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Teoria dei numeri. — A Note on heights in certain infinite extensions of Q. Nota di
Enrico Bombieri e Umberto Zannier, presentata (*) dal Socio E. Bombieri.

Abstract. — We study the behaviour of the absolute Weil height of algebraic numbers in certain
infinite extensions of Q. In particular, we obtain a Northcott type property for infinite abelian extensions
of finite exponent and also a Bogomolov type property for certain fields which are a p-adic analog of totally
real fields. Moreover, we obtain a non-archimedean analog of a uniform distribution theorem of Bilu in
the archimedean case.

Key words: Algebraic number theory; Heights; Uniform distribution.

Riassunto. — Una Nota sulle altezze in estensioni infinite di Q. In questa Nota si studia il compor-
tamento dell’altezza di numeri algebrici in certe estensioni infinite dei numeri razionali. In particolare, si
ottengono l’estensione della proprietà di Northcott ad estensioni abeliane infinite ma di esponente finito, e
l’estensione della proprietà di Bogomolov a corpi che sono l’analogo p-adico del corpo dei numeri algebrici
totalmente reali. In questo modo, si ricava anche un analogo non-archimedeo del teorema di distribuzione
uniforme dei coniugati di Galois, ottenuto da Bilu nel caso archimedeo.

1. Introduction

We say that a set A of algebraic numbers has the Northcott property (N) if for every
positive real number T the set

A(T ) =
{
α ∈ A : h(α) < T

}

is finite; here h(α) denotes the absolute logarithmic Weil height.
A well-known theorem of Northcott [7], which has many useful applications, states

that the set of all algebraic numbers of degree at most d has property (N).
One may ask if property (N) holds for other interesting sets. For example, does it

hold for the field Q(d ), the composite field of all number fields of degree at most d
over Q ? Although this question remains open in general, we shall show that this is
the case if d = 2. More generally, we show that property (N) holds for the maximal
abelian subfield of Q(d ).

We also say that a set A of algebraic numbers has the Bogomolov property (B) if
there exists a positive real number T0 such that A(T0) consists of all roots of unity in
A. There are several interesting examples of infinite degree fields with property (B),
among them the infinite cyclotomic extension of Q generated by all roots of unity [1, 2]
and the field of all totally real algebraic numbers [9-11]. We shall give an extension
of this latter result and relate it to the uniform distribution of points of small height
with respect to the action of Gal(Q=Q), as in the work of Bilu [3]. We also give an

(*) Nella seduta del 15 dicembre 2000.
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extension of Bilu’s result to a p-adic setting and deduce from this some new cases of
infinite fields with property (B).

2. The Northcott property

Let K be a number field and denote by K (d ) the compositum of all extension
fields F=K of degree at most d over K . Then K (d ) is normal over K . We also denote
by K (d )

ab the compositum of all abelian extensions L=K with K ⊆ L ⊆ K (d ); then K (d )
ab

is normal abelian over K .
If d ≥ 2 the fields K (d ) and K (d )

ab have infinite degree over K . However, the local
degrees remain bounded, as the following result shows.

Proposition 1. Let v ∈ MK be any place of K and let w be an extension of v to K (d )

and let Kv , K (d )
w be the corresponding complete fields. Then the local degree [K (d )

w : Kv] is
bounded in terms of d and [K : Q] alone, independently of v, w.

Proof. Let us fix an algebraic closure Ωv of Kv . It is well known that there are only
finitely many extensions Kv ⊆ L ⊂ Ωv of degree at most d , and their number is bounded
only in terms of d and [Kv : Qv] (see for instance [6: 4 (ii), p. 260]). Therefore, the
degree of their compositum is bounded only in terms of d and [Kv : Qv] ≤ [K : Q].
Since K (d )

w may be embedded in such a compositum, the proposition follows.

Proposition 1 raises the question whether the Northcott property holds for any field
F ⊂ Q such that [Fw : Qv] is uniformly bounded for w ∈ MF . We do not know
the answer to this question, but it is a simple exercise, using Tchebotarev’s Density
Theorem, to show that such an assertion is equivalent to the validity of (N) for K (d ),
d ≥ 2. On the other hand, we can prove

Theorem 1. Property (N) holds for the field K (d )
ab , for any d ≥ 2.

Corollary 1. The field K (2) has the Northcott property.

Proof. Obvious, because K (2) = K (2)
ab .

Corollary 2. For any m ≥ 2 the field Q( m
√

1; m
√

2; m
√

3; : : : ) has the Northcott property.

Proof. Let K = Q( m
√

1). Then each field K ( m
√

a) is of degree at most m and abelian
over K . Therefore, their compositum F = Q( m

√
1; m

√
2; m

√
3; : : : ) is abelian over K

and a subfield of K (m)
ab . By Theorem 1, K (m)

ab has the Northcott property and the same
holds for its subfield F .

Proof of Theorem 1. In what follows, we abbreviate D = d !. In proving Theo-
rem 1, we may enlarge the number field K , hence may suppose that K contains the
field Q( D

√
1) generated by roots of unity of order D. Let us fix a positive real number T

and let α ∈ K (d )
ab satisfy h(α) ≤ T . Let L = K (α); L is automatically normal over K ,

as a subfield of an abelian field, and is a finite abelian extension of K of exponent
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dividing D. Let p be a prime, unramified in K and let v be a place of K above p.
Let e be the ramification index of v in L. If p > d , p will be tamely ramified in L,
because any prime dividing the order of Gal(L=K ) does not exceed d . Since p is tamely
ramified, any inertia group above v is cyclic, of order e dividing D.

Now let θ = p1=e for some choice of the root, and consider the field L(θ). The
ramification index of K (θ)=K at any place w above v is e. By Abhyankar’s lemma [6,
Corollary 4, p. 236], L(θ)=L is unramified at w. Therefore, the ramification indices
above v in L(θ) are again e. Let I ⊂ Gal(L(θ)=K ) be the inertia group at w, a group
of order e. Since L(θ)=K is abelian, all the inertia groups above v are equal to I .
Define U as the fixed field of I . Then U is normal over K and v is unramified
in U . Also, [L(θ) : U ] = |I | = e. Observe that U ∩ K (θ) = K , since v is unramified
in U and totally ramified in K (θ). Hence [U (θ) : U ] = e, proving in particular that
U (θ) = L(θ). It follows that α ∈ U (θ) and we may write

α = β0 + β1θ + : : : + βe−1θ
e−1; βi ∈ U:

The conjugates of θ over U are ζ rθ, where ζ is a primitive e-th root of unity and
r = 0; 1; : : : ; e − 1. Therefore, the trace TraceU (θ)

U (θj ) vanishes if j is not a multiple
of e and equals e if j = 0. Hence

βj =
1
e

TraceU (θ)
U (αθ−j ) =

1

epj=e

e−1∑

r=0

ζ−jrαr

where αr are certain conjugates of α; note that h(αr ) = h(α) ≤ T for 0 ≤ r ≤ e − 1.
By a standard inequality about the height of a sum we find

(1) h(βj p
j=e) ≤ log e +

∑

r

h(αr ) + log e ≤ 2 log D + DT:

As before, let w be any place of U (θ) = L(θ) above v and use the same letter to
denote the associated normalized order function. Since βj ∈ U we have that w(βj ) is

divisible by e. Suppose now 1 ≤ j ≤ e − 1. Then w(pj=e) = j is not divisible by e,
whence w(βj p

j=e) �= 0. This shows that |w(βj p
j=e)| ≥ w(p1=e) = 1.

Let us abbreviate γ = βj p
j=e and suppose that γ �= 0. We have by definition

|γ|w = |Norm(γ)|1=δ
p , where the norm is from U (θ)w to Qp and δ := [U (θ) : Q]. Also,

letting δw be the local degree δw := [U (θ)w : Qp], we have that |Norm(γ)|1=δw
p extends

the usual p-adic absolute value, and in particular takes values in the group generated
by p1=e . Since γ has nontrivial order at w, we see that Norm(γ) has nontrivial order
at p, whence

∣∣ log |γ|w
∣∣ ≥ (δw=eδ) log p. Thus we have

2h(γ) = h(γ) + h(γ−1) ≥
∑

w|v

∣∣ log |γ|w
∣∣ ≥ 1

e [U (θ) : Q]

(∑

w|v

δw

)
log p:

Since
∑

δw is the sum of the local degrees above v, we have
∑

δw = [U (θ) : K ].
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Obviously, [U (θ) : Q] ≤ [U (θ) : K ] · [K : Q]. We conclude that if γ �= 0 then

2h(γ) ≥ 1
e [K : Q]

log p:

Comparing with (1) we derive that either βj = 0 or

log p ≤ 2e [K : Q](2 log D + DT ):

Let S be the set of primes p > exp(2e [K : Q](2 log D + DT )) which are unramified
in K . We have shown that if p ∈ S we must have βj = 0 for 1 ≤ j ≤ e − 1. This
means that for every place v of K lying above a prime p ∈ S the algebraic number α

lies in U , which is an abelian extension of K of exponent dividing D and unramified
at v. Hence K (α) is unramified above any p ∈ S . Writing Gal(K (α)=K ) as a direct
product of cyclic groups of order dividing D, we see that K (α) is the composite of
cyclic extensions of K of degree at most D, each unramified at any prime of S . On
the other hand, the power to which a prime divides the discriminant of a number field
of bounded degree is itself bounded (see [6, Note 11, p. 80]). Hence the discriminants
of these cyclic extensions of K are bounded. We conclude by Hermite’s theorem [6,
Theorem 2.12, p. 69] that there are only finitely many such cyclic fields. Hence there
are only finitely many distinct fields K (α) and, since α has bounded height, there are
only finitely many possibilities for α itself.

3. The Bogomolov property

For simplicity, we shall consider here only normal extensions L of Q. Given such an
extension, we denote by S (L) the set of rational primes p such that L may be embedded
in some finite extension Lp of Qp. We may also assume that the closure of L in Lp

is again Lp, in which case, since L is normal, the residual degree fp and ramification
index ep of the extension Lp=Qp do not depend on the given embedding. We have

Theorem 2. If S (L) is not empty then the field L has the Bogomolov property. More
precisely, we have

(2) lim inf
α∈L

h(α) ≥ 1
2

∑

p∈S (L)

log p

ep(pfp + 1)
:

Remark. If the sum on the right-hand side of (2) diverges, then L has property (N).
Thus the question arises whether there are infinite extensions L where this occurs. We
have been unable to find such examples, and we consider it unlikely that this can occur
for an infinite extension.

Example 1. Let us say that a non-zero algebraic number α is totally p-adic if the
rational prime p splits completely in the field Q(α). Then the field L of all totally p-adic
algebraic numbers is normal and p ∈ S (L). Hence L has the Bogomolov property. This
may be considered as the p-adic analog of results of Schinzel and Smyth for totally real
algebraic numbers alluded to in Section 1.
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Example 2. Let p1; : : : ; pm be distinct rational primes and let L be the field of all
totally p-adic algebraic numbers for p = p1; : : : ; pm. Then it is clear that pi ∈ S (L) for
i = 1; : : : ; m. Moreover, we have

(3) lim inf
α∈L

h(α) ≤
m∑

i=1

log pi

pi − 1
:

This shows that the lower bound given by (2) is of the correct order of magnitude, in
so far as the contribution of primes with fp = ep = 1 is concerned.

We give now the proof of (3). To this end, we give an infinite sequence of totally
p-adic algebraic numbers for p = p1; : : : ; pm and satisfying (3). The idea is to construct
a sequence of polynomials with small integral coefficients and arbitrarily large degree r ,
which are irreducible over Q but with all roots in the p-adic field Qp for p = p1; : : : ; pm.
We start with the polynomial

F (x) := (x − 1)(x − 2) · · · (x − r)

and proceed to deform it into a polynomial with all desired properties.
Let us fix: a prime q distinct from the primes pi , positive integers ai for

i = 1; : : : ; m, a monic polynomial H (x) ∈ Z[x] of degree r , which is irreducible
mod q. Now, using the Chinese Remainder Theorem, choose a polynomial f (x) ∈ Z[x]
of degree r such that

(i) f (x) ≡ H (x) (mod q);

(ii) f (x) ≡ F (x) (mod pai
i ) for i = 1; : : : ; m;

(iii) the coefficients of f (x) are non-negative and do not exceed q
∏

pai
i :

It is clear by (i) that f (x) is irreducible over Q. If the integers ai are sufficiently large,
Hensel’s lemma shows that f (x) has r roots close to 1; : : : ; r in each field Qpi

, which
would suffice to complete our construction. However, in this special case it is to our
advantage to use directly Newton’s approximation scheme. In what follows, we drop
the suffix i writing p, a for pi and ai and denote by v( ) the usual p-adic valuation
in Qp.

Lemma 1. Let f (x) ∈ Q[x], x0 ∈ Qp and define t := v(f ′(x0)). Let b be such that

v

(
f (k)(x0)

k!

)
≥ t − (k − 1)b

for k ≥ 2 and

v(f (x0)) > t + b:

Then the sequence of Newton approximations

xn+1 = xn −
f (xn)
f ′(xn)
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converges in Qp to a root α of f (x) such that

v(α− x0) > v(f (x0)) − t:

Proof. It clearly suffices to verify by induction on n that

v(f (xn+1)) > v(f (xn)) > t + b;

v(f ′(xn+1)) = t;

v

(
f (k)(xn+1)

k!

)
≥ t − (k − 1)b; for k ≥ 2:

This follows easily from Taylor’s formula

f (k)(xn+1)
k!

=
∞∑

ν=0

(
k + ν

k

)
f (k+ν)(xn)
(k + ν)!

(xn+1 − xn)ν

and

v(xn+1 − xn) = v(−f (xn)=f ′(xn)) = v(f (xn)) − t:

We apply several times Lemma 1 to f (x), choosing p = pi , a = ai and x0 = j ,
for i = 1; : : : ; m and j = 1; : : : ; r . In order to verify the hypothesis of the lemma,
we need to compute bounds for v(f (k)(j)=k!). We shall use the easy estimate v(n!) ≤
≤ (n − 1)=(p − 1), valid for n ≥ 1.

For k = 0, it is immediate that v(f (j)) ≥ a, because of the congruence (ii) and
F (j) = 0.

For k = 1, we note that F ′(j) = ±(j − 1)! · (r − j)! ; therefore, assuming r ≥ 2, we
get v(F ′(j)) ≤ v((j − 1)!) + v((r − j)!) ≤ r−2

p−1 . Thus we have t := v(f ′(j)) = v(F ′(j)) as
soon as a > (r − 2)=(p − 1), which we shall suppose; note that t ≤ (r − 2)=(p − 1).

Finally, for k ≥ 2 we note that

F (k)(j) = k! F ′(j)
∑

|J |=k−1
j =∈J

∏

h∈J

1
j − h

;

with J running over all (k − 1)-subsets of {1; : : : ; r} not containing j . This gives

(4) v(F (k)(j)=k!) ≥ t − (k − 1) max
1≤l<r

v(l ):

Using a > t and v(l ) ≤ [log r= log p] we get from the congruence (ii) and (4) the lower
bound

v

(
f (k)(j)

k!

)
≥ t − (k − 1)b

with

b =

[
log r
log p

]
:
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By the upper bound t ≤ (r − 2)=(p − 1), if

a >
r − 2
p − 1

+

[
log r
log p

]
≥ t + b ;

which we shall suppose, the hypothesis of Lemma 1 is satisfied and then f (x) has a
root αj in Qp with v(αj − j) > v(f (j)) − t .

On the other hand, we have verified that v(f (j)) ≥ a, and also we assumed the
stronger condition a > t + b. Therefore, we have v(αj − j) > b. Since v(j − j ′) ≤ b if
1 ≤ j < j ′ ≤ r , it follows that f (x) has r roots in Qpi

, i = 1; : : : ; m.
This completes the construction of the polynomial f (x) and the only remaining

thing to do is to estimate the height of its roots. The polynomial f (x) is irreducible
over Q, has degree r and positive coefficients bounded by q

∏
pai

i . By a well-known
estimate, this yields

h(α) ≤ 1
r

m∑

i=1

ai log pi +
log(q

√
r)

r
:

If we choose ai as small as possible, namely ai ∼ r=(pi−1), and let r → ∞ we obtain (3).

Proof of Theorem 2. We shall prove a general lower bound for the height of an
algebraic number, of which Theorem 2 will be an easy corollary. Let K be a Galois
extension of Q, let α ∈ K ∗ and denote by α1;α2; : : : ;αm a full set of conjugates over
Q, satisfying a minimal equation over Z:

amxm + am−1xm−1 + : : : + a0 = 0:

Fix a rational prime p and denote by v an extension to K , of residual degree fp and
ramification index ep, of the usual valuation in Qp. By reordering the conjugates, we
may assume

v(α1) ≥ : : : ≥ v(αr ) ≥ 0 > v(αr+1) ≥ : : : ≥ v(αm):

By Gauss’s lemma [4, Chapter IV, Theorem 2.1] we have

(5) v(am) = −
m∑

i=r+1

v(αi):

Let ∆ be the discriminant

∆ := a2m−2
m

∏

i<j

(αi − αj )
2:

In order to evaluate v(∆) from below we consider first the contribution to the product
coming from terms with v(αj ) < 0. We have

v

( m∏

j=r+1

j−1∏

i=1

(αi − αj )
)

≥
m∑

j=r+1

(j − 1) v(αj );
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yielding the lower bound

v(∆) ≥ (2m − 2) v(am) + 2
∑

i<j≤r

v(αi − αj ) + 2
m∑

j=r+1

(j − 1) v(αj ):

We substitute (5) in the right-hand side of this inequality and obtain

(6) v(∆) ≥ 2
∑

i<j≤r

v(αi − αj ) − 2
m∑

j=r+1

(m − j) v(αj ):

Consider now the reductions of αi , i ≤ r , modulo the maximal ideal of the valuation
ring of v. They are elements of the finite field Fq with q = pfp . For x ∈ Fq , let Nx be
the number of conjugates αi with reduction x . Suppose i < j ≤ r . If αi and αj have
the same reduction, we have v(αi −αj ) > 0, hence v(αi −αj ) ≥ 1=ep, and otherwise we
have v(αi − αj ) ≥ 0; note that the number of pairs (i; j) with i < j and such that αi

and αj have the same reduction x is Nx (Nx −1)=2. If instead j > r , we have v(αj ) < 0,
hence v(αj ) ≤ −1=ep.

In view of these remarks, we deduce from (6) that

(7) v(∆) ≥ 1
ep

∑

x∈Fq

Nx (Nx − 1) +
1
ep

(m − r)(m − r − 1):

A more elegant formulation of (7) is obtained by defining the reduction of an
element with negative valuation to be ∞. With this convention, N∞ is simply N∞ =

= m − r and
∑

x∈Fq∪∞ Nx = m. Therefore, introducing the normalized variance

(8) Vp(α; K ) :=
1

m2

∑

x∈Fq∪∞

(
Nx −

m
q + 1

)2

we rewrite (7) as

(9) v(∆) ≥ m2

ep

(
Vp(α; K ) +

1
q + 1

)
− m

ep

:

This estimate is useful only in the range q < m but, since ∆ is a non-zero rational
integer, we have v(∆) ≥ 0 in any case. Thus from (9) it follows that

(10) log |∆| ≥ m2
∑

q<m

1
ep

(
Vp(α; K ) +

1
q + 1

− 1
m

)
log p:

On the other hand, we have a classic inequality of Mahler [5, Theorem 1]

(11) log |∆| ≤ m log m + (2m − 2)m h(α):

Therefore, combining (10) and (11) we finally obtain

Theorem 3. Let K be a Galois extension of Q and for each rational prime p let fp and ep

be the residual degree and ramification index of p in K . Let also p a prime ideal of K
dividing (p) and write q := pfp .
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Let α ∈ K ∗ be of degree m and let Vp(α; K ) be the normalized variance

Vp(α; K ) :=
1

m2

∑

x∈Fq∪∞

(
Nx −

m
q + 1

)2

;

where, for x ∈ Fq , Nx is the number of conjugates of α with reduction x modulo p and N∞
is the number of conjugates of α which are not integers in Kp. This variance does not depend
on the choice of p|p.

Then we have

h(α) ≥ − log m
2m − 2

+
m

2m − 2

∑

q<m

1
ep

(
Vp(α; K ) +

1
q + 1

− 1
m

)
log p:

The proof of Theorem 2 is now easy. For α ∈ L we apply Theorem 3 with K the
Galois closure of α and note that the numbers fp, ep relative to the field K do not
exceed the corresponding quantities for the field L. Since Vp(α; K ) ≥ 0 in any case,
the proof is completed by noting that, by Northcott’s theorem, in any infinite sequence
of distinct algebraic numbers of bounded height the degrees must go to ∞, hence we
have m → ∞ if we want to estimate lim inf h(α) in L.

Remark. Theorem 3 implies an equidistribution theorem for elements of an infinite
sequence {α} of algebraic numbers with height tending to 0. In particular, for any
sequence {α} along which h(α) → 0, we have that if p is unramified in the Galois
closure of α then q := pfp → ∞ and

(12)
1

deg2(α)

∑

x∈Fq∪∞

(
Nx −

deg(α)
q + 1

)2

log p → 0:

This may be regarded as an analog of Bilu’s equidistribution theorem [3]; see also [8]
for related results in a p-adic and adelic setting.
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