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Teoria dei controlli. — Exact controllability of shells in minimal time. Nota di Paora
Lorert, presentata (*) dal Socio C. Baiocchi.

AsstracT. — We prove an exact controllability result for thin cups using the Fourier method and recent
improvements of Ingham type theorems, given in a previous paper [2].

Key worps: Shells; Fourier method; Ingham type inequalities.

Ruassunto. — Controllabilita esatta di calotte in tempo minimo. Dimostriamo un risultato di control-
labilita esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo
Ingham, dati in un precedente articolo [2].

1. INTRODUCTION AND FORMULATION OF THE MAIN RESULT

Since the introduction of the Hilbert Uniqueness Method by J.-L. Lions in 1986, see
[14, 15], many works were devoted to the controllability and stabilizability of different
plate models, see e.g. [12, 13]. The similar study of the more complex shell models is
more recent, see e.g. [4-7], etc. The purpose of this paper is to prove optimal results
for spherical shells with a central hole.

By the Love-Koiter linear shell theory [17, 19] we can formulate the mathematical
model of a spherical cup of opening angle 0 < 6, < m with a hole of opening angle
0 <6, <0, In the case ) = 5 a similar analysis can be done also in the absence of a
hole, see [16]. We only consider axially symmetric deformations. Then the meridional
and radial displacements (0, r) and w(f, #) of a point P, belonging to the middle
surface of the shell, satisfy in (0, ,6,) x R the following coupled system of partial

differential equations:

dun —L(w) + (1 + l/)u// —eL(u+ u/) =0,
(11) 1+v . / e N
dw, — ——(usinf) + —[L(u+ «')sin0'] +2(1 + ) w=0,
" sin 6 sin 6

where " and the subscript # stand for the derivatives with respect to 6 and ¢,
L) := 0" + ¥/ cotd — (v + cot® H)v,

and d, ¢, v are given constants. More precisely, denoting by R and /4 the radius and

the half-thickness of the middle surface, by A and 71 the Lamé constants, by 4, the
density and by E the Young modulus, we have

l A dyE

C_ﬁ, V_—)\+277 and d—l_yz

Note that —1 <v < 1/2 and ¢, 4> 0.

R2

(*) Nella seduta del 15 dicembre 2000.
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According to the Hilbert Uniqueness method, the exact controllability of this system
holds true in suitable function spaces provided a special uniqueness property is satisfied.
This was explained for the present context in [6], so that in this paper we only study
the required uniqueness of the solutions of (1.1) completed by the following boundary
and initial conditions:

wl,, ) =u,,1)=0,
(1.2) w(,,t)=uw'0,,1)=0, teR,
L+ w)0,,t)=Lu+w)0 ,1)=0,

{ w0,0)=u,, u(0,0)=u,

(1.3)
w@,0) =w,, w(0,0)=uw,,

6, <0<0,.
It follows from more general results established in [7] that the problem (1.1), (1.2),
(1.3) is well posed in the Hilbert space V x H defined by

V= H(0,,0,) < (H N H)@,,0,)
and
H = L1*0,,0,) x L*0,,0,).

In [7] more complex spaces are used, but under the present assumption ¢, > 0 they
are equivalent to the above ones. Our main result is the following:

Tueorem 1.1. For all but countably many exceptional values of c, the following uniqueness

property holds true. If a solution of (1.1)-(1.3) satisfies
(1.4) wl,, =0, 0<r<T,
for some T > 2\/2(90 —0,), then in fact v = (u, w) vanishes identically in (0, , 0,) x R.

Remark. The same conclusion was obtained in [4] for the particular case of the
half-sphere (6, = 7/2, 6, = 0), for some very particular choices of the parameters. The
proof had two important ingredients:

o thanks to the particular choice of the angles the eigenfunctions of the infinitesi-
mal generator A of the corresponding semigroup have an explicit representation by
Legendre polynomials;

o thanks to the choice of the parameters the spectrum of A satisfies a crucial gap
condition, enabling one to apply a classical generalization of Parseval’s equality, due
to Ingham [8].

In order to treat the present general case, we have to modify substantially our
approach:

e without determinig explicitly the eigenfunctions and eigenvalues of A, we can estab-
lish the existence of a Riesz basis of V x H, formed by eigenfunctions of A, and we
can obtain a sufficiently precise information on the distribution of the correspond-
ing eigenvalues by applying the spectral theory of ordinary differential operators as
exposed by Titchmarsh in [20].
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e The study of the eigenvalues shows that the gap condition needed for the application
of Ingham’s theorem is not satisfied in general. However, a weaker gap condition
still holds, and this is still sufficient for our purposes because we may apply a recent
generalization of Ingham’s theorem, given in [1] (see also [2, 9]) which also extends
a celebrated theorem of Beurling [3].

2. REPRESENTATION OF THE SOLUTIONS

Let us clarify the structure of the solutions of (1.1)-(1.3). We refer to [18] for the
study of the spectrum in the general case. In the present particolar case, following [19],
it is useful to introduce a primitive s of # with respect to 6 and to use the differential
operator

D(s) = 5" 4+ § cotf + 2.
Then, setting also
Ei=04+00+v)

for brevity, (1.1) can be rewritten in a more convenient form:
{ ds, = D(s) + (cD - /e)(s + w),

dw, = (1 + v)D(s) — (CDZ —cB+v)D + 2/e) (s + w).

Consider the following eigenvalue problem:
(2.2) { *ID(@ - ?‘;JJC in (0,6,

]j (0,) :]]4 0,)=0.

Thanks to our assumption 0 < 6, < ¢, < 7 the coefficients of D are continuous on the

(2.1)

compact interval [0, , ,]. (The assumption on the existence of a hole is crucial here.)
We may therefore apply the spectral theory as developed in the first chapter of Titch-
marsh’s book [20]. Thus there exists a Riesz basis f, f;, ... of L2(01 ,0,), formed by
eigenfunctions of the problem (2.2). Furthermore, the following asymptotic relations
are satisfied as j — oc:

23 Vi =g +OG),

0 1

_ 2 jm0 1
(2'4) ﬁ_ 90‘91(:05(‘9091)—*_0(]')'

Rewriting (2.1) in the operational form

dv, = Av, v=1_(s,w)

and using these eigenfunctions we can find a Riesz basis of V x H, formed by eigen-
functions of the form (wj]]”.,]]”.) of A. Indeed, the equation A(wj]]”.,ﬁ) = )\j(wjﬁ,ﬁ)
leads to the algebraic system

(l—i—c)aj—l—/e—l—)\j caj.—i—/e (wj>_
caj + (3 + I/)Ozj + 1+ 1/)04]. + 2k cozjz. + 3+ l/)aj +2k+ )\j 1



46 P. LORETI

Proceeding as e.g. in [7] we have two solutions:

1
N =5(-B+ /B —4C)

with
Bi=caj + [(1+ 0+ cB+v)a, + 301+ 91 + 1),
— 03 2 2
C} = ca; + 2ca; + 1+00-v )a].
and
N ca; + 1+00+v)
Wi = — .
J )\j. +(1+c)aj+(1+c)(l+1/)
Moreover, we may assume that the numbers Ay, Ay, ... are pairwise distinct and

different from zero (this holds for all but countably many exceptional values of ¢).
Since ; — 00, one obtains easily the asymptotic relations

+ — 2
(2.5) )\j ~ o, )\j ~ —ca;
and hence
(2.6) wf ~1, w ~ fl/aj,

Applying Proposition 2.1 from [11], we conclude that the vectors

WS ), j=0,1,...

form a Riesz basis in H and that the solutions of (2.1), (1.2), (1.3) (with « = ) are
given by the series

2.7)

J

I Z(L‘]f >\].’/dz 4 djfﬂ/)\;/dt)(w;];, )
with suitable complex coefficients #;, 4, ¢; and 4, depending on the initial data.

3. Proor oF THE UNIQUENESS THEOREM

We begin by formulating a special case of a generalization of a classical theorem due

to Beurling [3], proved in [1] and [2]. Let (A ):°

n—=—00

be a strictly increasing sequence
of real numbers. Assume that there exists a number " > 0 such that

)\n+2 - An Z 27/
for all 7. Set

A1 ::{nEZ : )\n_)\n—lz’y, and )\n-H_)\nZPyl}’

Ay={neZ : \,— X, _,>7 and /\,,+1*)\n<’}/}’
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and consider the sums of the form

3.1) f@=> b

with complex coefficients &, We only consider «finite» sums, i.e., we assume that only
finitely many coefficients are different from zero. Put

E(f) = Z |bn|2 + Z |:|bn + bn+l|2 + (/\n+1 - )\n)z(lbn‘z + |bn+1|2)

n€A ncAy

for brevity. Furthermore, set

+
.1 (n)
D" = lim
r— 00 7
where 7" (7) denotes the largest number of terms of the sequence (A,) contained in an

interval of length 7.
The following result is a special case of a theorem proved in [2].

Tueorem 3.1, For every bounded interval I of length |I| > 2mD" there exist two
constants C,, C, > 0 such that

(3.2) CE(f)< /[f(t)|2 dr < CE(f)
I
Jor all functions [ of the form (3.1).
RemARks.

e By a standard density argument, the estimates (3.2) remain valid also for all infinite
sums such that £(f) < oc.

e Using a theorem of [11], the above theorem remains valid if there is also a finite
number of nonreal exponents \ .

Now we are ready to prove Theorem 1.1. Let 7> 2v/d(6, — 6,) and assume that
w(,, ) =0 for all 0 < #< T. Then, using the representation (2.7) we have

+/de —Iatdr = /dt — /AT /dr
ST @ 09N b f0) VI g e f0)N Y 1 d f0)e VT = 0
j
forall 0 < t< 7.
Let us apply Theorem 3.1 and the above remarks for the sequence (\) is formed
of the numbers + )\].i. Thanks to the asymptotic relations (2.3) and (2.5) we have

Dt = \/2(90 —6,)/m. Since 7> 2w D", we conclude that
1 500 = 6109 = 000 = 410) =0

for every j. Since the variational problem (2.2) is regular, none of the numbers ]5(90)
is equal to zero. Hence all coefficients a, &, ¢, and 4, vanish. Using again the
representation (2.7) we conclude that the solution (s, w) and then also (%, w) vanishes
identically.
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Remark. There exist effectively exceptional values of the parameters ¢. Indeed, one

can find by direct computation two different indices j < 4 and values ¢, v such that

AT
J

= A, . Denoting this common value by A, the formula

5, w)(0) = V(L)W ) =[O for )

defines a nontrivial solution of (1.1)-(1.3) for which w(f,, #) = 0 for all real =

(1]
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