), (3:3) with
O = E0, and let F : E0 × C ∞(Rn) → [0; + ∞]. Assume that F is translation invariant,
convex, C ∞(Rn)-lower semicontinuous, and a Borel measure. Then, for every E ⊆ A0 with
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E0 ⊆ E and satisfying (1:3) and (3:3) with O = E , and for every locally convex topological
vector space U satisfying (1:1), (1:4)-(1:6), the restriction of (FE0−

)A0−
to E × U is the only

translation invariant, convex, U -lower semicontinuous functional from E × U to [0; + ∞]
that is equal to F on E0 × C ∞(Rn), and is a Borel measure.

Proof. The thesis follows from Proposition 5.1, once we prove that (FE0−
)A0−

is
a Borel measure, since every translation invariant, convex, U -lower semicontinuous
functional from E × U to [0; + ∞] equal to F on E0 × C ∞(Rn), and that is a Borel
measure, actually fulfills also conditions a)-d ) of Proposition 5.1.

We prove that the conditions of Theorem 3.3 with O = E are fulfilled.
Let us start with the superadditivity condition.
Let u ∈ U , Ω, Ω1, Ω2 ∈ E with Ω1 ∪Ω2 ⊆ Ω and Ω1 ∩Ω2 = ∅, and let Ω′

1, Ω′
2 ∈ E0

be such that Ω′
1 ⊂⊂ Ω1, Ω′

2 ⊂⊂ Ω2. By using the properties of E0 and E , let Ω′ ∈ E0

satisfying Ω′ ⊂⊂ Ω, Ω′
1 ⊂⊂ Ω′ ∩ Ω1, and Ω′

2 ⊂⊂ Ω′ ∩ Ω2. Then by Theorem 4.1
applied with O = E , W = U , and Φ = (FE0−

)A0−
, the inner regularity of (FE0−

)A0−
,

the properties of (FE0−
)A0−

, the measure theoretic properties of F , and (3.3) we get
that

(5.5)

(
FE0−

)
A0−

(Ω; u) ≥
(

FE0−

)
A0−

(Ω′; uε) = F (Ω′; uε)≥ F (Ω′
1;uε) +F (Ω′

2;uε) ≥

≥FE0−
(Ω′

1;uε)+FE0−
(Ω′

2;uε) for every ε>0 sufficiently small:

By (5.5), and Proposition 2.5 we conclude that
(

FE0−

)
A0−

(Ω; u) ≥
(

FE0−

)
A0−

(Ω′
1; u) +

(
FE0−

)
A0−

(Ω′
2; u)

for every Ω′
1; Ω′

2 ∈ E0 with Ω′
1 ⊂⊂ Ω1; Ω′

2 ⊂⊂ Ω2;

from which, using again the properties of E0 and E , and Proposition 3.1, it follows that
(

FE0−

)
A0−

(Ω; u) ≥
(

FE0−

)
A0−

(Ω1; u) +
(

FE0−

)
A0−

(Ω2; u)

for every Ω; Ω1; Ω2 ∈ E with Ω1 ∪ Ω2 ⊆ Ω and Ω1 ∩ Ω2 = ∅; u ∈ U:

We now prove the subadditivity condition.
Let u ∈ U , Ω, Ω1, Ω2 ∈ E with Ω ⊆ Ω1 ∪ Ω2, and let Ω′ ∈ E0 be such that

Ω′ ⊂⊂ Ω. By the properties of E0 and E , let Ω′
1, Ω′

2 ∈ E0 with Ω′
1 ⊂⊂ Ω1, Ω′

2 ⊂⊂ Ω2,
and Ω′ ⊆ Ω′

1 ∪ Ω′
1. Then by Theorem 4.1 applied with O = E , W = U , and

Φ = (FE0−
)A0−

, the inner regularity of (FE0−
)A0−

, the properties of (FE0−
)A0−

, the
measure theoretic properties of F , and (3.3) we get that

(5.6)

(
FE0−

)
A0−

(Ω1;u)+
(

FE0−

)
A0−

(Ω2;u) ≥
(

FE0−

)
A0−

(Ω′
1;uε)+

(
FE0−

)
A0−

(Ω′
2; uε) =

= F (Ω′
1; uε) + F (Ω′

2; uε) ≥ F (Ω′; uε) ≥
≥ FE0−

(Ω′; uε)

for every ε > 0 sufficiently small:
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By (5.6), and Proposition 2.5 we conclude that
(

FE0−

)
A0−

(Ω1; u) +
(

FE0−

)
A0−

(Ω2; u) ≥
(

FE0−

)
A0−

(Ω′; u)

for every Ω′ ∈ E0 with Ω′ ⊂⊂ Ω;

from which it follows that(
FE0−

)
A0−

(Ω; u) ≤
(

FE0−

)
A0−

(Ω1; u)+
(

FE0−

)
A0−

(Ω2; u)

for every Ω; Ω1; Ω2 ∈ E with Ω ⊆ Ω1 ∪ Ω2; u ∈ U:

By the above conditions, and the inner regularity of (FE0−
)A0−

the thesis follows by
using Theorem 3.3.

6. Some applications

In the present section we apply the results of the previous ones to some integral
functionals of the Calculus of Variations.

Proposition 6.1. Let E0 ⊆ A0 satisfy (1:2), k ∈ N, f : R × Rn × Rn2 × : : : × Rnk →
→ [0; + ∞] be convex, lower semicontinuous, and F : (Ω; u) ∈ E0 × C ∞(Rn) �→
�→

∫
Ω

f (u;∇u;∇2u; : : : ;∇ku)dx . Then, for every E ⊆ A0 perfect with respect to A0,
having E0 as a dense subset, and satisfying (1:3), and for every locally convex topological vector
space U satisfying (1:1), (1:4)-(1:6), the restriction of (FE0−

)A0−
to E × U is the only inner

regular (respectively measure, provided (3:3) with O = E0 and O = E are fulfilled ), trans-
lation invariant, convex, U -lower semicontinuous functional from E × U to [0; + ∞] that
agrees with F on E0 × C ∞(Rn).

Proof. Follows trivially from Theorem 4.6 (respectively by Proposition 5.2).

Proposition 6.2. Let E0 ⊆ A0 satisfy (1:2), f : Rn → [0; + ∞] be convex, lower
semicontinuous, and let F : (Ω; u) ∈ E0 ×C ∞(Rn) �→

∫
Ω

f (∇u)dx . Then, for every E ⊆ A0

perfect with respect to A0, having E0 as a dense subset, and satisfying (1:3), the functional

F̃ : (Ω; u) ∈ E × BVloc(R
n) �→

∫

Ω

f (∇u)dx +

∫

Ω

f ∞
(

dDsu
d |Dsu|

)
d |Dsu|

is the only inner regular (respectively measure, provided (3:3) with O = E0 and O = E
are fulfilled ), translation invariant, convex, L1

loc(R
n)-lower semicontinuous functional from

E × BVloc(R
n) to [0; + ∞] equal to F on E0 × C ∞(Rn).

If, in addition, f satisfies

(6.1) |z | ≤ f (z) for every z ∈ Rn;

then, for every E ⊆ A0 perfect with respect to A0, having E0 as a dense subset, and satisfy-
ing (1:3), the functional

F̂ : (Ω;u)∈E×L1
loc(R

n) �→





∫

Ω

f (∇u)dx +

∫

Ω

f ∞
(

dDsu
d |Dsu|

)
d |Dsu| if u∈BV (Ω)

+ ∞ if u∈L1
loc(R

n)\BV (Ω)
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is the only inner regular (respectively measure, provided (3:3) with O = E0 and O = E
are fulfilled ), translation invariant, convex, L1

loc(R
n)-lower semicontinuous functional from

E × L1
loc(R

n) to [0; + ∞] equal to F on E0 × C ∞(Rn).

Proof. We prove only the part of the thesis relative to F̂ , and under inner regularity
assumptions, the other ones being analogous.

In this case the thesis follows from Theorem 4.6, once we prove that

(6.2)
(

FE0−

)
A0−

(Ω; u) = F̂ (Ω; u) for every (Ω; u) ∈ E × BVloc(R
n):

To do this let us first prove that F̂ is L1
loc(R

n)-lower semicontinuous.
Let (Ω; u) ∈ E × L1

loc(R
n), {uh} ⊆ L1

loc(R
n) be such that uh → u in L1

loc(R
n), and

let us assume that the limit limh→+∞ F̂ (Ω; uh) exists and is finite. By virtue of this
we infer that uh ∈ BV (Ω) for every h ∈ N and, by using (6.1) and the sequential
weak*-compactness of the bounded subsets of BV (Ω), that u ∈ BV (Ω).

The proof of the L1
loc(R

n)-lower semicontinuity of F̂ is thus reduced to the one of
the L1

loc(R
n)-lower semicontinuity of its restriction to E × BV (Ω), and this holds for

example by [6, Proposition 1.7].
The L1

loc(R
n)-lower semicontinuity of F̂ implies that

F̂ (A; u) ≤ FE0−
(B; u) ≤

(
FE0−

)
A0−

(Ω; u)

for every Ω; B ∈ A0; A ∈ E0 with A ⊂⊂ B ⊂⊂ Ω; u ∈ L1
loc(R

n);

from which, being E0 dense with respect to E , we conclude that

(6.3) F̂ (Ω; u) = F̂E0−
(Ω; u) ≤

(
FE0−

)
A0−

(Ω; u) for every (Ω; u) ∈ E × L1
loc(R

n):

Conversely, by Theorem 4.1 applied with O = E0, W = BVloc(R
n), and Φ equal to

F̂ we get that

F̂ (Ω; u) ≥ F̂E0−
(Ω; u) ≥ F̂ (A; u

ε
) = F (A; u

ε
) = FE0−

(A; u
ε
)

for every Ω ∈ E; A ∈ E0 with A ⊂⊂ Ω; ε ∈]0; dist(A; @Ω[; u ∈ L1
loc(R

n);

from which it follows that

(6.4) F̂ (Ω; u) ≥ FE0−
(A; u) for every Ω ∈ E; A ∈ E0 with A ⊂⊂ Ω; u ∈ L1

loc(R
n):

By (6.4), and b) of Proposition 3.1 we get that

F̂ (Ω; u) ≥
(

FE0−

)
E0−

(Ω; u) =
(

FE0−

)
E−

(Ω; u) for every (Ω; u) ∈ E × L1
loc(R

n);

from which, being E perfect with respect to A0, we conclude that

(6.5) F̂ (Ω; u) ≥
(

FE0−

)
A0−

(Ω; u) for every (Ω; u) ∈ E × L1
loc(R

n):

By (6.3) and (6.5), equality (6.2) and the thesis follow.
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Corollary 6.3. Let E0 ⊆ A0 satisfy (1:2), and A : (Ω; u) ∈ E0 × C ∞(Rn) �→
�→

∫
Ω

√
1 + |∇u|2dx . Then, for every E ⊆ A0 perfect with respect to A0, having E0 as a

dense subset, and satisfying (1:3) the functional

Â : (Ω; u) ∈ E × L1
loc(R

n) �→





∫

Ω

√
1 + |∇u|2dx + |Dsu|(Ω) if u ∈ BV (Ω)

+ ∞ if u ∈ L1
loc(R

n) \ BV (Ω)

is the only inner regular (respectively measure, provided (3:3) with O = E0 and O = E
are fulfilled ), translation invariant, convex, L1

loc(R
n)-lower semicontinuous functional from

E × L1
loc(R

n) to [0; + ∞] equal to A on E0 × C ∞(Rn).

Proof. Follows from Proposition 6.2.
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