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Quasi periodic motions from Hipparchus to Kolmogorov

Memoria (*) di Giovanni Gallavotti

Abstract. — The evolution of the conception of motion as composed by circular uniform motions is
analyzed, stressing its continuity from antiquity to our days.

Key words: Epicycles; Kepler; Quasiperiodic motion; Heliocentrism.

Riassunto. — I moti quasi periodici da Ipparco a Kolmogorov. Viene analizzata l’evoluzione della nozione
di movimento come composto da movimenti circolari uniformi, mettendo in evidenza la sua continuità
dall’antichità ad oggi.

1. Hipparchus and Ptolemy

Contemporary research on the problem of chaotic motions in dynamical systems
finds its roots in the Aristotelian idea, often presented as kind of funny in high schools,
that motions can always be considered as composed by circular uniform motions (see
below notes 1, 2).

The reason of this conception is the perfection and simplicity of such motions (of
which the uniform rectilinear motion case must be thought of as a limit case).

The idea is far older than Hipparchus (Nicea, 194-120 b.c.) from whom, for
simplicity of exposition it is convenient to start (in fact, the epicycle appears at least
with Apollonius (Perga, 240–170 b.c.)). The first step is to understand exactly what the
Greeks really meant for motion composed by circular uniform motions. This indeed is
by no means a vague and qualitative notion, and in Greek science it acquired a very
precise and quantitative meaning that was summarized in all its surprising rigor and
power in the Almagest of Ptolemy (Alexandria, ∼100-175 a.d.) (see below notes 3-5).

We thus define the motion composed by n uniform circular motions with angular veloc-
ities ω1; : : : ;ωn that is, implicitly, in use in the Almagest, but following contemporary
mathematical terminology.

A motion is said to be quasi periodic if every coordinate of any point of the system,
observed as time t varies, can be represented as:

(1) x(t ) = f (ω1t; : : : ;ωnt )

where f (ϕ1; : : : ;ϕn) is a periodic function of each of the n angles ϕ1; : : : ;ϕn of
period 2π and ω1; : : : ;ωn are n angular velocities that are «rationally independent »
(see below note 6); they were called the [velocities of the] «motors » of the Heavens.

(*) Pervenuta in forma definitiva all’Accademia il 27 settembre 2000.
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We must think of f as a function of the positions ϕ1; : : : ;ϕn, («phases » or «anoma-
lies »), of n points on n circles of radius 1 and, hence, that the state of the system is
determined by the values of the n angles. Therefore, to say that an observable x evolves
as in (1) is equivalent to saying that the motion of the system simply corresponds to
uniform circular motions of points that, varying on n circles, represent the state of the
system.

We shall say, then, that the motion is composed by n uniform circular motions if it is
quasi periodic in the sense of (1).

In reality in Greek Astronomy it is always clear that the motion of the solar system,
conceived as quasi periodic, is only a possible one within a wider family of motions that
have the form

(2) x(t ) = f (ϕ1 + ω1t; : : : ;ϕn + ωnt ):

Hence it is in a stronger sense that motions are thought of as composed by elementary
circular ones. Indeed all the n-tuples (ϕ1; : : : ;ϕn) of phases are considered as describing
possible states of the system, i.e. the phases (ϕ1; : : : ;ϕn) provide a system of coordinates
for the possible states of the system. The observed motion is one that corresponds,
conventionally, to the initial state with phases ϕ1 = ϕ2 = : : : = 0; but also the other
states with arbitrary phases are possible and occur when different initial conditions are
given; and by waiting long enough we can get arbitrarily close to any initial condition.

In summary, the statement that the motions of a system are composed by n circular
uniform motions, of angular velocities ω1; : : : ;ωn, is equivalent to saying that it is
possible to find coordinates completely describing the states of the system (relevant
for the dynamical problem under study) which can be chosen to be n angles so that,
furthermore, the motion is simply a uniform circular motion of every angle, with suitable
angular velocities ω1; : : : ;ωn. This is manifestly equivalent to saying that an arbitrary
observable of the system, evolving in time, admits a representation of the type (2).

In Greek physics no methods were available (that we know of) for determining
the angle coordinates in terms of which the motion would appear circular uniform,
i.e. no methods were available for the computation of the coordinates ϕi and of the
functions f , in terms of coordinates with direct physical meaning (e.g. polar or Cartesian
coordinates of the several physical point masses of the system). Hence Greek astronomy
did make the hypothesis that all the motions should have the form (2) and then derived,
by experimental observations the functions f and the velocities ωi well suited to the
description of the planets and stars motions, with a precision that, even to our eyes
(used to the screens of digital computers), appears marvelous and almost incredible.

After Isaac Newton and the development of calculus it has become natural and
customary to imagine dynamical problems as starting from initial conditions that can
be quite different from those of immediate interest in every particular problem. For
example it is common to imagine solar systems in which the radius of the orbits of
Jupiter is double what it actually is, or in which the Moon is at a distance from the
Earth different from the observed one, etc. Situations of this kind can be included in the
Greek scheme simply by imagining that the coordinates ϕ1; : : : ;ϕn are not a complete
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system of coordinates. And that supplementary coordinates are needed to describe the
motions of the planets in the case where situations arise that are radically different from
those which they would eventually reach from the given present states (which «simply »
correspond to states with arbitrary values of the phase coordinates ϕ1; : : : ;ϕn).

To get a complete description of such «other possible motions » of the system, other
coordinates A1; : : : ; Am are required: they are, however, constant in time on every
motion and hence they only serve to specify which family of motions the considered one
belongs. Obviously we consider the ω1; : : : ;ωn as functions of the Ai and, in fact, it
would be convenient to take the ωi as themselves part of the coordinates Ai , particularly
when one can show that m = n and that the ωi can be independent coordinates.

Let us imagine, therefore, that the more general motion has the form:

(3) x(t ) = f (A1; : : : ; Am;ω1t + ϕ1; : : : ;ωnt + ϕn)

where ω1;: : :;ωn are functions of A1;: : :;Am and the coordinates A1;: : :;Am;ϕ1;: : :;ϕn

are a complete system of coordinates.
In Greek astronomy there is no mention of a relation between m and n: probably

because the Greeks depended exclusively on actual observations hence they could not
conceive studying motions in which the A1; : : : ; Am, e.g. the radii of the orbits of the
planets, the inclinations of the orbits, etc., were different from the observed values.

In this respect it is important to remark that Newtonian mechanics shows that it
must be m = n = 3N = {number of degrees of freedom of the system}, if N is the
number of bodies, even though in general it can happen that the ω1; : : : ;ωn cannot
be taken as coordinates in place of the Ai ’s because they are not always independent
of each other (for instance the Newtonian theory of the two body problem gives that
the three ωi are all rational multiples of each other, as otherwise the motion would not
be periodic). This identity between m and n has to be considered as one of the great
successes of Newtonian mechanics.

Returning to Greek astronomy it is useful to give example of how one concretely
proceeded to the determination of ϕ1; : : : ;ϕn, of ω1; : : : ;ωn and of f .

A good example (other than the motion of the Fixed Stars, that is too «trivial », and
the motion of the Sun that is, in a way, too «simple » to allow us to appreciate the
differences between the Ptolemaic and Copernican theories) is provided by the theory
of the Moon.

As first example I consider Hipparchus’ lunar theory.
In general motions of heavenly bodies appear, up to first approximation, as uniform

circular motions around the center of the Earth. In other words on average the position
of the heavenly body can be deduced by imagining it in uniform motion on a circle,
(«the oblique circle that carries the planets along », Dante, Par., X), with center at the center
of the Earth and rigidly attached to the sphere («Sky ») of the Fixed Stars, that in turn
rotates uniformly around the Earth.

This average motion was called deferent motion: but the heavenly body almost never
occupies the average position, but is slightly away from it sometimes overtaking it and
sometimes lagging behind.
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Fig. (h1). – Hipparchus’ lunar theory: deferent and epicycle.

In the case of the motion in longitude of the Moon (i.e. of the projection of the
lunar motion on the plane of the ecliptic) the simplest representation of these oscillations
with respect to the average motion is by means of two circular motions, one on a circle
of radius CO = R , the deferent, with velocity ω0 and another on a small circle of radius
CD = r , epicycle, with angular velocity −ω1.

Motion is observed in a rotating frame so that the «average Sun » appears fixed (this
is a Sun which moves exactly on a circle with uniform motion and period one solar
day; we could, instead, refer the motion to a fixed Star, with obvious changes).

We reckon the angles from a conjunction between the Moon and the average Sun,
when OC0 projected on the ecliptic plane points at the position of the average Sun,
and at a moment («apogee ») in which the Moon is farthest away.

The center of the epicycle rotates on the deferent with angular velocity ω0 and the
Moon L rotates on the epicycle with velocity −ω1 [19].

By using the complex numbers notation to denote a vector in the ecliptic plane and
beginning to count angles from a moment in which γ = η = 0 we see that the vector
z that indicates the longitudinal position of the Moon is

(4)
{

η = ω0t

γ = −ω1t
⇒ z = Reiω0t + re−i(ω1−ω0)t

where η = ω0t is the angle C0OC , γ = −ω1t is the angle DCL and 2π=ω1 is the
time T («anomaly month ») that elapses between two successive returns of the Moon in
apogee position (i.e. with the oriented segments OC and OL parallel). In this model
the radius r is r ∼ 5R=60 and ω0 = 360:=T0, ω1 = 360:=T1 if T0; T1 are the periods
of return to the average sun and to the apogee .

In modern language we say that the Moon, having three degrees of freedom, shall
have a motion with respect to the Earth (assumed on a circular orbit) endowed with 3
periods: the month of anomaly (i.e. return to the apogee or, equivalently, to the same
velocity) of approximately 27d , the period of rotation of the apogee of approximately 9y

(in a direction concording with that of the revolution) and the period of precession
(retrograde) of the node between the lunar world and the ecliptic of approximately 18:7y .
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This last period, obviously, does not concern the motion in longitude which, therefore, is
characterized precisely by two fundamental periods: for instance the month of anomaly
and the sidereal month (return to the same fixed star: note that the difference ∼ 7′=d

between the the two angular velocities is the velocity of precession of the apogee relative
to the fixed stars).

Hipparchus’ theory of the motion in longitude of the Moon yields, as we see, a quasi
periodic motion with one deferent, one epicycle and two frequencies (or «motors »). It
reveals itself sufficient (if combined with the theory of the motion in latitude, that we
do not discuss here) for the theory of the eclipses, but it provides us with ephemerides
(somewhat) incorrect when the Moon is near a position of quadrature (when the angle
under which the apogee and the Moon are seen from the (center of) the Earth is a
right angle, i.e. λ = π=2; 3π=2).

Ptolemy develops a more refined theory of this motion in longitude [19, 20], see
fig. (t1) below:
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Fig. (t1). – Ptolemy’s correction to Hipparchus’ lunar theory.

Again assume that the angles in longitude are reckoned from the mean Sun S0,
starting as in the previous theory. In a first version he imagines that the center of
the epicycle moves at the extremity of a segment of length R − s that, however, does
not have origin on the Earth T but in a point F1 that moves with (angular) velocity
−ω0 on a small circle of radius s centered on T ; we suppose that the center of the
epicycle is C1 so that the angle between C1T and the axis C0T (our reference x–axis
on a complex z–plane) is still η = ω0t , but the angle γ = −ω1t that determines the
position L of the Moon on the epicycle is now reckoned from D1.

In formulae, if R ′ = C1T; R̃ = C1F1 = R − s and ϑ is the angle between D1F1

and D0F0, one finds:
η = ω0t;

R̃eiϑ = R ′eiω0t − se−iω0t

R̃ = |R ′eiω0t − se−iω0t |;

R ′ ≡ R ′(ω0t ; R; s) = s cos 2ω0t +R̃
√

(1 − (s=R̃)2 sin2 2ω0t )
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(5) z = R ′(ω0t ; R; s)eiω0t re−i(ω1−ϑ)t

which reduces to Hipparchus’ lunar theory if s = 0. It also gives the same result near
conjunction and in opposition (when η = 0;π); it gives a closer Moon near quadratures
(when η = 1

2π; 3
2π particularly if also γ is close to π).

This representation reveals itself sufficient for the computation of the ephemerides
also near quadrature positions, but it is insufficient (although off by little) for the
computation of the ephemerides in octagonal positions (i.e. near η = 45◦).

Note that, rightly so, no new periods are introduced: the motion has still two basic
frequencies and (5) only has more Fourier harmonics with respect to (4).

The theory was therefore further refined by Ptolemy himself [19, 20], who supposed
that, in the preceding representation, the computation of the angle γ = −ω1t on the
epicycle should not be performed by starting from the axis C1F1, as in the previous
case, but rather from the axis F ”H of the figure:
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Fig. (t2). – The more refined theory of Ptolemy.

In formulae, with R ′ as in (5)

(6) z = R ′eiω0t + r
R ′e−iω0t + seiω0t

|R ′e−iω0t + seiω0t |
e−iω1t

It is clear that with corrections of this type it is possible to obtain very general quasi
periodic functions. Note that the above theory coincides with the preceding one at
conjunction, opposition and quadratures and it is otherwise somewhat different (in
particular at the octagonal positions).

The values that Ptolemy finds for R;r;s, (repectively 60, conventional, ∼5:,∼10:) so
that the theoretical ephemerides conform with the experimental ones, are however such
that the possible variations of the Earth-Moon distance (between R − r −2s and R + r)
are very important and incompatible with the implied but not observed corresponding
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variation of the apparent diameter of the heavenly body by a factor ∼ 2: it is not known
why the apparent diameter of the Moon did not seem to worry Ptolemy. Astronomical
distances (as opposed to celestial longitudes and latitudes of planets) were not, however,
really measured in Greek times (due to the difficulty of parallax measurements): but we
shall see that in Kepler’s theory the measurability of their value played a major role.

2. Copernicus

The skies are painted with unnumber’d sparks,
They are all fire, and every one doth shine ;
But there’s but one in all doth hold his place.
(see note 18)

Copernicus (1473-1543) [21] (who was, understandably indeed, very worried by the
latter problem) tried to find a remedy by introducing a secondary epicycle: his model
goes back to that of Hipparchus, «improved » by imagining that the point of the epicycle
on which Hipparchus set the Moon was instead the center of a smaller secondary
epicycle, of radius s, on which, the Moon journeyed with angular velocity −2ω0

(c1)
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C

β

F
γ L

T

S0


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α = ω0t

β = −ω1t; CF = r

γ = −2ω0t; FL = s

Fig. (c1). – Copernicus’ lunar theory with two epicycles.

and in formulae:

(7) rL = Reiω0t + e−(ω1−ω0)t (r + se2iω0t ) :

This gives a theory of the longitudes of the Moon essentially as precise as that of
Ptolemy. Note that, again, the same two independent angular velocities are sufficient.

Before attempting a comparison between the method of Ptolemy and that of Coper-
nicus it is good to clarify the modern interpretation of the notions of deferent and
epicycle and to clarify, also, that the motions of Ptolemy’s lunar theories are still inter-
pretable as motions of deferents and epicycles. Which is not completely obvious since
some of the axes of reference of Ptolemy do not move of uniform circular motion, to an ex-
tent that by several accounts, still today, Ptolemy is «accused » of having abandoned the



132 g. gallavotti

purity of the circular uniform motions with the utilitarian scope of obtaining agreement
between the experimental data and their theoretical representations (see below note 7).

I just quote here Copernicus’ Commentariolus, few lines before the statement of his
famous second postulate setting the Earth away from the center of the World:

«Nevertheless, what Ptolemy and several others legated to us about such questions, although
mathematically acceptable, did not seem not to give rise to doubts and difficulties ... So that such
an explanation did not seem sufficiently complete nor sufficiently conform to a rational criterion
... Having realized this, I often meditated whether, by chance, it would be possible to find a
more rational system of circles with which it would be possible to explain every apparent diversity;
circles, of course, moved on themselves with a uniform motion » (see [3: p. 108]).

Therefore let us check what, in some form, was probably so obvious to Ptolemy
that he did not seem to feel the necessity of justifying his alleged deviation from the
«dogma » of decomposability into uniform motions. Namely we check that also the
motions of the Ptolemaic lunar theories, as actually all quasi periodic motions, can be
interpreted in terms of epicycles.

Consider for simplicity the case of quasi periodic motions with two frequencies
ω1;ω2. Then the position will be

(8) z(t ) =
−∞;∞∑

ν1;ν2

ρν1ν2
ei(ω1ν1+ω2ν2)t ≡

∑

j

ρj e
iΩj t

by the Fourier series theorem, where νi are arbitrary integers and j , in the second sum,
denotes a pair ν1; ν2 and Ωj ≡ ω1ν1 + ω2ν2. Imagine, for simplicity, also that the
enumeration with the label j of the pairs ν1; ν2 could be made, and is made, so that
ρ1 >> ρ2 ≥ ρ3 > : : : .

Then r(t ) can be rewritten as

(9) r(t ) = ρ1eiΩ1t

(
1 +

ρ2

ρ1
ei(Ω2−Ω1)t

(
1 +

ρ3

ρ2
ei(Ω3−Ω2)t (1 + : : : )

))

which, neglecting ρ2; ρ3 : : : , is the uniform circular motion on the deferent of radius
|ρ1| with angular velocity Ω1; neglecting only ρ3; ρ4; : : : it is a motion with a deferent
of radius |ρ1| rotating at velocity Ω1 on which rests an epicycle of radius |ρ2| on which
the planet rotates at velocity Ω2 − Ω1; neglecting only ρj; j ≥ 4 one obtains a motion
with one deferent and two epicycles, as that used by Copernicus in the above lunar
model.

If |ρ1| is not substantially larger than the other radii (and precisely if |ρ1| is not much
larger than the sum of the other |ρj |, a situation that is not met in ancient astronomy),
what said remains true except that the notion of deferent is no longer meaningful. Or,
in other words, the distinction between main circular motion and epicycles is no longer
so clear from a physical and geometrical viewpoint. The epicycle with radius much
larger than the sum of the radii of the other epicycles, if existent, essentially determines
the average motion and is given the privileged name of «deferent ». In the other cases,
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although the average motion still makes sense (see note 9) it cannot be associated with
a particular epicycle, but all of them concur to define it, for an example see [1: p. 138].

We see, therefore, the complete equivalence between the representation of the quasi
periodic motions by means of a Fourier transform and that in terms of epicycles (see
note 7).

Greek astronomy, thus, consisted in the search of the Fourier coefficients of the
quasi periodic motions of the heavenly bodies, geometrically represented by means of
uniform motions.

But Ptolemy’s method is in a certain sense not systematic (see, however, below
and see note 12): the intricate interplay of rotating sticks that explains, or better
parameterizes, the motion of the Moon is very clever and precise but it seems quite
clearly not apt for obvious extensions to the cases of other planets and heavenly bodies.

Copernicus’ idea, instead, of introducing epicycles of epicycles, as many as needed
for an accurate representation of the motion, is systematic and, as seen above, coincides
with the computation of the Fourier transform of the coordinates with coefficients
ordered by decreasing absolute value. Copernicus’ work (with the only exception, and
such only in a rather restricted sense that it is not possible to discuss here, of some
details of the motion of Mercury) is strictly coherent with this principle. set in his early
project quoted above.

This is perhaps (see note 11) the great innovation of Copernicus and not, certainly,
the one he is always credited for, i.e. having referred the motions to the (average) Sun
rather than to the Earth: that is a trivial change of coordinates, known as possible
and already studied in antiquity [11, 12] (see note 10) by Aristarchus (of Samos, 310-
235 a.C.), Ptolemy etc., but set aside by Ptolemy for obvious reasons of convenience,
because in the end it is from Earth that we observe the heavens (so that still today many
ephemerides are referred to the Earth and not to an improbable observer on the Sun),
and also because he seemed to lack an understanding of the principle of inertia (as we
would say in modern language). See the Almagest, p. 45 where allegedly Ptolemy says:
« : : : although there is perhaps nothing in the celestial phenomena which would count against
that hypothesis [that the Sun is the center of the World] : : : one can see that such a notion
is quite ridiculous » (see note 12).

Ptolemy, with clever and audacious geometric constructions does not compute coef-
ficient after coefficient the first few terms of a Fourier transform. He sees directly series
which contain infinitely many Fourier coefficients (see R ′(ω0t ) in (5) where this hap-
pens because of the square root), i.e. infinitely many epicycles, most but a finite number
of which are obviously very small and hence irrelevant.

We can therefore obtain the same results with several arrangements of sticks, pro-
vided that the motion that results has Fourier coefficients, I mean those which are not
negligible, equal or close to those of the motion that one wants to represent: it is this
absence of uniqueness that makes the Ptolemaic method appear unsystematic.

It has, however, the advantage that, if applied by an astronomer like Ptolemy, it
apparently requires, at equal approximation, less «elementary » uniform circular motions:
occasionally this has been erroneously interpreted as meaning less epicycles than usually
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necessary with the methods of Copernicus. A fact that was and still is considered a
grave defect of the Copernican theory compared to the Ptolemaic. Ptolemy identifies
43 fundamental uniform circular motions (that combine to give rise to quasi periodic
functions endowed with infinitely many harmonics formed with the 43 fundamental fre-
quencies) to explain the whole system of the World: young Copernicus hopes initially
(in the Commentariolus) to be able to explain everything with 34 harmonics (i.e. 34
epicycles), only to find out in the De Revolutionibus, at the end of a lifetime work, that
he is forced to introduce several more than Ptolemy (see [20: vol. 2, pp. 925-926] and
note 13).

One should not, however, miss stressing also that Copernicus heliocentric assumption
made possible a simple and unambiguous computation of the planetary distances (see
note 11). Looking at the outer planets and assuming their Copernican orbits circular
and centered at the Sun (to make this remark simplest) then the radii of the Ptolemaic
epicycles are automatically fixed to be all equal to the distance Earth-Sun. Then,
knowing the periods of revolution and observing one opposition (to the Sun) of a
planet and one position off conjunction at a later time, one easily deduces the distance
of the planet to the Earth and to the Sun, in units of the Earth-Sun distance. In a
geocentric system the radii of the epicycles are simply related to their deferents sizes and
the latter are a priori unrelated to the Sun-Earth distance: also for this reason (although
mainly because of the difficulty of parallax measurements) in ancient astronomy the size
of the planetary distances was a big open problem. One can «save the phenomena » by
arbitrarily scaling deferent and epicycles radii independently for each planet ! The possibility
of reliably measuring distances, applied by Copernicus and then by Tycho and Kepler,
was essential to establishing the heliocentric system and to Kepler, who could thus see
that the saving of the phenomena in longitudinal observation was not the same as saving
them in the radial observations, a more difficult but very illuminating task, see note 15.

3. Kepler

Yet in the number I do know but one
That unassailable holds on his rank,
Unshak’d of motion (see note 18).

Today we would say that Ptolemy’s theory was nonperturbative because it immedi-
ately represented the motions as quasi periodic functions (with infinitely many Fourier
harmonics, i.e. epicycles). Copernicus’ is, instead, perturbative and it systematically gen-
erates representations of the motions by means of developments with a finite number
of harmonics constructed by adding new pure harmonics, one after the other, with the
purpose of improving the agreement with experience. The larger number of harmonics
in Copernicus is simply explained because, from his point of view, harmonics multi-
ple of others count as different epicycles, while in Ptolemy the geometric constructions
associated with an epicycle sometimes introduce also harmonics that are multiples, or
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combinations with integer coefficients, of others already existent and produce an «ap-
parent » saving of epicycles.

The systematic nature of the Copernican method permitted to his successors to
organize the large amount of new data of the astronomers of the Renaissance and of
the Reform time. Eventually it allowed Kepler (1571-1630) to recognize that what was
being painfully constructed, coefficient after coefficient, was in the simplest cases just
the Fourier series of a motion that developed on an ellipse with the Sun, or the Earth
in the case of the Moon, in the focus and with constant area velocity.

For reasons that escape me History of Science often credits Kepler for making pos-
sible the rejection of the scheme of representation of the Heavens in terms of deferents
and epicycles, in favor of motions on ellipses.

But it is instead clear that Keplerian motions are still interpretable in terms of epicy-
cles whose amplitudes and positions are computed with the Copernican or Ptolemaic
methods (that he regarded as equivalent in a sense that reminds us of the modern
theories of «equivalent ensembles » in statistical mechanics, see [13: Ch. 1-4]) or, equiv-
alently, via the modern Fourier transform. Nor it should appear as making a differ-
ence that the epicycles are, strictly speaking, infinitely many, (even though all except a
small number have amplitudes, i.e. radii, which are completely negligible): already the
Ptolemaic motions, with the their audacious constructions based on rotating sticks did
require, to be representable by epicycles (i.e. by Fourier series), infinitely many coeffi-
cients (or harmonics), see (5), (6) above, in which the r.h.s. manifestly have infinitely
many nonvanishing ones.

Only Copernican astronomy was built to have a finite number of epicycles: but
their number had to be ever increasing with the increase of the precision of the approx-
imations. Ptolemy seemed to be looking and Kepler certainly was looking for exact theories,
Copernicus appears to our eyes doomed to look for better and better approximations.

In reality also the critique of lack of a systematic method in Ptolemy, the starting
point of the Copernican theory, should be reconsidered and subject to scrutiny: indeed
we do not know the theoretical foundations on which Ptolemy based the Almagest nor
through which deductions he arrived at the idea of the equant and to other marvellous
devices. One can even dare the hypothesis that the Almagest was just a volume of com-
mented tables based on principles so well known to not even deserve being mentioned.
It is difficult to imagine that Ptolemy had proceeded in an absolutely empirical manner
in the invention of anomalous objects like «equant points » and strange epicycles (like
those he uses in the theory of the Moon, see above) and yet he did not feel that he was
departing from the main stream based on the axiom that all motions were decomposable
into uniform circular motions: it is attractive, instead, to think that he did not feel,
by any means, to have violated the aristotelian law of the composition of motions by
circular uniform ones.

One should note that if a scientist of the stature of Copernicus in a 1000 years
from now, after mankind recovered from some great disaster, found a copy of the
American Astronomical Almanac [2] (possibly translated from translations into some new
languages) he would be astonished by the amount of details, and by the correcteness of
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data, described there and he would be left wandering how all that had been compiled:
because it is very difficult, if not impossible to derive even the Kepler’s laws, directly
from it (not to mention the present knowledge on the three body problem). And
he would say «surely there must be a simpler way to represent the motions of the
planets, stars and galaxies », and the whole process might start anew, only to end his
life (as Copernicus in De revolutionibus) (see note 8) with new tables that coincided with
an appropriately updated version of the ones he found in his youth. The American
Astronomical Almanac can be perhaps better compared to Ptolemy’s Planetary Hypotheses
if the latter is really due to him, as universally accepted, while the Almagest is an earlier
but more detailed version of it.

After the discovery of the Kepler laws the theory of gravitation of Newton (1642-
1727) was soon reached [22]. Contrary to what at times is said, far from marking
the end of the grandiose Greek conception of motion as composed by circular uniform
motions, Newtonian mechanics has been, instead, its most brilliant confirmation.

For example, if ϑ denotes the angle between the major semiaxis and the actual
position on the orbit («true anomaly »), ‘ denotes the average anomaly, a is the major
semiaxis of the ellipse and e is its eccentricity, the Keplerian motion of Mars around the
Sun is described by the equations:

z = peiϑ(1 − e cosϑ)−1; p = a(1 − e2)

ϑ = ‘ − 2e sin ‘ +
5
4

e2 sin 2‘ + O(e3); ‘ = ωt(10)

hence

z = p(1 − e2)1=2eiϑ(1 + 2
∞∑

n=1

η(e)n cos nϑ)

η(e) ≡ (1 − (1 − e2)1=2)e−1 =
1
2

e + O(e3)(11)

and to first order in e:

(12)
z = aeiωt (1 − 2e sinωt )(1 + 2e cos t ) + O(e2) =

= aeiωt (1 + e(1 + i)eiωt + e(1 − i)e−iωt + O(e2))

which can be described, to lowest order in e, as composed by a deferent and two
epicycles. Two more would be necessary to obtain an error of O(e3).

In this respect it is interesting to observe how one can arrive to an ellipse with
focus on the Sun, by considering epicyclical motions. Indeed the simplest epicyclical
motion is perhaps that in which one considers infinitely many pairs of epicycles run
with respective angular velocity ±nω, with n = 1; 2; : : : , and with radii decreasing in
geometric progression, i.e.:

(13) z(ϑ) = p′ eiϑ
∞∑

n=0

η′n cos nϑ

for some p′ ; η′, that leads to the ellipse in the first of the (11).
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(e)

M

S C

ϑ �

S equant

ea

C M = a

S C = ea

Fig. (e). – The equant construction of Ptolemy adapted to a heliocentric theory of Mars; S is the Sun, M
is Mars, C the center of the orbit and the equant point is Sequant.

What is less natural in Kepler’s laws, is that the time law which gives the motion
on the ellipse, instead of ϑ → ωt , is rather ϑ → ωt − 2e sinωt + : : : . Such motion is
however an old «Ptolemaic knowledge » being, at least at lowest order in e, a uniform
angular motion around a point Sequant of abscissa 2ea away from the point S with respect
to which the anomaly ϑ is evaluated and of abscissa ea with respect to the center C of
the circle on which the (manifestly nonuniform) motion takes place. This means that
the angle ‘ in the drawing rotates uniformly and

(14) ϑ = ‘ − 2e sin ‘ + e2 sin 2‘ + O(e3) :

Truncating the series in (13) and (14) to first order in the eccentricity we obtain (12)
and hence a description in terms of one deferent, two epicycles and an equant: it is a
description quite accurate of the motion of Mars with respect to the Fixed Stars Sky
and it is the theory that one finds in the Almagest, after converting it to the inertial
frame of reference fixed with the Sun.

The motion of the Earth around the Sun (or viceversa if one prefers) is similar
except that the center of the deferent circle is directly the equant point, see [4: p. 192],
see also [13: Ch. 2-4]: this is usually quoted by saying that «for the Earth Ptolemy
(Copernicus and Tycho) did not bisect the eccentricity », meaning that the center and
the equant were identical and both 2 e a away from the Sun: from note 15 we deduce
that this did not matter for the Earth which has a much smaller eccentricity (than
Mars). Before discovering the ellipse Kepler had to redress this «anomaly » and he
indeed bisected also the Earth eccentricity, see note 15, making the Copernican Earth
lose one more distinguishing feature with respect to the other planets (see note 14).

The above, however, is not the path followed by Kepler, see note 15 where the latter
is discussed in some detail.

Hence we see that by bringing the development in e to first order one reaches a level
of approximation qualitatively satisfactory for the observations to which Kepler’s and
Tycho’s predecessors had access, not only for the Sun but also for the more anomalous
planets like Mercury, Moon and Mars: to second order however the equant becomes
insufficient and by trying to find the corrections Kepler realized that the orbit is an
ellipse that has to be described at constant area velocity with respect to the focus.
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We can say that the experimental data agree within a third order error in the eccentricity
with the hypothesis of an elliptical motion and with a time law based on the area law : this,
within a second order error in the eccentricity, coincides with the Ptolemaic law of the equant.

4. Modern times

To realize more completely the originality of the Newtonian theory we must observe
that in the approximations in which Kepler worked it was evident that the laws of Kepler
were not absolutely valid: the precession of the lunar node, of the lunar perigee and
of the Earth itself did require, to be explained, new epicycles: in a certain sense the
Keplerian ellipses became «deferent » motions that, if run with the law of the areas, did
permit us to avoid the use of equants and of other Ptolemaic «tricks ».

A strict interpretation of Kepler’s laws would be manifestly in contrast with cer-
tain elementary astronomical observations unless combined with suitable constructions
of epicycles as Kepler himself realized and applied to the theory of the Moon [29].
The theory of Newtonian gravitation is derived from the abstraction made by Newton
that Kepler’s laws would be rigorously exact in a situation in which we could neglect
the perturbations due to the other planets, i.e. if we considered the «two body problem »
and we reinterpreted in a novel way the Keplerian conception that the motion of a
planet was mostly due to a force exercized by the Sun and partly to a force due to
itself.

The theory of gravitation not only predicts that the motions of the heavenly bodies
are quasi periodic, apparently even in the approximation in which one does not neglect
the reciprocal interactions between the planets, but it also gives us the algorithms for
computing the function f (ϕ1; : : : ;ϕn).

The summa of Laplace (1749-1827) on the Mécanique céleste of 1799 [16] makes
us see how the description of the solar system motions, even after taking into account
the interactions between the planets, could be made in terms of quasi periodic func-
tions. Newtonian mechanics allows us to compute approximately the 3N coordinates
A = (A1; : : : ; A3N ) and the 3N angles ϕ1; : : : ;ϕ3N and the 3N angular velocities
ω1(A); : : : ;ω3N (A) in terms of which the motion simply consists of 3N uniform ro-
tations of the 3N angles while the A remain constant.

Laplace makes us see that there is an algorithm that allows us to compute the
Ai;ωi;ϕi by successive approximations in a series of powers in several parameters (ratios
of masses of heavenly bodies, eccentricities, ratios of the planets radii to their orbits
radii etc.), that will be denoted here with the only symbol ε, for simplicity.

After Laplace approximately 80 years elapse during which the technique and the
algorithms for the construction of the heavenly series are developed and refined leading
to the construction of the formal structure of analytic mechanics. Then Poincaré was
able to see clearly the new phenomenon that marks the first true and definitive blow
to the Greek conception of motion: with a simple proof, celebrated but somehow little
known, he showed that the algorithms that had obtained so many successes in the
astronomy of the 1800’s were in general nonconvergent algorithms [24].
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Few Physicists did realize the depth and the revolutionary character of Poincaré’s
discovery: among them Fermi who tried to deduce with the methods of Poincaré a
proof of the ergodicity of the motions of Hamiltonian dynamical systems that are «not
too special ». The proof of Fermi, very instructive and witty although strictly speaking
not conclusive from a physical viewpoint, remained one of the few attempts made in
the first sixty years of the 1900’s by theoretical physicists, to understand the importance
of Poincaré’s theorem.

Fermi himself, at the end of his history, came back on the subject to reach conclu-
sions very different from the ones of his youth (with the celebrated numerical experiment
of Fermi-Pasta-Ulam) [6].

And the Greek conception of motion finds one of its last (quite improbable, a priori)
«advocates » in Landau that, still in the 1950’s, proposes it as a base of his theory of
turbulence in fluids [15]. His conception has been criticized by Ruelle and Takens
(and by others) [26, 27] on the basis of the ideas that, at the root, went back to
Poincaré.

The alternative proposed by them began modern research on the theory of the de-
velopment of turbulence and the renewed attempts at establishing a theory of developed
turbulence.

The attitude was quite different among Mathematicians who, with Birkhoff, Hopf,
Siegel in particular, started from Poincaré to begin the construction of the corpus that
is today called the theory of chaos.

But only around the middle of the 1950’s it has been possible to understand the
paradox consisting in the dichotomy generated by Poincaré:

(1) on the one hand the successes of classical astronomy based on Newtonian mechanics
and on the perturbation theory of Laplace, Lagrange, etc. seemed to confirm the
validity of the quasi periodic conception of motions (recall for instance Laplace’s
theory of the World, or Gauss’ «rediscovery » of Ceres, see note 17, and the discovery
of Neptune, see note 16).

(2) on the other hand the theorem of Poincaré excluded the convergence of the series
used in (1).

The fundamental new contribution came from Kolmogorov,[14, 7]: he stressed the
existence of two ways of performing perturbation theory, see note 17. In the first way,
the classical one, one fixes the initial data and lets them evolve with the equations of
motion. Such equations, in all applications, depend by several small parameters (ratios
of masses, etc.) denoted above generically by ε. And for ε = 0 the equations can be
solved exactly and explicitly, because they reduce to a Newtonian problem of two bodies
or, in not heavenly problems, to other integrable systems. One then tries to show that
the perturbed motion, with ε �= 0, is still quasi periodic, simply by trying to compute
the periodic functions f that should represent the motion with the given initial data
(and the corresponding phases ϕi , angular velocities ωi , and the constants of motion Ai)
by means of power series in ε. Such series, however, do not converge or sometimes
even contain divergent terms, deprived of meaning, see [7: Section 5.10].
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A second approach consists in fixing, instead of given initial data (note that it
is in any case illusory to imagine knowing them exactly), the angular velocities (or
frequencies) ω1; : : : ;ωn of the quasi periodic motions that one wants to find. Then it
is often possible to construct by means of power series in ε the functions f and the
variables A;ϕ, in terms of which one can represent quasi periodic motions with the
prefixed frequencies.

In other words, and making an example, we ask the possible question: given the
system Sun, Earth, Jupiter and imagining for simplicity the Sun fixed and Jupiter on a
Keplerian orbit around it, is it or not possible that in eternity (or also only up to just a
few billion years) the Earth evolves with a period of rotation around to Sun of about
1 year, of revolution around its axis of about 1 day, of precession around the heavenly
poles of about 25:500 years, etc.?

One shall remark that this second type of question is much more similar to the ones
that the Greek astronomers asked themselves when trying to deduce from the periods of
the several motions that animated a heavenly body the equations of the corresponding
quasi periodic motion.

The answer of Kolmogorov is that if ω1; : : : ;ωn are the n angular velocities of the
motion of which we investigate the existence it will happen, for ε small, that for the
most part of the choices of the ωi there actually exists a quasi periodic motion with such
frequencies and its equations can be constructed by means of a, convergent, power series
in ε [14].

The set of the initial data that generate quasi periodic motions has a complement
of measure that tends to zero as ε → 0, in every bounded part of the phase space
contained in a region in which the unperturbed motions are already quasi periodic.

One cannot say, therefore, whether a preassigned initial datum actually undergoes a
quasi periodic motion, but one can say that near it there are initial data that generate
quasi periodic motions. And the closer the smaller ε is.

By the theorem of continuity of solutions of equations of motion with respect to
variations of initial data it follows that every motion can be simulated, for a long time
as ε → 0, by a quasi periodic motion.

However obviously there remain the problems:

(1) are there, really, initial data which follow motions that, in the long run, reveal
themselves to be non-quasi periodic?

(2) if yes, is it possible that in the long run the motion of a system differs substantially
from that of the (abundant) quasi periodic motions that develop starting with initial
data near it?

(3) is the actual size of the parameters denoted ε small enough for Kolmogorov’s theory,
or some improvement of it, to apply to solar system problems?

The answer to the first two questions is affirmative: in many systems motions
that are non quasi periodic do exist and become easily visible as ε increases. Since
electronic computers became easily accessible it became also easy for everybody to observe
personally on computer screens the very complex drawings generated by such motions
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(as seen by Poincaré, Birkhoff, Hopf etc., without using a computer). The long (in the
sense of contemporary Science) debated third question seems to admit also «yes » as
answer, at least for the simplest problems [17].

Furthermore quasi periodic motions although being, at least for ε small, very com-
mon and almost dense in phase space probably do not constitute an obstacle to the
fact that the non-quasi periodic motions evolve very far, in the long run, from the
points visited by the quasi periodic motions to which the initial data were close. This
is the phenomenon of Arnold’s diffusion of which there exist quite a few examples: it
is a phenomenon of wide interest. For example if diffusion was possible in the solar
system, then the occurrence of important variations of quantities such as the radii of
the orbits of the planets would be conceivable, with obvious (dramatic) consequences
on the stability of the solar system itself.

In this last question the true problem is the evaluation of the time scale on which
the diffusion in phase space could be observable. In systems simpler than the solar
system (to which, strictly speaking, Kolmogorov’s theorem does not directly apply, for
some reasons that we shall not attempt to analyze here [7: Section 5.10]) one thinks
that a sudden transition, as the intensity ε of the perturbation increases, is possible
from a regime in which diffusion times are super astronomical in correspondence of
the interesting values of the parameters (i.e. times of several orders of magnitude larger
than the age of the Universe) at a regime in which such times become so short to
be observable on human scales. This is one of the central themes of the present day
research on the subject (a collection of modern but already classical papers on the theory
of quasi periodic and chaotic motions can be found in [18]).

Notes

1. A general history of astronomy is in [4].

2. For a simple introduction to the Ptolemaic system see [19]. The figures of the text
are taken from this volume: see [19: pp. 193-197].

3. A critical and commented version of Ptolemy’s theory, both of the Almagest and of
the Planetary Hypothesis, is in [20].

4. A recent edition of the Almagest, with comment, is [32].

5. Some critiques to Ptolemy are in [23]. The «book » [9] also provides us with a very
convincing discussion of the fraud (or «crime ») allegations brought against Ptolemy.

6. i.e. no linear combination of them with rational coefficients can vanish unless all
coefficients vanish.

7. The interpretation that the Fourier transform (and (9)) has in terms of deferent and
epicyclical motions has been noted by many; the more ancient that I could retrieve
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is in a memory of 1874 of G. Schiaparelli, reprinted in [28]. It should be stressed
that the above «reduction » of a quasi periodic motion to an epicyclic series is not
unique and other paths can be followed: this will be very clear by the examples
below (see note 15).

8. The work of Copernicus and Newton can be easily found in English as there are
plenty of reprints; in Italian I quote the collection printed by UTET directed by L.
Geymonat: [3]. We find here in particular the so called Commentariolus that presents
the plan of the Copernican work, as optimistically viewed by the young (and perhaps
still naive) Copernicus himself before he really confronted himself with a work of
the dimensions of the Almagest. Great were the difficulties that he then met, while
dedicating the rest of his life to a complete realization of the program sketched in the
Commentariolus (∼1530), so that the De revolutionibus presents solutions quite more
elaborate than those programmed in the quoted work. Nevertheless the copernican
revolution appears already clearly from this brief and illuminating work: here one
finds the passage quoted in the text (p. 108 of the Italian edition).

9. And for a detailed treatment, also of the notion of average motion, see in particular
[30] (D. Boccaletti pointed out to me this bibliographic note, together with the
preceding one (see note 7)).

10. [12] contains a very illuminating collection of translations of fragments from greek
originals.

11. Neugebauer assesses very lucidly Copernicus’ contribution: see [19: p. 205].

12. See [25]. See also [31]. I often wonder whether it is possible that this passage
has been contaminated by later commentators. Although certainly not much later,
because it is already commented by Theon of Alexandria in the second half of the
fourth century: however two centuries is a very long time for Science (if one thinks
to what happened since Laplace). In a way this and the argument that follows it is
much too rough compared to the level of the rest of the Almagest. Nevertheless if
one attributes, as it seems right to do [20: p. 900], the Planetary Hypotheses books to
Ptolemy, then one is led to think that the passage is indeed original. This is perhaps
also proved by the fact that Ptolemy does not seem to realize that the heliocentric
hypothesis would have allowed a clear determination of the average radii of the orbits,
missing in his work. In turn this makes us wonder which exactly was the famous
heliocentric hypothesis of Aristarchus and if it went beyond a mere qualitative change
of coordinates. Had it been the same as Copernicus’ he could have determined the
sizes of the orbits (at least in principle as the necessary parallax measurements were at
the border of feasibility at the time) [19]. This was a question on which he certainly
had an interest, having dedicated a book [11, 12] to determining the Moon-Earth
distance: and his involvement on the problem of orbit sizes problem should have
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been reported by Ptolemy. From the extant information about Aristarchus’ theory
there is, strangely, no trace of an application of the heliocentric system to planets
other than the Earth and the Sun, see [11: p. 299] and following, although it would
be surprising that there was none. For a critical account of the Planetary Hypotheses
see [20].

13. Note that, from Newtonian mechanics and from the discussion below, the motions
of the 8 classical planets (the Fixed Stars Sky, Sun, Mercury, Venus, Moon, Mars,
Jupiter, Saturn not counting the Earth (whose rigid motions are described by those
of the Fixed Stars), or alternatively not counting the Sun and the Fixed Stars but
regarding the Earth as having 6 degrees of freedom, requires a maximum of 24=3×8
independent «fundamental » frequencies namely three for each planet: so that both
in Ptolemy and in Copernicus there must be epicycles rotating at speeds multiple of
the fundamental frequencies or at least at speeds which are linear combinations with
integer coefficients of the fundamental frequencies: hence the 43 frequencies cannot
be rationally independent of each other; see for instance the figure on Copernicus’
Moon and note that the «number of epicycles » in Ptolemy’s theory, see fig. (t1),
could be counted differently.

14. It is interesting to compare in detail the theory of Mars of Copernicus and that
of Ptolemy (reduced to a heliocentric one). The first has a deferent of radius a
on which a first epicycle of radius 3

2 ea counter-rotates at equal speed and, on it, a
second epicycle rotates at twice the speed; the starting configuration being the first
epicycle at aphelion and the second opposite to the aphelion of the first. In other
words the position zC from the aphelion is, at average anomaly ‘ given by zC

zC = aei‘ +
3
2

ae − 1
2

eae2i‘ = ea + aei‘ (1 − ie sin ‘)

Ptolemy has the planet on an eccentric circle, centered ea away from the Sun,
whose center rotates at constant speed around the equant point which, in turn, is
ea further away from the center of the orbit. Hence if ξ is the eccentric anomaly
(i.e. the longitudinal position of the planet on the orbit as seen from the center) it
is

zT = ea + aeiξ

and from fig. (e) we see that the relation between the average anomaly ‘ (i.e. the
longitudinal position of the planet as seen from the equant point) is related to ξ by

sin(‘ − ξ) = e sin ‘ → ξ = ‘ − e sin ‘ + O(e3)

so that

zT = ea + aei‘

(
1 − ie sin ‘ − 1

2
e2 sin2 ‘

)
+ O(e3)

and we see that the longitudinal difference (i.e. the difference of the true anomalies
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or longitudes from the Sun position S ) is arg zT
zC

or

arg
(

1 − 1
2

e2 sin2 ‘

e e−i‘ + 1 − ie sin ‘

)
= O(e3 sin3 ‘) :

However the difference in distance is |zC | − |zT | of the order O( 1
2 e2 sin2 ‘) so that

Copernicus’ epicycles are equivalent to Ptolemy’s equant within O(e3), or about 4′,
in longitude measurements and within O(e2), or about 40′ in distance measurements
(i.e. to match distances at quadrature, say, one should alter by about 40′ the average
anomaly, which means to delay the observations by about one day since Mars period
is about 2 years (provided the distances could be measured accurately enough, which
was not the case at Ptolemy’s time)).
Before Tycho (relative) differences of O(e2) could not be appreciated experimentally:
but their existence was derived from the theories, and used, by Kepler who discussed
them at the beginning of his book in Ch.4, where the above calculation is performed
for ‘ = π

2 , where the discrepancy is maximal, see [13: p. 23 (or p. 16 in the original
edition)].
Kepler’s theory differs from both to order O(e2). He first derived a better theory
for the longitudinal observations (which turned out eventually to agree with the
complete theory already to O(e3)) and used it to find the «correct » theory agreeing
within O(e3) with the data for the distance measurements (that had become possible,
see [19], after Copernicus).

15. The following account of the work on the second Kepler’s law attempts at providing
a selfcontained exposition which cannot be regarded as a substitute for the series of
papers in [9] which impressively analyses various aspects of Astronomia Nova [13],
including a clear technical analysis of the «vicarious hypothesis » (see [9: p. 311]) and
an interesting computer analysis of some of Kepler’s calculations (see [9: p. 367]).
The only point on which something is not already contained in [9] or in [29] (where
complementary careful and detailed analysis of Kepler’s discoveries are presented and
from where I derive most of what follows) is perhaps the analysis of Kepler’s 1=r
force law.
A key point to keep in mind in this footnote is that the resolution of the observations
available to Ptolemy (and Copernicus) was of the order of 10′ so that errors were in
the order of tens of primes: this meant that one could observe first order corrections
in the eccentricity of Mars but second order corrections (of order e2 � 10−2 or
about 30′) were barely non observable (the ensuing difficulties in interpreting the
data earned Mars the name of inobservabile sidus, unobservable star, after Plinius).
However the observations of Tycho bore errors of the order of a few primes so that
second order corrections were quite clearly observable [4: p. 385], because the third
order amounts to about 3′.
Another major point to keep in mind is, as clearly stressed in [29], that Kepler was
the first to have (perhaps since Greek times) a physical theory to check: although
his language is not the one we have become accustomed to after Newton, he had
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very precise laws in mind which he kept following very faithfully until the end of his
work. The main one, for our purposes, was the (vituperated or, more mildly, simply
criticized) law that the «speed of the motion due to the Sun is inversely proportional
to the distance to the Sun », see below.
After ascertaining that the orbits of Earth and Mars lie on planes through the
Sun (rather than through the mean Sun, as in Copernicus and Tycho) he tried to
«imitate the ancients » by assigning to Mars an orbit, on an eccentric circle that I
will call the deferent, and an equant: he noted that a very good approximation of the
longitudes followed if one abandoned Ptolemy’s theory of the center C of the orbit
being half way between the Sun S and the equant E . His equant was set, to save
the phenomena, a little closer to the center (with respect to the Ptolemaic equant
point) at distance e ′a from the center C of the deferent rather than at distance ea.
If z denotes the position with respect to the center C in the plane of the orbit
with x-axis along the apsidal line of Mars and ζ denotes the position with respect
to the Sun S (eccentric by ea away from C ) and if ξ denotes the position on the
deferent of the planet, called the eccentric anomaly, and if ω is the angular velocity
with respect to the equant point E this means (using the complex numbers notation
of Sec. 1, Eq. (4) with x–axis along the apsides line perihelion–aphelion)

z = aeiξ; ξ = ‘ − arcsin e ′ sin ‘ = ‘ − e ′ sin ‘ + O(e ′3);

‘ = ωt

ζ = ea + aeiξ; |ζ| = a ((ε + cos ξ)2 + sin2 ξ)
1
2 = a (1 + e2 + 2e cos ξ)

1
2

which was called the vicarious hypothesis, illustrated in fig. (k1):

(k1)Pph
ϑ

S C

ξ

E

�
Pap

P0
P

Fig. (k1). – The vicarious hypothesis: here the eccentricities are e = 5
4 0:4 and e′ = 3

4 0:4, ∼ 4 times larger
than real to make a clearer picture. The dashed circles are the deferent (centered at S ) and the epicycle
(centered at P0) while the planet is in P . The continuous circle is the actual orbit. The segment SP0 is
parallel to CP (partially drawn) so that PCPap = P0SPap is the eccentric anomaly ξ while PSPap is the true

anomaly ϑ and PEPap is the average anomaly ‘, that rotates uniformly around the equant E .
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The hypothesis illustrated above can be compared with the actual (later) Kepler’s
law

z = a (cos ξ + i
√

1 − e2 sin ξ); ‘ = ξ + e sin ξ;

ξ = ‘ − e sin ‘ + O(e3); ‘ = ωt

so we see that the vicarious hypothesis gave an incorrect distance Mars-Sun because
of the difference of order O(e − e ′) + O(e3) = O(e2), as e − e ′ is numerically � 5e2

(from the data for e ′): for instance the y–coordinate was about 1
2 e2 higher than it

should have, see [29: p. 46], at ξ = π
2 .

Nevertheless the vicarious hypothesis gave very accurate longitudes. Therefore the
hypothesis was used by Kepler as a quick means to compute the longitudes until the
very end of his research. The hypothesis was discarded because, after Copernicus
and Tycho, it had become possible (see Sec. II above) to measure distances from
the Sun and they were incorrectly predicted by the hypothesis because the second
order corrections in the eccentricity were already visible (in the case of Mars).
It is interesting to remark that a posteriori it is clear why the vicarious hypothesis
worked so well. The relation between the longitude ϑ corresponding to a theory in
which the Sun is eccentric by ea from the center of the orbit and the equant is e ′a
further away gives a longitude ϑ as

ϑ = ‘ − (e + e ′) sin ‘ +
1
2

(ee ′ + e2) sin 2‘ + O(e3)

while the final theory gives ϑ in terms of the ellipse eccentricity e as

ϑ = ‘ − 2 e sin ‘ +
5
4

e2 sin 2‘ + O(e3)

therefore a «non bisected » eccentricity (i.e. e �= e ′ with 1
2 (e + e ′) = e and

e = 5
4 e; e ′ = 3

4 e) gives an agreement to order e3 � 10−3: this is a few primes,
well out of observability. As Kepler noted Tycho’s and his observations gave e +

e ′ = 2 e = 0:18564 and e = 0:11332 very close to 5
4 e = 0; 11602, see [29: p. 44].

This provides an explanation of why the vicarious hyptothesis is so accurate for the
longitudes.
A realistic drawing of the vicarious hypothesis would be illustrated by fig. (k2):

(k2)

Fig. (k2). – Same as fig. (k1) with eccentricity e = 0:1; only the deferent and the epicycle are drawn.
The actual orbit (not drawn) is the circle with the horizontal segment as a diameter.
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Then Kepler was assailed by the suspicion that the discrepancies in the distances that
he was finding were rather due to a defective theory of the Earth’s motion (which
was needed to convert terrestrial observation into solar ones): he was thus led to
realize that the Earth too had an equant and he could check that the discrepancy
between distances theory and observations was not due to an erroneous theory of
the Earth’s motion: introducing an equant for the Earth did not affect sensibly the
data for the Sun and Mars (this meant a large amount of checking, a year or so).
Returning to Mars he tried to check (again) his basic hypothesis that the velocity was
inversely proportional to the distance from the Sun; he assumed that what proceeded
at velocity inversely proportional to the distance from the Sun was the center of an
epicycle of radius ea; the epicycle center had anomaly ξ on a circle of radius a
around S and, on it, the planet was rotating at rate −ξ̇ . So that the planet was
actually moving on a circle of radius a around the eccentric center C with angular
velocity ξ̇ too. The value of ξ̇ was determined by Kepler’s original law ρ ξ̇ = const ,
see [29: p. 101]. The planet equations would be:

z = aeiξ; ζ = ea + aeiξ; ρ = |ζ| = a (1 + 2e cos ξ + e2)
1
2

plus the dynamical law ρξ̇ = const : this gives both anomaly and distance differing
from the vicarious hypothesis by O(e2): hence still incompatible with the observa-
tions (actually worse than the vicarious hypothesis which at least gave correctly the
longitudes).

(k3)

S C

ρa

ξ

P0

Pph Pap

P

Fig. (k3). – The first attempt to establish the law ρξ̇ = const . Eccentricity (e = 0:4) is much larger than
the real value, for illustration purposes. The deferent is a circle of radius a around S and the epicycle

of radius e a is centered at P0, with anomaly ξ with respect to S , the planet is in P .

The successful (among others) attempt was driven by the remark that one needed to
lower the y–coordinate at quadrature by 1

2 e2a (i.e. to eliminate a «lunula » between
the vicarious hypothesis orbit and the observed orbit). In fact Kepler discovers, by
chance as he reports, that the observed distance of Mars from the center of the
deferent is b, shorter than a and precisely such that a

b = secϑ if sinϑ = e, or:

b = a
√

1 − e2.
So one sees that the distance from S is at aphelion or perihelion a (1 ± e) from S
while at quadrature on the deferent (i.e. at eccentric anomaly ξ = π

2 ; 3π
2 ) it is just
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a, or the distance to the center C is a in the first cases and b = a
√

1 − e2 = a−η a

with η = 1 −
√

1 − e2, in the second cases.
«Therefore as if awakening from sleep » it follows that at a position with eccentric
anomaly ξ the coordinate of planet y is lower (in the direction orthogonal to the
apsides line) by a η sin ξ while the x–coordinate is still a cos ξ, see [29: p. 125]:

hence the orbit is an ellipse (with axes a and b = a
√

1 − e2 and the distance to the
Sun is then easily computed to be ρ = a (1 + e cos ξ)). Indeed the coordinates of

the planet with respect to the Sun become x = e a + a cos ξ; y = a
√

1 − e2 sin ξ

(rather than the previous y = a sin ξ) so that ρ =
√

x2 + y2 = a (1 + e cos ξ).

Combining this with the basic dynamical law ρ ξ̇ = const we deduce that the motion
is over an ellipse run at constant area velocity around S (not C ), as one readily checks
(see below).
Kepler’s interpretation of the above relation was in the context of his attempt at a
description of the motion «imitating the ancients ». The eccentric anomaly ξ defines
the center P ′ of an epicycle on a deferent circle centered at S (not at C ) and with
radius ea on which the planet should have traveled an angle −ξ away from the P ′S
axis; but in fact the actual position P was really closer to the apsides line by the (very

small, yet observable after Tycho) amount a (1−
√

1 − e2) cos ξ so that the distance PS
was ρ = a (1 + e cos ξ) (as one readily checks). The law ρ ξ̇ = const was quite natural
as he attributed the motion around the Sun as partly due to the Sun and partly to
the planet: the latter (somewhat obscurely, perhaps) was responsible for the epicyclic
excursion so that ρ ξ̇ would be the correct variation of the eccentric anomaly which
had, therefore, a physical meaning (this is not the common interpretation of Kepler
[4, 29]).

(k4)
Pph PapS C

P
ea

ea cos ξ

ρ

ϑ
ξ

12

3

Fig. (k4). – Kepler’s construction of the ellipse. The eccentricity is e = 0:4 to make a clearer drawing.
The planet is in P . The segment 23 is the projection on S3 of the segment 31 and the segment SP is
equal to S3. The epicycle (dashed circle) is no longer holding the planet but it determines its position.

The anomaly ξ is the anomaly of the center of the epicycle. Motion verifies the law ρ ξ̇ = const .
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An equivalent formulation is described in fig. (k5):

(k5)
Pph

Pap
S C

Pρ

ϑ ξ

1

2

3

Fig. (k5). – Fabricius’ interpretation, see [4: pp. 402-403], of Kepler’s ellipse. The ellipse has very
high eccentricity (e = 0:8!) to make visible the small epicycle. The planet is in P and C 3 = b, C 1 = a

and the center of the epicyle is 2. Eccentric anomaly reckoned at C and the angle 1 2 P is 2ξ.

The deferent is a circle centered at the center of the orbit C with radius 1
2 (a + b):

the planet is not on the deferent but on a (very small) epicycle of diameter a − b. If
the center of the epicycle is at eccentric anomaly ξ the planet on the epicycle has
traveled retrograde by 2ξ with respect to the radius from C to the epicycle center.
Note that in Fabricius’ construction the distance of the ellipse to the deferent circle
is very small as the epicycle has radius O(e2)a; unlike what happens in Kepler’s
construction in which the deferent is centered at S and therefore the epicycle is
much larger having a radius ea. The Fabricius’ construction, if done with e = 0:1,
approximately the Mars eccentricity, makes us appreciate how subtle and refined had
to be the analysis of Kepler to detect and understand the ellipse and the areal law.
If one draws on the scale of this page the Fabricius’ picture and Kepler picture at
quadrature, for instance, one gets (of course) the same ellipse but one can see Kepler’s
epicycle while the Fabricius’ one is not visible on this scale. The following fig. (k6)

(k6)

Fig. (k6). – Fabricius’ (left) and Kepler’s (right) deferents, epicycles and ellipses with eccentricity
e = 0:1. On the drawing scale one neither appreciates the difference between ellipse and the deferent
circles nor the epicycle in the first drawing. The solid line and dashed lines (indistinguishable in the

picture) are respectively the ellipse and the deferent.
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representing at quadrature Fabricius’ (left) and Kepler’s (right) ellipses, circumscribed
circle (drawn but not distinguishable on this scale) and epicycles (both drawn but
only Kepler’s being visible) is a quite eloquent illustration.
In other words the epicycle center moves on the deferent at speed ξ̇ while the
planet moves at speed −2ξ̇ on the epicycle. This very Ptolemaic interpretation of
Kepler’s ellipse, formally pointed out to Kepler by Fabricius, see [4: pp. 402-403]
(but it is simply impossible, I think, that Kepler had not realized it immediately),
is «ruined » by the very original Kepler law ρ ξ̇ = const which implies that ξ̇ is not
constant.
No matter how audacious the last conceptual jump, i.e. ρ ξ̇ = const , may look it
is absolutely right and it identified the ellipse and the area law, as Kepler proved
immediately, regarding visibly this fact as a final proof of his hypothesis that the
area law and the inverse proportionality of the speed to the distance were absolutely
correct and in fact identical.
The law ρ ξ̇ = const , i.e. the area law, is completely out of the Copernican views
and it recalls to mind the mysterious Ptolemaic lunar constructions for which we
have apparently no clue on how they were derived.
That ρ ξ̇ is the area law is worth noting explicitly as it is little remarked in the
elementary discussions of the two body problem. If ϑ denotes the true anomaly,
‘ the average anomaly and ξ the eccentric anomaly then the equation of an ellipse
in polar coordinates (ρ;ϑ) with center at the attraction center S can be written
ρ = p=(1 − e cosϑ) = a (1 + e cos ξ) with a the major semiaxis and p = a (1 − e2).
It was possibly well known, since Apollonius (?), that in such coordinates the area
spanned by the radius ρ per unit time is 1

2 p ρ ξ̇ or, as Kepler infers from his «physical
conception », that «velocity [on the deferent] is inversely proportional to the distance
from the Sun ». This statement is often interpreted as an error made by Kepler, see
[4: p. 388], possibly confusing the speed on the deferent with the speed around the
center which is ρ ϑ̇: the elementary relation ρ2ϑ̇ = p ρ ξ̇ may explain why Kepler
did not see the two laws in conflict. Although some comments on this would have
helped a lot the readers, it seems unlikely that he did not notice that ρ ξ̇ is not
proportional to the area velocity unless the motion is on an ellipse with eccentric
anomaly ξ, particularly after Fabricius’ comments on the Ptolemaic version of the
ellipse. And an error on the part of Kepler in measuring the areas is obviously
excluded from what he writes: see [13: pp. 248-251 (or pp. 193-196 of the original
edition)].
Other interpretations of ξ are incompatible with the area law to first order in the
eccentricity. Since the eccentricity of Mars is «large » and the measurements of
Tycho-Brahe allowed us even to see corrections to the distances of second order in
the eccentricity it was possible to realize that ξ̇ was indeed inversely proportional to
ρ so that ‘ = ξ + e sin ξ followed. And the natural assumption that all planets (but
the too close Moon and perhaps the eccentric Mercury) verified the same laws was
easily checked (by Kepler) to be fully consistent with the data known at the time
for the major planets.
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We see that although the above Kepler approach is very original compared to
Ptolemy’s and Copernicus’ the conclusion in [4: p. 393] that «the discovery of
the elliptic orbit of Mars was an absolutely new departure, as the principle of circu-
lar motion had been abandoned : : : » seems, after examining the methods and the
ideas followed in Astronomia nova, a hasty conclusion to say the least. It is not even
clear that Kepler himself thought so.

16. A history of some important applications of the perturbation theory to the motion
of the main planets, successive to the work of Laplace, is [10].

17. A classical work on the theory of unperturbed Keplerian motions is the book of
Gauss, useful to whoever wishes to realize the size of even the simplest astronomical
computation and thus desires to appreciate the greatness of the Greeks astronomers’
work [8]. See also the appendix Q in the second Italian edition of [7].

18. Among the last few words of C.J. Caesar as reported by Shakespeare.
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This work is, in part, a translation of the text of a conference at the University of Roma given around
1989, circulated in the form of a preprint since. The Italian text, not intended for publication, has circulated
widely and I still receive requests of copies. I decided to translate it into English and make it available more
widely also because I finally went into more detail in the part about Kepler, that I considered quite superficial
as presented in the original text. Therefore this preprint differs from the previous (the original Italian text
can be found and freely downloaded from the page «≤ 1994 » in http://ipparco.roma1.infn.it) mainly (but
not only) for the long new part (in note 15) about Astronomia nova, which might be of independent interest.

I know that I am mortal and the creature of a day; but when I search out the
massed wheeling circles of the stars, my feet no longer touch the Earth, but,
side by side with Zeus himself, I take my fill of ambrosia, the food of Gods
(Ptolemy(?): see [9]).
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