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Teoria dei controlli. — Exact controllability of shells in minimal time. Nota di Paola

Loreti, presentata (*) dal Socio C. Baiocchi.

Abstract. — We prove an exact controllability result for thin cups using the Fourier method and recent
improvements of Ingham type theorems, given in a previous paper [2].

Key words: Shells; Fourier method; Ingham type inequalities.

Riassunto. — Controllabilità esatta di calotte in tempo minimo. Dimostriamo un risultato di control-
labilità esatta per calotte sottili, utilizzando il metodo di Fourier e miglioramenti recenti di teoremi di tipo
Ingham, dati in un precedente articolo [2].

1. Introduction and formulation of the main result

Since the introduction of the Hilbert Uniqueness Method by J.-L. Lions in 1986, see
[14, 15], many works were devoted to the controllability and stabilizability of different
plate models, see e.g. [12, 13]. The similar study of the more complex shell models is
more recent, see e.g. [4-7], etc. The purpose of this paper is to prove optimal results
for spherical shells with a central hole.

By the Love-Koiter linear shell theory [17, 19] we can formulate the mathematical
model of a spherical cup of opening angle 0 < θ0 < π with a hole of opening angle
0 < θ1 < θ0. In the case θ0 = π

2 a similar analysis can be done also in the absence of a
hole, see [16]. We only consider axially symmetric deformations. Then the meridional
and radial displacements u(θ; t ) and w(θ; t ) of a point P , belonging to the middle
surface of the shell, satisfy in (θ1; θ0) × R the following coupled system of partial
differential equations:

(1.1)

{
dutt − L(u) + (1 + ν)w′ − eL(u + w′) = 0;

dwtt −
1 + ν

sin θ
(u sin θ)′ +

e
sin θ

[L(u + w′) sin θ′]′ + 2(1 + ν)w = 0;

where ′ and the subscript t stand for the derivatives with respect to θ and t ,

L(v) := v′′ + v′ cot θ − (ν + cot2 θ)v;

and d , c , ν are given constants. More precisely, denoting by R and h the radius and
the half-thickness of the middle surface, by λ and η the Lamé constants, by d0 the
density and by E the Young modulus, we have

c =
h2

3R2 ; ν =
λ

λ + 2η
and d =

d0E

1 − ν2 R2:

Note that −1 < ν < 1=2 and c; d > 0.

(*) Nella seduta del 15 dicembre 2000.
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According to the Hilbert Uniqueness method, the exact controllability of this system
holds true in suitable function spaces provided a special uniqueness property is satisfied.
This was explained for the present context in [6], so that in this paper we only study
the required uniqueness of the solutions of (1.1) completed by the following boundary
and initial conditions:





u(θ0; t ) = u(θ1; t ) = 0;

w′(θ0; t ) = w′(θ1; t ) = 0;

L(u + w′)(θ0; t ) = L(u + w′)(θ1; t ) = 0;

t ∈ R;(1.2)

{
u(θ; 0) = u0; ut (θ; 0) = u1;

w(θ; 0) = w0; wt (θ; 0) = w1;
θ1 < θ < θ0:(1.3)

It follows from more general results established in [7] that the problem (1.1), (1.2),
(1.3) is well posed in the Hilbert space V ×H defined by

V := H 1
0 (θ1; θ0) × (H 2 ∩ H 1

0 )(θ1; θ0)

and

H := L2(θ1; θ0) × L2(θ1; θ0):

In [7] more complex spaces are used, but under the present assumption θ1 > 0 they
are equivalent to the above ones. Our main result is the following:

Theorem 1.1. For all but countably many exceptional values of c , the following uniqueness
property holds true. If a solution of (1:1)-(1:3) satisfies

(1.4) w(θ0; t ) = 0; 0 < t < T;

for some T > 2
√

d (θ0 − θ1), then in fact v = (u; w) vanishes identically in (θ1; θ0) ×R.

Remark. The same conclusion was obtained in [4] for the particular case of the
half-sphere (θ0 = π=2, θ1 = 0), for some very particular choices of the parameters. The
proof had two important ingredients:
• thanks to the particular choice of the angles the eigenfunctions of the infinitesi-

mal generator A of the corresponding semigroup have an explicit representation by
Legendre polynomials;

• thanks to the choice of the parameters the spectrum of A satisfies a crucial gap
condition, enabling one to apply a classical generalization of Parseval’s equality, due
to Ingham [8].

In order to treat the present general case, we have to modify substantially our
approach:
• without determinig explicitly the eigenfunctions and eigenvalues of A, we can estab-

lish the existence of a Riesz basis of V ×H, formed by eigenfunctions of A, and we
can obtain a sufficiently precise information on the distribution of the correspond-
ing eigenvalues by applying the spectral theory of ordinary differential operators as
exposed by Titchmarsh in [20].
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• The study of the eigenvalues shows that the gap condition needed for the application
of Ingham’s theorem is not satisfied in general. However, a weaker gap condition
still holds, and this is still sufficient for our purposes because we may apply a recent
generalization of Ingham’s theorem, given in [1] (see also [2, 9]) which also extends
a celebrated theorem of Beurling [3].

2. Representation of the solutions

Let us clarify the structure of the solutions of (1.1)-(1.3). We refer to [18] for the
study of the spectrum in the general case. In the present particolar case, following [19],
it is useful to introduce a primitive s of u with respect to θ and to use the differential
operator

D(s) = s ′′ + s ′ cot θ + 2s:

Then, setting also

k := (1 + c)(1 + ν)

for brevity, (1.1) can be rewritten in a more convenient form:

(2.1)
{

dstt = D(s) +
(
cD − k

)
(s + w);

dwtt = (1 + ν)D(s) −
(
cD2 − c(3 + ν)D + 2k

)
(s + w):

Consider the following eigenvalue problem:

(2.2)
{ −D( fj ) = αj fj in (θ1; θ0);

f ′
j (θ0) = f ′

j (θ1) = 0:

Thanks to our assumption 0 < θ1 < θ0 < π the coefficients of D are continuous on the
compact interval [θ1; θ0]. (The assumption on the existence of a hole is crucial here.)
We may therefore apply the spectral theory as developed in the first chapter of Titch-
marsh’s book [20]. Thus there exists a Riesz basis f0; f1; : : : of L2(θ1; θ0), formed by
eigenfunctions of the problem (2.2). Furthermore, the following asymptotic relations
are satisfied as j → ∞:

√
αj =

jπ
θ0 − θ1

+ O

(
1
j

)
;(2.3)

fj =

√
2

θ0 − θ1
cos

(
jπθ

θ0 − θ1

)
+ O

(
1
j

)
:(2.4)

Rewriting (2.1) in the operational form

dvtt = Av; v = (s; w)

and using these eigenfunctions we can find a Riesz basis of V × H, formed by eigen-
functions of the form (ωj fj; fj ) of A. Indeed, the equation A(ωj fj; fj ) = λj (ωj fj; fj )
leads to the algebraic system
(

(1 + c)αj + k + λj cαj + k

cα2
j + c(3 + ν)αj + (1 + ν)αj + 2k cα2

j + c(3 + ν)αj + 2k + λj

)(
ωj

1

)
= 0:
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Proceeding as e.g. in [7] we have two solutions:

λ±
j =

1
2

(
−Bj ±

√
B2

j − 4Cj

)

with
Bj = cα2

j + [(1 + c) + c(3 + ν)]αj + 3(1 + c)(1 + ν);

Cj = cα3
j + 2cα2

j + (1 + c)(1 − ν2)αj

and

ω±
j =

cαj + (1 + c)(1 + ν)

λ±
j + (1 + c)αj + (1 + c)(1 + ν)

:

Moreover, we may assume that the numbers λ±
0 , λ±

1 , : : : are pairwise distinct and
different from zero (this holds for all but countably many exceptional values of c).

Since αj → ∞, one obtains easily the asymptotic relations

(2.5) λ+
j ∼ −αj; λ−

j ∼ −cα2
j

and hence

(2.6) ω+
j ∼ 1; ω−

j ∼ −1=αj :

Applying Proposition 2.1 from [11], we conclude that the vectors

(ω±
j fj; fj ); j = 0; 1; : : :

form a Riesz basis in H and that the solutions of (2.1), (1.2), (1.3) (with u = s ′) are
given by the series

(2.7)

(s; w)(t ) =
∑

j

(
aj e

√
λ+

j =d t
+ bj e

−
√

λ+
j =d t

)
(ω+

j fj; fj ) +

+
∑

j

(
cj e

√
λ−

j =d t
+ dj e

−
√

λ−
j =d t

)
(ω−

j fj; fj )

with suitable complex coefficients aj , bj , cj and dj , depending on the initial data.

3. Proof of the uniqueness theorem

We begin by formulating a special case of a generalization of a classical theorem due
to Beurling [3], proved in [1] and [2]. Let (λn)∞n=−∞ be a strictly increasing sequence
of real numbers. Assume that there exists a number γ′ > 0 such that

λn+2 − λn ≥ 2γ′

for all n. Set

A1 := {n ∈ Z : λn − λn−1 ≥ γ′ and λn+1 − λn ≥ γ′};

A2 := {n ∈ Z : λn − λn−1 ≥ γ′ and λn+1 − λn < γ′};



exact controllability of shells in minimal time 47

and consider the sums of the form

(3.1) f (t ) =
∑

n

bneiλnt

with complex coefficients bn. We only consider «finite» sums, i.e., we assume that only
finitely many coefficients are different from zero. Put

E ( f ) :=
∑

n∈A1

|bn|
2 +

∑

n∈A2

[
|bn + bn+1|

2 + (λn+1 − λn)2(|bn|
2 + |bn+1|

2)
]

for brevity. Furthermore, set

D+ := lim
r→∞

n+(r)
r

where n+(r) denotes the largest number of terms of the sequence (λn) contained in an
interval of length r .

The following result is a special case of a theorem proved in [2].

Theorem 3.1. For every bounded interval I of length |I | > 2πD+ there exist two
constants C1, C2 > 0 such that

(3.2) C1E ( f ) ≤
∫

I

|f (t )|2 dt ≤ C2E ( f )

for all functions f of the form (3:1).

Remarks.

• By a standard density argument, the estimates (3.2) remain valid also for all infinite
sums such that E ( f ) < ∞.

• Using a theorem of [11], the above theorem remains valid if there is also a finite
number of nonreal exponents λn.

Now we are ready to prove Theorem 1.1. Let T > 2
√

d (θ0 − θ1) and assume that
w(θ0; t ) = 0 for all 0 < t < T . Then, using the representation (2.7) we have

∑

j

aj fj (θ0)e
√

λ+
j =d t

+ bj fj (θ0)e
−
√

λ+
j =d t

+ cj fj (θ0)e
√

λ−
j =d t

+ dj fj (θ0)e
−
√

λ−
j =d t

= 0

for all 0 < t < T .
Let us apply Theorem 3.1 and the above remarks for the sequence (λn) is formed

of the numbers ±
√
λ±

j . Thanks to the asymptotic relations (2.3) and (2.5) we have

D+ =
√

d (θ0 − θ1)=π. Since T > 2πD+, we conclude that

aj fj (θ0) = bj fj (θ0) = cj fj (θ0) = dj fj (θ0) = 0

for every j . Since the variational problem (2.2) is regular, none of the numbers fj (θ0)
is equal to zero. Hence all coefficients aj , bj , cj and dj vanish. Using again the
representation (2.7) we conclude that the solution (s; w) and then also (u; w) vanishes
identically.
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Remark. There exist effectively exceptional values of the parameters c . Indeed, one
can find by direct computation two different indices j < k and values c , ν such that
λ+

j = λ−
k . Denoting this common value by λ, the formula

(s; w)(t ) = e
√

λ=d t( fk(θ0)(ω+
j fj; fj ) − fj (θ0)(ω−

k fk; fk)
)

defines a nontrivial solution of (1.1)-(1.3) for which w(θ0; t ) = 0 for all real t .
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Vol. 2, Birkhäuser, Boston 1989.

[4] G. Geymonat - P. Loreti - V. Valente, Introduzione alla controllabilità esatta per la calotta sferica.
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