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Fisica matematica. — On a temperature-dependent Hele-Shaw flow in one dimension.
Nota di Antonio Fasano e Laura Pezza, presentata (*) dal Socio M. Primicerio.

Abstract. — A model is presented for a Hele-Shaw flow with variable temperature in one space
dimension. The problem to be solved is a free boundary problem for a parabolic equation with a non-linear
and non-local free boundary condition. Existence and uniqueness are proved.

Key words: Hele-Shaw flows; Free boundary problems; Nonlocal conditions.

Riassunto. — Su un flusso di Hele-Shaw unidimensionale dipendente dalla temperatura. Si presenta un
modello per un flusso di Hele-Shaw con temperatura variabile in una dimensione spaziale. Il problema da
risolvere è un problema a frontiera libera per un’equazione parabolica con una condizione al contorno non
lineare e non locale. Si dimostrano esistenza e unicità.

1. Introduction

It is well known that a Hele-Shaw cell consists of two parallel plates with a viscous
incompressible fluid flowing in the gap. When the gap is sufficiently narrow and surface
tension is negligible the pressure at the fluid-air interface satisfies the conditions

p = 0;(1.1)

−∇p · n = v · n(1.2)

(n external normal unit vector, v velocity of the interface, all variables nondimensional and
suitably normalized). Moreover the pressure is a harmonic function in the flow region

(1.3) ∆p = 0:

For the derivation of the equations above see [3].
Some basic references about the Hele-Shaw flow are [8], the original paper, [2, 6,

10, 12-15], each corresponding to a significant progress in the study of the problem.
In the typical Hele-Shaw cell the liquid is injected or sucked through a circular hole in
one of the plates and the flow is 2-D.

One of the basic assumptions leading to (1.1)-(1.3) is that the fluid viscosity is
constant. Such a condition is satisfied if the temperature is everywhere constant.

Recently, several generalizations have been considered. For instance non-planar Hele-
Shaw cells [4], or the case of non-Newtonian fluids [1].

In this paper we want to analyze a nonisothermal quasi-steady flow taking into
account the temperature dependence of viscosity. Thus we have a thermal conduction-
convection problem coupled with a Hele-Shaw flow with variable viscosity.

(*) Nella seduta del 15 dicembre 2000.
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In the next section we shall derive the governing equations justifying the quasi-
steady assumption and the rest of the paper is devoted to the proof of existence and
uniqueness of a classical solution to the 1-D problem. The one-dimensional geometry
is obtained by injecting the fluid through a rectilinear slot and averaging all quantities
in the transversal direction. The problem is then trivial if the viscosity is constant
(and it coincides with the so-called Green-Ampt model for fluid injection into porous
media [7]). In the temperature dependent case however, besides the coupling between
the equations for the flow and the heat transfer, the front advancement is described by
an integrodifferential equation involving the temperature in a nonlocal way.

Our approach differs from the one adopted by other authors (see [16, 17, 9]),
whose studies refer specifically to the flow of magmas for which the Péclet number
is considerably large, making transverse heat convection not negligible. Indeed we
select physical situations in which this contribution to the heat flux is not important
and transverse motion can be neglected altogether (typical values compatible with this
picture can be a gap of 1 mm, characteristic length in the motion direction 1 m, thermal
diffusivity larger than 10−6m2sec−1, the ratio between the driving pressure gradient and
viscosity not larger than 1 m−1sec−1).

Also we note that e.g. in [16] the boundary temperature is prescribed, while in
our case it is not specified and heat exchange with the exterior through the plates is
governed by a linear radiation law. After an averaging procedure in the transversal
direction the boundary heat exchange rate appears as a source term in the diffusion-
convection equation. Assuming that the heat exchange coefficient through the plates is
small enough, the thermal problem is mathematically not trivial (in the sense that we
must deal with the full parabolic equation in the presence of a free boundary).

Remark 1.1. It is well known that Hele-Shaw flows with suction are unstable. Here
we are mainly interested in the injection case (the injection pressure larger than the
pressure at the moving boundary). We will make some remarks on the general case in
the last section.

2. Derivation of the model

As we said, we consider a physical situation in which we can neglect the velocity
component in the direction normal to the plates, so we deal with a one-dimensional
flow.

We choose a coordinate x in the direction of the flow, x = 0 being the inflow
line, and a coordinate z such that the plates coincide with the planes z = ±h. We
introduce a characteristic length L (x = L representing the boundary of the cell) such
that h=L � 1.

Since the fluid is incompressible, the only scalar component of the velocity field
does not depend on x : v = v(z; t ). The flow region is bounded between x = 0 and
the unknown moving front x = f (z; t ).
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Neglecting gravity, it is immediately seen that the flow is described by the equations

ρ
@v
@t

= −@p
@x

+
@
@z

(
η(θ)

@v
@z

)
;(2.1)

0 = −@p
@z

+ η′(θ)
@θ
@x

@v
@z

;(2.2)

where ρ is the density (here considered constant). Consistently with the latter as-
sumption on ρ we have disgregated possible transverse forces due to thermally induced
buoyancy. As a matter of fact, the model is formulated for the case in which the
relative temperature excursion in the z-direction is small enough, in the sense that will
be specified later. It has to be stressed that the viscosity is a known differentiable func-
tion η(θ) of the temperature θ and therefore it depends on space and time through the
(unknown) thermal field. In the sequel we will introduce various assumptions on the
data for the thermal field guaranteeing that during the whole process the fluid does not
undergo any crystallization or glassification, so that (2.1), (2.2) can safely be used as
flow equations.

Now we introduce a reference pressure p0 and a reference viscosity η0 (the viscos-
ity corresponding to some reference temperature θ0) and we define the dimensionless
variables

x̃ = x=L; z̃ = z=h; p̃ = p=p0; θ̃ = θ=θ0; η̃ (θ̃ ) = η(θ)=η(θ0)

t̃ = t=t0; ṽ = v=v0; f̃ (z̃ ; t ) = (1=L)f (hz̃ ; t0 t̃ );

where v0 = p0h2

Lη0
; t0 = L

v0
.

In the new variables equations (2.1), (2.2) become

R
@ṽ

@t̃
= −@p̃

@x̃
+

@
@z̃

(
η̃ (θ̃ )

@ṽ
@z̃

)
;(2.3)

@p̃
@z̃

=

(
h
L

)2
@ṽ
@z̃

d η̃

d θ̃

@θ̃
@x̃

;(2.4)

where R = ρv0L
η0

(
h
L

)2
is the Reynolds number.

Our basic assumption is that h
L is so small that we are allowed to replace (2.3),

(2.4) by

@p̃
@x̃

=
@

@z̃

(
η̃ (θ̃ )

@ṽ
@z̃

)
;(2.5)

@p̃
@z̃

= 0;(2.6)

so that the flow can be considered quasi-steady. Note that in (2.5) the dependence on x̃
is contained in the viscosity (through the thermal field that we have not yet described).
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At this point we make another simplifying assumption, neglecting the possible de-
pendence of η̃ (i.e. of θ̃ ) on z̃ , which is quite sensible in view of the previous hypothesis
and will be clearly justified later. We define the average velocity

(2.7) V (t̃ ) =

∫ 1

0
ṽ (z̃ ; t̃ ) d z̃ ;

and, recalling (2.6), we separate the spatial variables in (2.5):

(2.8)
@2ṽ

@z̃ 2 =
1
η̃

@p̃
@x̃

;

so that both sides depend on t̃ only. The boundary conditions

(2.9) ṽ (1; t̃ ) = 0;
@ṽ
@z̃

∣∣∣∣
z̃=0

= 0

lead to

(2.10) ṽ (z̃ ; t̃ ) = − 1
2η̃

@p̃
@x̃

(1 − z̃ 2);

from which we deduce the equation for V (t̃ )

(2.11) V (t̃ ) = − 1

3η̃ (θ̃ )

@p̃
@x̃

:

Remark 2.1. Clearly the average velocity (2.7) can be defined only when the trans-
verse cross section is completely filled by the fluid. Therefore the use of (2.11) close to
the free boundary is an approximation requiring that the latter is flat enough.

The pressure is given at the injection slot and at the moving boundary x̃ = f̃ (z̃ ; t̃ )
and it can be rescaled so that these conditions take the form

p̃ (0; t̃ ) = p̃ i(t̃ ) > 0;(2.12)

p̃ (f̃ ; t̃ ) = 0:(2.13)

The condition p̃ i > 0 is consistent with Remark 1.1 and will be removed later.
In addition, the points of the moving boundary move with the fluid velocity and

therefore, putting

(2.14) F (t̃ ) =

∫ 1

0
f̃ (z̃ ; t̃ ) d z̃

we impose that Ḟ (t̃ ) = V (t̃ ) (see Remark 2.1). Thus from (2.11), (2.12), (2.13) we
obtain the remaining free boundary condition in the following integro-differential form

(2.15) Ḟ (t̃ ) =
p̃ i(t̃ )

3
∫ F (t̃ )

0
η̃ (θ̃ (x̃ ; t̃ )) d x̃

;
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which in fact summarizes the whole flow problem, together with the initial condition

(2.16) F (0) = F0 > 0:

Let us come to the thermal field equation which in the original variables is

(2.17) c
@θ
@t

+ cv
@θ
@x

= k∆θ;

where the heat capacity c and thermal conductivity k are taken constant, and we have
neglected the heat generated by internal friction in the flow.

For θ we have the initial condition

(2.18) θ(x; z; 0) = Θ(x; z); 0 < x < f (z; 0)

and the boundary conditions

θ(0; z; t ) = θi(t )(2.19)
@θ
@z

= −λ1(θ − θ1); z = h;(2.20)

@θ
@z

= 0; z = 0;(2.21)

(
@θ
@x

− @θ
@z

@f
@z

)[
1 +

(
@f
@z

)2
]−1=2

= −λ2(θ − θ2); x = f (z; t );(2.22)

λ1;λ2 being positive constants whose order of magnitude will be specified soon (Re-
mark 2.2). The conditions on the functions Θ(x; z); θi(t ) and on the constants θ1; θ2

are mainly dictated by the requirement that the rheological behaviour of the system is
compatible with equations (2.1), (2.2). It is sufficient to suppose that Θ; θi; θ1; θ2 are
all larger than some critical temperature θ∗, above which the system can be reasonably
considered as a Newtonian fluid.

Now we use the rescaled temperature θ̃ = θ=θ0 and, defining the coefficient γ =

= k
cLv0

= kη0
cp0h2 , we write (2.17)-(2.22) in nondimensional form

@θ̃

@t̃
+ ṽ

@θ̃
@x̃

= γ
@2θ̃

@x̃ 2 + γ

(
L
h

)2
@2θ̃

@z̃ 2 ;(2.23)

θ̃ (x̃ ; z̃ ; 0) = Θ̃(x̃ ; t̃ ); 0 < x̃ < f̃ (z̃ ; 0);(2.24)

θ̃ (0; z̃ ; t̃ ) = θ̃ i(t̃ );(2.25)

@θ̃
@z̃

= 0; for z̃ = 0;(2.26)

@θ̃
@z̃

= −λ1h(θ̃ − θ̃ 1); for z̃ = 1;(2.27)

@θ̃
@x̃

= −λ2L(θ̃ − θ̃ 2); on the moving boundary.(2.28)
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Here we have assumed that the moving boundary has a sufficiently small curvature
so that

∣∣ @f
@z

∣∣ � 1, and we can replace the l.h.s. of (2.22) simply by @θ
@x . The definitions

of Θ̃; θ̃ i; θ̃ 1; θ̃ 2 are obvious.
At this point we define

(2.29) U (x̃ ; t̃ ) =

∫ 1

0
θ̃ (x̃ ; z̃ ; t̃ )d z̃

and we integrate (2.23) w.r.t. z̃ . Assuming that @ṽ
@z̃ ; @θ̃

@z̃ are so small that we can use
the approximations ṽ = V; θ̃ (x̃ ; 1; t̃ ) = U (x̃ ; t̃ ) when needed, we obtain the system

@U

@t̃
+ Ḟ (t̃ )

@U
@x̃

= γ
@2U

@x̃ 2 − γ1(U − U1); 0 < x̃ < F (t̃ ); t̃ > 0(2.30)

U (x̃ ; 0) = U0(x̃ ) 0 < x̃ < F̃ (0);(2.31)

U (0; t̃ ) = Ui(t̃ ); t̃ > 0;(2.32)

@U
@x̃

= −γ2(U − U2); x̃ = F (t̃ ); t̃ > 0;(2.33)

where γ1 = λ1γ
L2

h , γ2 = λ2L; U1 = θ̃ 1; U2 = θ̃ 2 = Ui = θ̃ i .

Remark 2.2. We are interested in the case in which γ = O(1), i.e. the diffusion time
over distances of order L is comparable to t0. This also implies that in the transversal
direction temperature is basically uniform as required. Also we assume that γ1 is not
too large, which implies that λ1 is of order h

L2 (i.e. heat transmission across the plates
is small). Taking γ1 � 1 would imply U � U1, making the thermal problem trivial.

Thus we have formulated our free boundary problem consisting of (2.30)-(2.33) and
of (2.15), which we rewrite in the form

(2.34) Ḟ (t̃ ) =
p̃ i(t̃ )

3
∫ F (t̃ )

0
η̃ (U (x̃ ; t̃ )) d x̃

; t̃ > 0; F (0) = F0;

keeping the same symbol η̃ for the rescaled viscosity. Let us summarize the conditions
under which the model above is meaningful:

(i) the Reynolds number is small,

(ii) the moving boundary x = f (z; t ) is flat enough (i.e.
∣∣∣@f
@z

∣∣∣ � 1),

(iii)
∣∣∣@ṽ
@z̃

∣∣∣;
∣∣∣@θ̃
@z̃

∣∣∣ are small enough (in particular this allows to take the viscosity

constant over each cross-section). As we said this is implied by γ = 0(1).

We omit the precise definition of a classical solution (F; U ) to (2.30)-(2.34), because
it is obvious. From now on we drop the tilde from all the symbols in order to use a
simpler notation.
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3. Existence and uniqueness theorem

Let us recall that

(H1) the data U0; Ui; U1; U2 are all larger than 1,

meaning that the physical system can be considered as a Newtonian fluid at the corre-
sponding temperatures.

Moreover we assume that

(H2) F (0) = F0 > 0,
(H3) U0 ∈ H 1+2α([0; F0]) for some α ∈ (0; 1=2), Ui is Lipschitz continuous in [0; T ]

for any T > 0,
(H4) the initial and boundary data for the temperature are compatible, i.e. U0(0) =

= Ui(0); U ′
0(F0) = −γ2(U0(0) − U2),

(H5) pi ∈ H α([0; T ]) for any T > 0; pi ≥ 0,
(H6) η(U ) is a decreasing Lipschitz continuous function for U ≥ 1.

The Lipschitz norm of Ui and the Hölder norm of pi in [0; T ] may depend on T .

Theorem 3.1. Under the assumptions (H1)-(H6) problem (2:30)-(2:34) has a unique
classical solution (F; U ) which exists globally in time. Moreover U > 1 and Ḟ ∈ H α.

Proof. We use a fixed point technique. Let us introduce the set

Σ ={ϕ ∈ C 1([0; T ]) : ϕ(0) = F0; 0 ≤ ϕ̇≤ B;

|ϕ̇(t ′′) − ϕ̇(t ′)| ≤ A(t ′′ − t ′)α; 0 ≤ t ′ < t ′′ ≤ T };

where the constants A; B are to be chosen and α is the same as in (H3). For any
ϕ ∈ Σ the problem (2.30)-(2.33) with F (t ) replaced by ϕ(t ) has one unique solution
U (x; t ) in H 2+2α;1+α(Dϕ;T ), with Dϕ;T = {(x; t ) : 0 < t < T; 0 < x < ϕ(t )}, with
@U
@x continuous in D

ϕ;T . Moreover, a standard application of the maximum principle
and Hopf’s lemma (in the parabolic version: see e.g. [5]) shows that U > 1 and
U ≤ M (T ), where M (T ) = max(‖U0‖; ‖Ui‖T ; U1; U2). Here ‖U0‖ is the sup norm
in (0; F0), ‖Ui‖T the sup norm in (0; T ). In addition (see [11, Theorem 10.1: p. 204])
U ∈ H β;β=2(Dϕ;T ) for β arbitrarily close to 1 (and in particular independent of α),
so that we can take β ≥ 2α. At this point we can differentiate (2.26) w.r.t. x and
observe that @U

@x satisfies a parabolic problem with initial data in H 2α and boundary
data in H α. Thus [11, Theorem 12.1: p. 22] @U

@x ∈ H 2α;α(D
ϕ;T ), with a Hölder norm

depending on the data only.
Once we have calculated U (x; t ) we define

(3.1) F (t ) = F0 +

∫ t

0

pi(τ )

3
∫ ϕ(τ )

0
η(U (x; τ )) dx

d τ

and we show that the mapping T ϕ = F has a fixed point in Σ by choosing the
constants A; B in a suitable way.
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We note that

(3.2) 0 < ηm = η(M ) ≤ η ≤ η1 = η(1)

and we set Pi = ‖pi‖T . Clearly we have

(3.3) 0 ≤ Ḟ (t ) ≤ Pi

3F0ηm

and consequently we choose B = Pi
3F0ηm

. Denoting by πα the Hölder coefficient of pi(t )
and by N

α the Hölder coefficient of U w.r.t. time, it is easy to check that

(3.4) |Ḟ (t ′) − Ḟ (t ′′)|(t ′′ − t ′)−α ≤ 1
3F 2

0 η
2
m

{
(F0 + BT )(N

α
PiH + η1πα

) + η1BT 1−α
}

;

where H is the Lipschitz coefficient of the function η(U ).
The right-hand side of this inequality defines the constant A(T ) such that T Σ ⊂ Σ.
Now we want to show that T is continuous in the selected topology. More precisely

we shall prove that there exists a constant c > 0 depending on T and on the data, such
that

(3.5) ‖Ḟ 1 − Ḟ 2‖T ≤ c‖ϕ1 − ϕ2‖T ;

for any ϕ1;ϕ2 ∈ Σ, where Fi = T ϕi; i = 1; 2.
From (3.1) we immediately realize that

(3.6) ‖Ḟ 1 − Ḟ 2‖T ≤ C1‖ϕ1 − ϕ2‖T + C2‖U (1) − U (2)‖T ;

U (1); U (2) being the solutions of (2.30)-(2.33) corresponding to ϕ1;ϕ2 respectively and
the norm ‖U (1) − U (2)‖T is the sup norm over Dϕ1;T ∩ Dϕ2;T = D′

T .
Therefore (3.5) will be proved if we show that

(3.7) ‖U (1) − U (2)‖T ≤ K ‖ϕ1 − ϕ2‖T

for some positive constant K that can be found in terms of the data.
In order to study the difference U (1)−U (2) in D′

T we first perform the transformation
ξ = x − F (t ); W (ξ; t ) = U (ξ + F (t ); t ) in (2.30)-(2.33). Then we see that the
function Z (ξ; t ) = W (1)(ξ; t ) − W (2)(ξ; t ) satisfies the problem

@Z
@t

= γ
@2Z

@ξ2 − γ1Z; − ψ(t ) < ξ < 0; 0 < t < T(3.8)

Z (ξ; 0) = 0; − F0 < ξ < 0; 0 < t < T(3.9)

Z (−ψ(t ); t ) = Zi(t ); 0 < t < T;(3.10)

@Z
@ξ

= −γ2Z; ξ = 0; 0 < t < T;(3.11)

where ψ(t ) = min(ϕ1(t );ϕ2(t )); Zi(t ) = @W (1)

@ξ (ξ̃ (t ); t )(ϕ1(t ) −ϕ2(t )) if ϕ1(t ) ≥ ϕ2(t ),

while Zi(t ) = @W (2)

@ξ (ξ(t ); t )(ϕ1(t ) − ϕ2(t )) if ϕ1(t ) ≤ ϕ2(t ), and ξ(t ) is a suitable point
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between ϕ1(t ) and ϕ2(t ). We already know that
∣∣ @U

@x

∣∣, and consequently
∣∣ @W

@ξ

∣∣, is
bounded in terms of the data and of the parameters defining the set Σ (which are now
some known functions of the data).

At this point the inequality

(3.12) ‖Z ‖T ≤ K1‖ϕ1 − ϕ2‖T

is a trivial consequence of the maximum principle (K1 being a constant depending on
the data). Coming back to the original variables, we have

(3.13) ‖U (1) − U (2)‖T ≤ ‖Z ‖T + K2‖ϕ1 − ϕ2‖T ;

where K2 is nothing but an upper estimate for
∣∣ @U

@x

∣∣, which, as we said, is uniform
w.r.t. ϕ ∈ Σ.

We conclude that (3.7) follows from (3.12) and (3.13) with K = K1 + K2. At this
point not only we have proved that the mapping T is continuous for any T , but also
that for T < 1

K it is contractive. Hence the use of Schauder’s and of Banach’s theorems
is the final step of the proof of Theorem 3.1.

4. Continuous dependence

Consider the two sets of data p(j)
i (t ); F (j)

0 ; U (j)
0 (x); U (j)

i (t ); U (j)
1 ; U (j)

2 ; j = 1; 2, sat-
isfying the assumptions of Theorem 3.1. Let (F (j); U (j)) be the corresponding solutions.
We have the following continuous dependence theorem.

Theorem 4.1. For all T > 0 there exists a constant C (T ) such that

(4.1)
‖F (1) − F (2)‖C 1([0;T ]) ≤ C (T )

{
‖p(1)

i − p(2)
i ‖T + |F (1)

0 − F (2)
0 | + ‖U (1)

0 − U (2)
0 ‖ +

+ ‖U (1)
i − U (2)

i ‖T + |U (1)
1 − U (2)

1 | + |U (1)
2 − U (2)

2 |
}

:

The constant C (T ) depends on the quantities defining the class in which the data are selected
but not on the choice of the data within such a class.

Proof. As in the last part of the proof of the previous theorem we introduce
the functions W (j) = U (j)(ξ + F (j)(t ); t ), Z (ξ; t ) = W (1)(ξ; t ) − W (2)(ξ; t ), ψ(t ) =

min(F (1)(t ); F (2)(t )), Ψ(t ) = max(F (1)(t ); F (2)(t )), and we consider the problem

@Z
@t

= γ
@2Z

@ξ2 − γ1Z + γ1(U (1)
1 − U (2)

1 ); − ψ(t ) < ξ < 1; 0 < t < T;(4.2)

Z (ξ; 0) = U (1)
0 (ξ + F (1)

0 ) − U (2)
0 (ξ + F (2)

0 ); − ψ(0) < ξ < 0;(4.3)

Z (−ψ(t ); t ) = U (1)
i (t ) − U (2)

i (t ) +
@W (i)

@ξ
(ξ(t ); t )[F (1)(t ) − F (2)(t )];(4.4)

0 < t < T;

@Z
@ξ

(0; t ) = −γ2Z (0; t ) + γ2(U (1)
2 − U (2)

2 ); 0 < t < T;(4.5)
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where in (4.4) j = 1 if F (1)(t ) > F (2)(t ) and j = 2 otherwise.
We can split Z into the sum Z1 + Z2, where Z1 satisfies (4.2)-(4.5) without the

terms containing the differences U (1)
j −U (2)

j ; j = 1; 2, while the problem for Z2 contains
such terms and has zero data in (4.3), (4.4). The norm ‖Z1‖T is easily estimated by
means of the maximum principle. As to Z2, first we eliminate the term γ1Z2 in the
differential equation taking the function Ẑ2 = Z2e−γ1t . Then we note that

(4.6) |Ẑ2| ≤ γ1|U
(1)

1 − U (2)
1 |Teγ1T + Z3;

where Z3 is the solution of the heat equation in the domain −∞ < ξ < 0, 0 < t < T ,
with zero initial data and such that

(4.7)
@Z3

@ξ
(0; t ) = γ2‖Ẑ2‖t + γ2|U

(1)
2 − U (2)

2 |:

Using the well known representation of Z3, from (4.6) we obtain an integral inequality
of Gronwall type with a kernel of Abel type. The conclusion is that

(4.8)
‖U (1) − U (2)‖T ≤C1(T )

{
‖p(1)

i − p(2)
i ‖T + |F (1)

0 − F (2)
0 | +

+‖U (1)
0 −U (2)

0 ‖+‖U (1)
i −U (2)

i ‖T + |U (1)
1 −U (2)

1 |+ |U (1)
2 −U (2)

2 |
}
:

This information is used in

Ḟ
(1)

(t ) − Ḟ
(2)

(t ) =

[
3
∫ F (1)(t )

0
η(U (1)(x; t )) dx

∫ F (2)(t )

0
η(U (2)(x; t )) dx

]−1

×

×
{

p(1)
i (t )

∫ F (2)(t )

0
η(U (2)(x; t )) dx − p(2)

i (t )
∫ F (1)(t )

0
η(U (1)(x; t )) dx

}

in order to get an integral inequality to which Gronwall’s theorem is once more appli-
cable. The result is that ‖F (1) − F (2)‖T is estimated by a sum like the r.h.s. of (4.1).
Proving (4.1) is now trivial.

5. Some extensions

We can allow γ1; U1 to depend on x; t , provided that they are Hölder continuous
in time with their x-derivative in a Hölder class. Similarly, γ2; U2 may depend on
time and be Hölder continuous. The other requirements on γ1; γ2 must be kept. It is
possible to relax the condition U1; U2 > 1, but in that case we can solve the problem
as long as we can say that the rescaled temperature U is greater than 1, otherwise the
rheology of the system is affected. It is not difficult to find an a-priori estimate on the
existence time T for which the inequality U > 1 is satisfied.
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