
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Fulvio Ricci, Jérémie Unterberger

Solvability of invariant sublaplacians on spheres
and group contractions

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e
Applicazioni, Serie 9, Vol. 12 (2001), n.1, p. 27–42.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_2001_9_12_1_27_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per mo-
tivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_2001_9_12_1_27_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 2001.



Rend. Mat. Acc. Lincei
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Equazioni a derivate parziali. — Solvability of invariant sublaplacians on spheres and
group contractions. Nota di Fulvio Ricci e Jérémie Unterberger, presentata (*) dal Socio
F. Ricci.

Abstract. — In the first part of this paper we study the local and global solvability and the hypoellipticity
of a family of left-invariant sublaplacians Lα on the spheres S2n+1 � U (n + 1)=U (n). In the second part,
we introduce a larger family of left-invariant sublaplaciansLα;β on S3 � SU (2) and study the corresponding
properties by means of a Lie group contraction to the Heisenberg group.

Key words: Local solvability; Hypoellipticity; Invariant differential operators; Lie group contractions.

Riassunto. — Risolubilità di sub-Laplaciani invarianti su sfere e contrazioni di gruppi. Nella prima parte
del lavoro si studiano risolubilità locale e globale e ipoellitticità di una famiglia di sub-Laplaciani invarianti
Lα sulle sfere S2n+1 � U (n + 1)=U (n). Nella seconda parte si introduce una famiglia più ampia di
sub-Laplaciani invarianti a sinistra Lα;β su S3 � SU (2) e se ne studiano le corrispondenti proprietà per
mezzo di una contrazione, nel senso dei gruppi di Lie, sul gruppo di Heisenberg.

Introduction

For n ≥ 1, let U (n) (resp. SU (n)) be the group of (resp. determinant 1) n by
n unitary matrices. Considering the action of U (n + 1) on the base point z0 =

= (1; 0; : : : ; 0) ∈ Cn+1, we may see the complex sphere S2n+1 = {(z0; : : : ; zn) ∈
∈ Cn+1 |

∑n
i=0 |zi |

2 = 1} as the quotient U (n + 1)=U (n), where U (n) acts on the
n last coordinates, or, also, as SU (n + 1)=SU (n). Let u(n + 1) = {X ∈ gl(n +

+ 1;C) | X = −t X } be the Lie algebra of U (n + 1), and su(n + 1) the subalgebra of
null trace matrices in u(n + 1).

We propose to study the solvability properties of certain partial differential operators
on S2n+1 that commute with the action of U (n + 1) or SU (n + 1).

We first recall some basic facts about invariant differential operators on a homoge-
neous space G=K . If D is G -left-invariant and K -right-invariant on G , then D induces
a G -invariant operator D[ on G=K as follows:

Df ] = (D[f )];

where f ](g ) = f (gK ), g ∈ G . It turns out (see [2, Chap. 2]) that the correspondence
D �→ D[ is onto, but not 1 − 1. More details on this correspondence will be given in
the first Section.

As we shall prove below, the algebra of U (n + 1)-invariant differential operators on
S2n+1 is commutative and generated by two elements. Clearly two possible generators
are ∆[, where ∆ is the Casimir operator of SU (n + 1), and Z [, where Z generates the

(*) Nella seduta del 15 dicembre 2000.
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center of u(n + 1) (seen as left-invariant vector field).
However, it is more convenient for us to introduce two different generators. Let Xj ,

Yj (j = 1; : : : ; n), H ∈ su(n + 1) defined as

Xj =
1
2




0 · · · 0 1 0 · · · 0
...
0
−1
0
...
0




; Yj =
1
2




0 · · · 0 i 0 · · · 0
...
0
i
0
...
0




;

where the non-zero coefficients appear at line j or column j (the indices starting from 0),

H =
1
2




i
−i=n

. . .
−i=n




and let L0 =
∑n

j=1(X 2
j + Y 2

j ) in the enveloping algebra U(su(n + 1)), seen as a left-

invariant differential operator on U (n + 1). Then L[
0 and H [ constitue another set

of generators, obtained from the previous ones by the simple relations H [ = Z [ and
L[

0 = ∆[ − (Z [)2. One reason for choosing these generators is that L[
0 ± inH [ represent

the boundary sublaplacian �b = @b@
∗
b + @

∗
b@b of the sphere, acting on functions and

on (0; n)-forms respectively. Therefore L[
0 is naturally related to the structure of CR-

manifold on S2n+1 (see [1, Chap. 7 and Chap. 8]). From now on we shall drop the
alteration signs, giving explanations only in case of ambiguity.

The operators we consider are the U (n + 1)-invariant sublaplacians Lα = L0 − iαH
acting on L2(Sn+1). The left action on U (n + 1) on L2(Sn+1) decomposes as L2(Sn+1) �
� ⊕l;l ′≥0H

n;l;l ′ , where Hn;l;l ′ is the vector space of harmonic polynomials in (z; z)
(z ∈ Cn+1) of bidegree (l; l ′) with respect to z and z (see [10, Chap. 11]). The spaces
Hn;l;l ′ are irreducible with respect to U (n + 1), so Lα is scalar on each of them. By
means of an explicit computation of its eigenvalues, we prove the following theorem:

Theorem. Let n ≥ 1. Then Lα is locally solvable and hypoelliptic for α �= ±n; modulo a
subspace of finite dimension, it is even globally solvable on S2n+1. If α = ±n, then it is neither
locally solvable nor hypoelliptic.

In a second part, we restrict ourselves to the case n = 1. The reason why we single
out this case is the following. Whereas for n ≥ 2 the algebra of SU (n + 1)-invariant
differential operators on S2n+1 is equal to the aforementioned algebra of U (n + 1)-
invariant differential operators, in the case of S3 � SU (2), the former one is isomorphic
to the whole enveloping algebra U(su(2)). Thus, if we impose only an SU (2)-invariance
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condition on our operators, a natural generalization of L
α

is the more general family
of «sublaplacians» A2 + B2 − iα[A; B], where A; B ∈ su(2) are linearly independent, so
that A; B and [A; B] form a basis of su(2). It is easy to see that these operators are
conjugate in su(2) (up to a constant) to the operators

L
α;β = X 2 + β2Y 2 − iαβH ;

where β ∈ R, and X; Y; H is the following standard basis of su(2):

H =
1
2

(
i 0
0 −i

)
; X =

1
2

(
0 1
−1 0

)
; Y =

1
2

(
0 i
i 0

)
:

They satisfy the commutation relations [H; X ] = Y; [X; Y ] = H; [Y; H ] = X . The
operator Lα;β is U (1)-invariant if and only if β = 1. Hence we may assume that
β �= 1.

We need to consider this time the decomposition of L2(S3) � L2(SU (2)) with respect
to the left regular action of G (we write G for SU (2) and g for su(2)). Let Vn be
the n + 1-dimensional space of homogeneous polynomials of degree n on C2 with the
following action of G :

πn(g )p(x; y) = p(αx + βy;−βx + αy); g−1 =

(
α β

−β α

)
:

Then the (Vn;πn), n ≥ 0, are representatives of all classes of unitary irreducible rep-
resentations of G . Equivalently, by setting y = 1, Vn can be replaced by the space of
polynomials on C of degree less than or equal to n, with a fractional linear action.

Let L2
0(G ) be the space of L2-functions f on SU (2) such that

∫
G

f = 0; equivalently,
L2

0(G ) may be defined as the closure of the space spanned by the matrix coefficients of
the representations Vj for j ≥ 1. For β �= 1, the analysis of dπ(Lα;β) is made different
by the fact that this operator does not appear to be diagonal in any natural basis. Let
us say that α is a singular value (associated with πn) if dπn(L

α;β) is not invertible
on L2

0 for a certain n ≥ 1 (note that Lα;β always annihilates constant functions). Then
define the cluster set of Lα;β to be the set of values α for which there is a sequence
of singular values αj associated to πnj

, with αj → α and nj → ∞. This set is the

union of the accumulation points of the set of singular values and of the values α for
which L

α
has an infinite dimensional kernel (in particular, ±1, as we shall see). It is

easy to study local and global solvability if α is not in the cluster set. So the important
matter is the study of the accumulation points of the set of singular values. This was
also the underlying scheme of the proof of the above Theorem, but we shall focus on
this notion only in this part, where it will receive an interpretation in terms of a Lie
group contraction as follows.

Let G ′ be the three-dimensional Heisenberg group, and g′ its Lie algebra, generated
by the standard basis (X ′; Y ′; H ′) with the single non trivial relation [X ′; Y ′] = H ′.
Denote by (ζ; t ), with ζ = x + iy; x; y; t ∈ R, the element exp(xX ′ + yY ′ + tH ′)
of G ′. A family of unequivalent unitary irreducible representations (called Bargmann-
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Fock representations) (σ
λ
;H

λ
) (λ ∈ R∗) of G ′ is given by:

[σλ(ζ; t )f ](w) = e−λ(it+ζw+ 1
2 |ζ|2)f (w + ζ); λ > 0;

[σλ(ζ; t )f ](w) = eλ(−it−ζw+ 1
2 |ζ|2)f (w − ζ); λ < 0:

Let ϕ be any local diffeomorphism from a neighbourhood of the identity eG ′ of G ′

to a neighbourhood of the identity eG of G such that ϕ(eG ′ ) = eG and dϕ(eG ′ ) sends
the triple (X ′; Y ′; H ′) into the triple (X; Y; H ), and put

ϕε(ζ; t ) = ϕ(ε
1
2 ζ; εt ); ε ∈]0; 1]:

So Φε := dϕε(eG ′ ) is the invertible linear map given by Φε(X ′) = ε
1
2 X; Φε(Y ′) =

= ε
1
2 Y; Φε(H ′) = εH . Then ϕε is a contraction of G onto G ′ in the following sense:

lim
ε→0

Φ−1
ε [ΦεV; ΦεW ] = [V; W ]; V; W ∈ g′:

The first author proved that this contraction allows one to retrieve the Bargman-
Fock representations as an asymptotic limit of the representations πn of SU (2). Namely,
for all V ∈ g, P; Q polynomials in one variable,

〈dπn(V )P (
√

n:); Q (
√

n:)〉 ∼n→∞ 〈dσ1(Φ−1
1=nV )P; Q 〉

(see [7, Theorem 2]). The left hand side is defined only if the degrees of P and Q are
smaller than n, but the limit makes sense for all P and Q .

This formula can easily be generalized to V in the envelopping algebra U(g). We
obtain thus, for any P; Q :

〈dπn(Lα;β)P (
√

n:); Q (
√

n:)〉 ∼n→∞ n〈dσ1(L′
α;β)P; Q 〉;

where L′
α;β = X ′2 + β2Y ′2 + iαβH ′. On the Heisenberg group, dσ1(L′

α;β) is equal
to a conjugate of the harmonic oscillator, whose eigenvalues are the odd integers. The
set of odd integers is also exactly the set of asymptotic singular values obtained in the
first part, in the particular case of the operators Lα;1 on SU (2). It is tempting to relate
the cluster set to the eigenvalues of the limit operator dσ1(L′

0;β) on H1 obtained by
the contraction.

Using the group contraction, we prove the following result:

Theorem. For any β, the set of asymptotic singular values is actually equal to the set
±(2n + 1) (n ∈ N) of eigenvalues of the modified harmonic oscillators 1

β
dσ±1(L′

0;β).

Using then a general theorem of Hörmander (see [3]) on the hypoellipticity of doubly
characteristic operators, we deduce the following partial results for the operators Lα;β :

Theorem.

(1) If α �= ±1;±3; : : : , then Lα;β is hypoelliptic, locally solvable, and globally solvable modulo
a finite dimensional subspace.

(2) If α = ±1, then L
α;β is neither hypoelliptic nor locally solvable.
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For α = ±3;±5; : : : , the analysis of L
α;β (dimension of its kernel, construction of

relative fundamental solution, etc.) depends on the arithmetic properties of its eigenval-
ues, which seem difficult to understand for β �= 1 because of the non-diagonal character
of dπn(Lα;β).

Study of the operators Lα
= L0 − iαH on the spheres

Let n ≥ 1. We define the left-invariant vector fields Xj; Yj; H in su(n + 1) as in
the Introduction. Denote also by I the identity matrix in gl(n + 1;C). We first prove
the following Lemma:

Lemma 1. The operators L0 =
∑

j X 2
j + Y 2

j and H commute with each other and with u(n).

Proof. Let us first prove that L0 and H commute with each other. For j ≥ 1,
Xj; Yj; H satisfy the commutation relations

[Xj; H ] = −1
2

(
1 +

1
n

)
Yj; [Yj; H ] =

1
2

(
1 +

1
n

)
Xj

(note that we get the canonical commutation relations of su(2) if n = 1). Combining
them with the formal relations

[X 2
j ; H ] = Xj [Xj; H ] + [Xj; H ]Xj; [Y 2

j ; H ] = Yj [Yj; H ] + [Yj; H ]Yj

gives [X 2
j + Y 2

j ; H ] = 0. So [L0; H ] = 0.

Let now MV =

(
0 0
0 V

)
(V ∈ u(n)) denote an element of u(n) ⊂ u(n + 1),

and, for z ∈ Cn, denote by Zz the element
∑n

j=1 RezjXj + ImzjYj . We get easily
[MV ; Zz ] = ZVz . If z; z ′ ∈ Cn, we then get (using analogous formal relations as above)

[MV ; ZzZz′ ] = ZVzZz′ + ZzZVZ ′ =
d
dt

∣∣∣∣
t=0

(ZetV z :ZetV z′ ):

In particular, denoting by (ej; fj )j=1;::: ;n the canonical orthonormal basis of Cn (with
fj = iej ),


MV ;

∑

j

X 2
j + Y 2

j


 =

d
dt

∣∣∣∣
t=0

∑

j

{
(ZetV ej

:ZetV ej
) + (ZetV fj

:ZetV fj
)
}

= 0 :

Finally, that H should commute with u(n) is straightforward.

So L0 and H can be considered as left-invariant operators on S2n+1 � U (n +

+ 1)=U (n). Note that L0 comes naturally from the Casimir operator on SU (n +

+ 1) as we already said in the Introduction. It remains to prove that they generate
the algebra of left-invariant operators on the sphere. In the following theorem, if
K is a closed subgroup of the compact Lie group K , we denote by D(G=K ) the
algebra of G -invariant operators on G=K . As we said in the Introduction, the «flat»
operation from U(gC)kC (which can be identified with the algebra of G -left-invariant
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and K -right-invariant differential operators on G ) into D(G=K ) is onto, but not 1−1.
More precisely, by [2, Chap. II, Theorem 4.6], the algebra D(G=K ) is isomorphic to
U(gC)kC=U(gC)kC ∩ U(gC)kC.

Theorem 1. The algebras D(U (n + 1)=U (n)) (n ≥ 1) and D(SU (n + 1)=SU (n))
(n ≥ 2) of left-invariant operators on the sphere S2n+1 are both isomorphic to C[L0; Z ].

Proof. Recall the aforementioned result from [2]. If in particular (G; K ) is a rank 1
semi-simple riemannian symmetric pair, then D(G=K ) is commutative and generated
by the Casimir operator of G . This applies to the pair (SU (n + 1); S (U (1) × U (n))).
Viewed as an element of U(su(n + 1)), L0 is congruent with the Casimir operator of
SU (n + 1) modulo U(s(u(1)×u(n))), as we already noticed in the Introduction, and even
modulo U(s(u(1) × u(n)))s(u(1)×u(n)). So we get D(SU (n + 1)=S (U (1) × U (n))) � C[L0]
(see [2, Chap. II, Theorem 5.18]). As the identity matrix is central in U(u(n + 1)), we
also get in a trivial way that D(U (n + 1)=U (1) × U (n)) � C[L0].

Consider now the (non symmetric) pair (U (n + 1); U (n)). Let D ∈ U(u(n + 1))u(n).
There is a unique way to write D as D =

∑
k≥0 Z kDk where Dk ∈ U(su(n + 1)) and

Z ∈ u(n + 1)C is the identity matrix. As iZ is central in u(n + 1), the operators Dk

also commute with u(n), hence with u(1) × u(n) = iRZ ⊕ u(n). Let k ≥ 0. It follows
from the above remarks that there exists a polynomial Pk such that Dk = Pk(L0) + D′

k;
where

D′
k ∈ U(u(n + 1))u(1)×u(n) ∩ U(u(n + 1))(u(1) × u(n)):

By Poincaré-Birkhoff-Witt’s theorem, given a basis (Aj ) of su(n), (Bj ) of the Killing

orthogonal of su(n) in su(n + 1), then the polynomials BµAνZ j form a basis of U(u(n +

+ 1)). By hypothesis, only terms in BµAν can show up in the decomposition of D′
k .

So D′
k ∈ U(u(n + 1))u(n) ∩ U(u(n + 1))u(n), which shows that, as an element of

D(U (n + 1)=U (n)), D′
k is zero. As Z can be identified with H as an operator in

D(U (n + 1)=U (n)), we get

D ≡
∑

k≥0

Pk(L0)H k mod U(u(n + 1))u(n) ∩ U(u(n + 1))u(n):

Let n ≥ 2 and D ∈ D(SU (n + 1)=SU (n)). Let D1 be a representative of D ∈
∈ D(SU (n + 1)=SU (n)) � U(su(n + 1))su(n) ∩ U(su(n + 1))su(n) in U(su(n + 1))su(n).
The spaces Hn;l;l ′ are also irreducible with respect to the action of SU (n + 1), so
D1 is scalar on each Hn;l;l ′ . Hence D1 = P (L0; H ) + D3 where P (L0; H ) is a
polynomial in L0 and H , viewed as an element of U(su(n + 1))u(n), and D3 ∈ U(u(n +

+ 1))u(n) ∩ U(u(n + 1))u(n). Note that both D1 and P (L0; H ) are in U(su(n + 1)), so
D3 is too. Now, applying once more Poincaré-Birkhoff-Witt’s theorem to U(u(n + 1))
with the basis (Aj ); (Bj ) and

E =

(
0

iId

)
∈ u(n);

we see that U(u(n + 1)) can be written in a unique way as a sum of terms of the form
BµAνE k , and U(su(n + 1)) ⊂ U(u(n + 1)) contains exactly the terms with k = 0. So,
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decomposing in this way D3, one gets only terms in BµAν with |ν| > 0, which shows
that D3 ∈ U(su(n + 1))su(n) ∩ U(su(n + 1))su(n).

We shall now study the operators L
α

= L0 − iαH . The irreducible representation
spaces Hn;l;l ′ of U (n + 1) have been defined in the Introduction. Let us call πn;l;l ′

(or πl;l ′ for short) the left regular representation of U (n + 1) on Hn;l;l ′ .

Lemma 2. The operator dπn;l;l ′ (Lα
) on Hn;l;l ′ is equal to

[
−
(

ll ′ +
n
2

(l + l ′)
)

+
α

2
(l − l ′)

]
Id:

Proof. Recall the operator dπn;l;l ′ (Lα) is scalar because it commutes with dπ(u(n +

+ 1)). Let P be the polynomial on Cn+1 defined by P (z; z) = zl
0 zl ′

n (z ∈ Cn+1). It is
obviously harmonic, so P ∈ Hl;l ′

n and it suffices to compute the action of Lα on zl
0 zl ′

n .
As the left-invariant vector fields Xj and Yj do not act on L2(Sn+1) but on L2(SU (n +

+ 1)), we shall need to consider P as the function P] on SU (n + 1) defined by
P](u) = P (u:z0) = ul

00 u l ′

n0; u = (uij ) ∈ SU (n + 1). By a straightforward computation,
we get

2XjP
](u) = 2

d
dt

∣∣∣∣
t=0

P](u exp−tXj ) = lu0j u
l−1
00 u l ′

n0 + l ′ unju
l
00 u l ′−1

n0

and, similarly,

2YjP
](u) = ilu0j u

l−1
00 u l ′

n0 − il ′ unju
l
00 u l ′−1

n0 ;

hence

4X 2
j P ](u) = −(l + l ′)ul

00 u l ′

n0 + lu0j

[
(l − 1)u0j u

l−2
00 u l ′

n0 + l ′ unju
l−1
00 u l ′−1

n0

]
+

+ l ′ unj

[
lu0j u

l−1
00 u l ′−1

n0 + (l ′ − 1) unju
l
00 u l ′−2

n0

]

and

4Y 2
j P ](u) = −(l + l ′)ul

00 u l ′

n0 − lu0j

[
(l − 1)u0j u

l−2
00 u l ′

n0 − l ′ unju
l−1
00 u l ′−1

n0

]
+

+ l ′ unj

[
lu0j u

l−1
00 u l ′−1

n0 − (l ′ − 1) unju
l
00 u l ′−2

n0

]
:

Putting together all terms, and using the fact that u ∈ SU (n + 1), one gets

2
∑

j

(X 2
j + Y 2

j )P (u) = −
[
n(l + l ′) + 2ll ′

]
P:

Finally, it is easy to verify that 2HP = i(l − l ′)P .

Note that the action of L
α

is always trivial on Hn;0;0. Let

L2
0(S2n+1) = ⊕l+l ′>0H

n;l;l ′

denote the completion in L2(S2n+1) of the space of harmonic polynomials with null
constant term (or, in other words, the space of L2-functions f on the sphere such that
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∫
S2n+1 f = 0). The preceding lemma proves that L

α
is invertible on L2

0(S2n+1) when
the values −(ll ′ + n

2 (l + l ′)) + α
2 (l − l ′), with l + l ′ > 0, are bounded away from zero.

In particular, it is locally solvable in that case (since any L2-function f on the sphere
can be modified out of a small neighbourhood such that its integral be 0).

We shall say that α is a regular value if Lα : L2
0(S2n+1) → L2

0(S2n+1) has a trivial
kernel; otherwise it is said to be singular. We shall also be interested in the following
notion: we shall say that α is an asymptotic singular value (or is in the cluster set) if
there exists sequences αj , lj and l ′j with αj → α and lj + l ′j → ∞ such that dπn;lj ;l ′j

(Lαj
)

is zero. This definition is particularly motivated, as we explained in the Introduction,
by the use of the Lie group contraction in the second part, but it will be useful also
in the study of the local solvability for our family of operators.

Lemma 3.

(1) The cluster set consists of the integers ±(n + 2j), j ∈ N.
(2) Let α �= ±n. Then the eigenvalues Cα;l;l ′ of Lα on Hn;l;l ′ are all non-zero, except for a

finite number of pairs (l; l ′), and there exists a constant C > 0 such that |Cα;l;l ′ | ≥ C for
all (l; l ′) such that Cα;l;l ′ �= 0.

Proof.

(1) The numbers of the form ±(n + 2j), j ∈ N are asymptotic singular values since,
for l ′ fixed (see Lemma 2),

n(l + l ′) + 2ll ′

l − l ′
→l→∞ n + 2l ′;

and, for l fixed,
n(l + l ′) + 2ll ′

l − l ′
→l ′→∞ −(n + 2l ):

To show that there are no other (positive, for example) asymptotic singular values,
it is enough to notice that, for fixed l ′, the map

l �→ αl;l ′ :=
n(l + l ′) + 2ll ′

l − l ′
(l �= l ′)

is a decreasing function. So, if α ∈ [2j + n − 1; 2j + n + 1[ is an asymptotic
singular value, then |αl;l ′ − α| ≥ 1 for all l ′ ≥ j + 1. But, for all l ′ = 0; : : : ; j ,
αl;l ′ →l→∞ 2l ′ + n. So α = 2j + n.

(2) If we write the eigenvalue of Lα on Hn;l;l ′ as α−n
2 l − α+n

2 l ′− ll ′, it becomes at once
clear that dπl;l ′ (Lα) is invertible for l + l ′ large enough if α �= ±n.

Set first α = 2j + n (j = 1; 2; : : : ). Then

dπl;l ′ (Lα) = dπl;l ′ (Lαl;l ′
) +

l − l ′

2
(2j + n − αl;l ′ ) =

l − l ′

2
(2j + n − αl;l ′ )

(l �= l ′) and

dπl;l (Lα;1) = −(l 2 + nl ):
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For l ≥ N , all αl;l ′ with l ′ �= j are, say, less than 2j + n − 1 or greater than
2j + n + 1. So, for l > N , the operator dπl;l ′ (Lα) is invertible and its eigenvalues are
(in absolute value) greater than

min
(

1
2

;
1
2

∣∣∣∣(l − j)
(

2j + n − l (2j + n) + nj
l − 2j

)∣∣∣∣
)

∼l→∞ 1:

Using the antisymmetry in l and l ′, an analogous result is valid for l ′ large enough.
Assume now that α ≥ 0 and α is not in the cluster set, so α ∈]2j + n − 2; 2j + n[

for a certain j ∈ N. Then, for l > N , all αl;l ′ for l ′ < j are very close to their
asymptotic value 2l ′ + n < α, and αl;l ′ ≥ 2j + n for larger positive values of l ′, so, for
all l ′, |αl;l ′ − α| ≥ C > 0. Using the method above, we get also in this case a bound
from below of the eigenvalues of (dπl;l ′ (Lα))−1 for l + l ′ large enough.

Theorem 2.

(1) If α is not a singular value, then Lα is globally solvable on L2
0(S2n+1). More precisely, if

f ∈ L2
0(S2n+1), then there is a (unique) function u ∈ L2

0(S2n+1) such that Lαu = f .
(2) If α �= ±n, then Lα is locally solvable on L2(S2n+1).

Proof.

(1) Let α be a regular value. Then, whether α be in the cluster set or not, the inverse
of Lα is bounded on L2

0(S2n+1) by Lemma 1.
(2) Consider the equation Lαu = f in a neighbourhood of x0 ∈ S2n+1. Then, by the

preceding point, and modifying f outside of a small neighbourhood on x0 as before
so that they have a null integral, it appears clearly that Lα is locally solvable if α is
not a singular value.
Let α be a singular value, α �= ±n. Then the kernel J of Lα consists of the linear

span of a finite set of matrix coefficients. Let J ⊥ denote its orthogonal in L2(S2n+1),
and R be the cokernel of L

α
in L2(S2n+1). Then L

α
is an isomorphism of J ⊥ onto R

and its inverse is bounded, as one sees by an easy generalization of Lemma 1.
Let now x ∈ S2n+1, U a small neighbourhood of x and f ∈ L2(S2n+1) with compact

support on U . Then, by modifying f outside of U , one may suppose that f ∈ R. So
there exists u ∈ J ⊥ such that Lα;1u = f on U .

Note that it is not clear which odd integers are singular values. For n = 1, it is easy
to verify that 5 is one of them but 3 is not.

Consider now α = ±n. In the case of S3 � SU (2), i.e. n = 1, then L±1 =

= (X ± iY )(X ∓ iY ) is not locally solvable: if it were so, then also X ± iY would
be locally solvable, in contrast with Nirenberg’s and Treves’ criterion for operators of
principal type (see [6]).

In general dimensions, the L2-kernel of Ln is ⊕l≥0H
n;l;0, i.e., the subspace of bound-

ary values of functions in the Hardy space H 2 of the unit ball (see [4, formula (4.7.2)]
and [5, Proposition 2.5]). The orthogonal projection of L2 onto this space in given by
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the integral formula

Pnf (z) = lim
r→1−

cn

∫

S2n+1

f (w)

(1 − r〈z; w〉)n+1 dw;

where cn is a positive constant, 〈; 〉 is the Hermitian inner product on Cn+1, dw is the
unit surface measure on S2n+1, and the limit is in the L2-sense. Similarly, the L2-kernel

of L−n is ⊕l ′≥0H
n;0;l ′ and the corresponding orthogonal projection is P−n f = Pn( f ).

The following theorem is an analogue of a classical result on the Heisenberg group
(see [8, Chap. 13, Section 4]).

Theorem 3. Let f be a smooth function on S2n+1. Then the equation Lnu = f (resp.
L−nu = f ) has a distributional solution in a neighbourhood of z0 ∈ S2n+1 if and only if Pn f
(resp. P−n f ) is real-analytic on a neighbourhood of z0 in S2n+1.

Proof. Let us first assume the equation Lnu = f has a distributional solution u in
a neighbourhood Ω of z0 ∈ S2n+1. So Lnu = f + g for a certain distribution g which
is zero in Ω. Since Ln is self-adjoint,

Pn f = Pn(Lnu) − Png = −Png:

Since the integral that gives Png is not singular in Ω, the function Pn f is real-analytic
in Ω.

Now suppose Pn f is real-analytic in a neighbourhood Ω of z0. The operator∑n
j=1(X 2

j + Y 2
j ) − iαH , viewed as acting on U (n)-invariant functions on U (n + 1),

has the following relative fundamental solution on the L2-orthogonal of its kernel
⊕l≥0H

n;l;0:

S (g ) =
∑

l≥0;l ′≥1

dn;l;l ′

Cn;l;l ′
ϕn;l;l ′; g ∈ U (n + 1)

where dn;l;l ′ is the dimension of the representation πn;l;l ′ , Cn;l;l ′ is defined as in
Lemma 3, and ϕn;l;l ′ is the spherical function associated with πn;l;l ′ (see [2, Chap. 4,
Theorem 4.2 and Chap. 5, Theorem 3.5]). Since the dn;l;l ′ have polynomial growth and
the

∣∣ 1
Cn;l;l ′

∣∣ = 1
(l+n)l ′ have a common bound for l ′ ≥ 1, the relative fundamental solution

S is well-defined as a distribution. Hence a solution of the equation Lnu = f − Pn f is
the function u on S2n+1 such that u] = f ] ? S . Since the equation Lnv = Pn f has an
analytic solution because of Cauchy-Kowalewska’s theorem, the proof is now complete
for Ln.

The argument is the same for L−n.

Study of the operators Lα;β = X 2 + β2Y 2 − iβαH on SU (2)

Let A; B; [A; B] constitute a basis of su(2). We first prove that the operator D =

= A2 + B2 − iα[A; B] is conjugate (up to a constant) to Lα;β for a certain value of β

(see Introduction for the definition). The adjoint action of SU (2) on su(2) gives all
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3-dimensional rotations. So we may assume that A; B are in the hyperplane RX ⊕RY .
Put A = a1X + a2Y; B = b1X + b2Y , with δ = (a1b2 − a2b1)2: Then

D= (a2
1 + b2

1)X 2 + (a2
2 + b2

2)Y 2 + (a1a2 + b1b2)(XY +YX )−iαδ
1
2 [X;Y ]=D0−iαδ

1
2 [X;Y ]:

The operator D0 can be formally written as

D0 =
(

X Y
)( a2

1 + b2 a1a2 + b1b2

a1a2 + b1b2 a2
2 + b2

2

)(
X
Y

)
=
(

X Y
)t

U

(
λ1

λ2

)
U

(
X
Y

)

for a certain orthogonal matrix U ∈ SO(2), with λ1λ2 = δ. Set
(

X ′

Y ′

)
= U

(
X
Y

)
.

Then [X ′; Y ′] = [X; Y ], so that D = λ1X ′2 + λ2Y ′2 − iα
√
λ1λ2[X ′; Y ′]. So, if

β =
√

λ2
λ1

, then D is conjugate to λ1Lα;β .

We first apply a theorem of Hörmander (see [3]) on the hypoellipticity of doubly
characteristic operators to our problem.

Theorem 4. If α �= ±1;±3; : : : , then Lα;β is hypoelliptic and locally solvable.

Proof. First remark that Lα;β is self-adjoint, so hypoellipticity implies local solvabil-
ity. We verify that Lα;β is hypoelliptic at the origin, using Hörmander’s criterion.

Let g =

(
t1 + it2 u1 + iu2

−u1 + iu2 t1 − it2

)
∈ SU (2) (with t1 =

√
1 − t 2

2 − u2
1 − u2

2). The

parameters (t2; u1; u2) give local coordinates near the origin. We get

2X = t1@t2
+ u1@u2

− u2@u1
; 2Y = t1@u2

+ t2@u1
− u1@t2

; 2Z = t1@u1
+ u2@t2

− t2@u2
:

Let (t2; u1; u2; τ2;µ1;µ2) be coordinates in the cotangent space (τ2;µ1;µ2 being
the dual coordinates of t2; u1; u2), and let P2 be the principal symbol of 4L

α;β .

At the origin (t2; u1; u2) = (0; 0; 0), we have −P2(0; 0; 0; τ2;µ1;µ2) = τ 2
2 +

+ β2µ2
2 ≥ 0: So the fiber of the characteristic variety over the origin is of dimension

one, given by τ2 = µ2 = 0.
Let us now compute the quadratic form Q giving the Taylor expansion to second

order of P2 near each of the characteristic points (0; 0; 0; 0;±1; 0). Taking, e.g., the
positive sign, we get

Q (t2; u1; u2; τ2; 1 + δµ1;µ2) = τ 2
2 + u2

2 − 2u2τ2 + β2(t 2
2 + µ2

2 + 2t2µ2):

Its kernel is the two-dimensional vector space Ru1 ⊕Rµ1. Identify Q with its matrix in
the coordinates (t2; u2; τ2;µ2), and put F = Q J , where J is the matrix of the canonical
symplectic form (see [3, p. 166]). The eigenvalues of F can be easily computed to be
0 and ±2β. The generalized null-space of F is two-dimensional and consists of the
vectors such that µ2 = −t2 and τ2 = u2. It is quickly verified that Q (v; v) = 0
whenever v = (t2; u1; u2; u2;µ1;−t2), t2; u1; u2;µ1 ∈ R, that is, when v lies in the
whole generalized null-space. So Hörmander’s condition (i.e. (1.3) in [3]) is exactly
that α �= ±1;±3; : : : .
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We shall now study the set of singular values.
For all n, (Vn; π̃n) will denote the representation of G , equivalent to πn, given by

π̃n(g )P (u) = πn(g )(P (
√

n:))
(

u√
n

)

and || ||π̃n
the norm on Ṽn transfered from the norm on Vn by the intertwining operator.

So, if P (z) =
∑

akzk ∈ Vn,

||P ||2πn
=

n∑

j=0

C −1
n;j |aj |

2; ||P ||2π̃n
=
∑

C −1
n;j nj |aj |

2:

Let γ = 1−β
1+β

.

Lemma 4.

(1) For all n;α;β,

1
n

d π̃n(Lα;β) =

(
1

γ + 1

)2 (
(1 + γu2=n)

d
du

− γu

)(
(γ + u2=n)

d
du

− u

)
−

− β(α + 1)
(

u
n

d
du

− 1
2

)
:

(2) The kernel of L±1;β is infinite-dimensional : the operator d π̃n(L±1;β) (n ≥ 1) has a
non trivial kernel of dimension 1 for all even n, generated by the polynomial Pn;±1 =

=
(
1 + γ±1u2

n

) n
2 .

Observe that, when n → ∞, it tends formally to the operator(
1

γ + 1

)2 (
d
du

− γu

)(
γ

d
du

− u

)
+

1
2
β(α + 1);

which is equal to the operator dσ1(L′
α;β). Also, for α = 1, Pn;1(u) →n→∞ ϕ0(u) = e

γu2
2

and ϕ0 ∈ Ker dσ1(L′
1;β).

Proof.

(1) It is easily checked that

dπn(X )=
1
2

(
(w2 +1)

d
dw

−nw

)
; dπn(Y )=

i
2

(
(1−w2)

d
dw

+nw

)
; dπn(iH )=w

d
dw

− n
2

:

So (letting u =
√

nw)

d π̃n(X − iβY ) =
√

n

(
1

γ + 1

)(
(1 + γu2=n)

d
du

− γu

)
;

d π̃n(X + iβY ) =
√

n

(
1

γ + 1

)(
(γ + u2=n)

d
du

− u

)
;

id π̃n(H ) = u
d
du

− n
2

with γ = 1−β
1+β

. Now just remark that

L
α;β = (X − iβY )(X + iβY ) − iβ(α + 1)H = (X + iβY )(X − iβY ) − iβ(α− 1)H:
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(2) Let f ∈ L2 such that L1;β f = 0. Put f =
∑

n fn, with fn ∈ Vn. Then, for all l; l ′,
L1;β fl;l ′ = 0, so

0 = 〈(X − iβY )(X + iβY )f; f 〉 = ||(X + iβY )f ||2:

It suffices then to verify by means of the above explicit expressions of dπn(X ) and
dπn(Y ) that the polynomials Pn;1 generate the kernel of X + iβY on Hn;l;l ′ . The
case α = −1 is completely analogue.

We can now prove:

Theorem 5. The cluster set is equal to the set {±1;±3; : : : } of eigenvalues of the operator
1
β

dσ±1(X ′2 + β2Y ′2).

Proof.

(1) Let us first prove by contradiction that the cluster set contains the values {±1;±3;: : :}.
Let ϕj be a non-zero element in the kernel of dσ1(L′

−(2j+1);β). We may choose for

instance ϕj (u) = (dσ1(X ′ − iβY ′))j e
γu2

2 since
(
(X ′ + iβY ′)(X ′ − iβY ′) + iβαH ′) (X ′ − iβY ′) =

= (X ′ − iβY ′)
(
(X ′ + iβY ′)(X ′ − iβY ′) + iβ(α− 2)H ′) :

So ϕj (u) = Qj (u)e
γu2

2 where Qj is a polynomial of degree j .

Fix j = 0; 1; : : : . Let 0 < σ < 1 − γ and, for all n, ϕj;n =
∑[nσ]

k=0 akuk , with

ak =
ϕ(k)

j (0)

k! . Note that, for k large enough,

|ak |
2 ≤ CPj (k)

(γ
2

)k
((

1 +

[
k
2

])
!
)−2

≤ CPj (k)
γk

k!

by Stirling’s formula, where Pj is a certain polynomial.

Let D = ub( @
@u )c (b; c = 0; 1; :::) and ε = b − c . Then

Dϕj;n =

[σn]∑

k=0

k(k − 1) · · · (k − c + 1)akuk+ε

so

||Dϕj;n||
2
π̃n

≤
[σn]∑

k=0

Pj (k)k2c γ
k

k!
nk+ε

Cn;k+ε

≤ CεPj (k)
[σn]∑

k=0

k2c+εγk nk+ε

n(n − 1) · · · (n − k − ε + 1)
:

Now, for k ≤ σn,

γk nk+ε

n(n − 1) · · · (n − k − ε + 1)
≤
( γ

1 − σ

)k+ε

so, by the hypothesis on σ, ||Dϕj;n||π̃n
is bounded for any n. By dominated convergence,

||ϕj;n||π̃n
→n→∞ ||ϕj ||σ1

.
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Observe that dσ1(L′
α;β)(ϕj;n − ϕj ) ∈ Vn since dσ1(L′

α;β)(ϕj ) = 0. By the same
method, we also get

||dσ1(L′
α;β)(ϕj;n − ϕj )||

2
π̃n

=

[σn]+2∑

k=[σn]−2

|bk |
2

(all other terms cancelling) where

|bk | ≤ CPj (k)k4γk nk+2

n(n − 1) · · · (n − k − 1)
≤ C ′Pj (k)k4

( γ

1 − σ

)k

for k = [σn] − 2; : : : ; [σn] + 2, so ||dσ1(L′
α;β)(ϕj;n − ϕj )||

2
π̃n

tends exponentially to 0
as n goes to infinity.

By Lemma 4, we can write 1
n d π̃n(Lα;β) = dσ1(L′

α;β) + 1
nD1 + 1

n2 D2 (where D1

and D2 do not depend on n), so we finally get
∥∥∥1

n
d π̃n(L−(2j+1);β)ϕn;j

∥∥∥
π̃n

≤

≤ 1
n
‖D1ϕj;n‖π̃n

+
1
n2 ‖D2ϕj;n‖π̃n

+ ‖dσ1(L′
−(2j+1)β;β)(ϕj;n − ϕj )‖π̃n

≤ C
n
‖ϕn;j‖π̃n

:

So now suppose α is not a cluster point, and write

d π̃n(Lα;β) = d π̃n(X 2 + β2Y 2) − αβd π̃n(iH ) = An + αBn;

An and Bn are hermitian matrices and An is negative definite. More precisely, An ≤
≤ min(1;β2)d π̃n(X 2 + Y 2), and, by Section 1,

d π̃n(X 2 + Y 2) = diag
(
−n

2
(1 + 2k) + k2

)
≤ −n

2
Id:

So
∣∣∣
∣∣∣
∣∣∣d π̃n(Lα;β)−1

∣∣∣
∣∣∣
∣∣∣ = α−1

∣∣∣
∣∣∣
∣∣∣A− 1

2
n (

1
α

Id + A− 1
2

n BnA− 1
2

n )−1A− 1
2

n

∣∣∣
∣∣∣
∣∣∣ ≤

≤ 2
αn

∣∣∣
∣∣∣
∣∣∣
(

1
α

Id + A− 1
2

n BnA− 1
2

n

)−1 ∣∣∣
∣∣∣
∣∣∣:

Since the eigenvalues of A− 1
2

n BnA− 1
2

n are the − 1
α′ where α′ is a singular value asso-

ciated to π̃n, we get by hypothesis

∣∣∣
∣∣∣
∣∣∣
(

1
α

Id + A− 1
2

n BnA− 1
2

n

)−1 ∣∣∣
∣∣∣
∣∣∣ ≤ C;

so
∣∣∣
∣∣∣
∣∣∣
(

1
n

d π̃n(L
α;β)

)−1 ∣∣∣
∣∣∣
∣∣∣ ≤ C ′

whence the contradiction.
(2) Let α �= ±1;±3; : : : . Then, by Hörmander’s theorem, we get the following subel-

lipticity estimate for any u ∈ C ∞(G ) (since G is compact):

||u||21 ≤ C (||L
α;βu||20 + ||u||20);
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which, by Fourier inversion, gives

(n + 1)2||A||2HS ≤ C (||πn(Lα;β)A||2HS + ||A||2HS )

for all matrix A ∈ End Vn. Hence, if n is large enough,

||A||HS ≤ C
n + 1

||πn(L
α;β)A||HS

for all A, and
∣∣∣
∣∣∣
∣∣∣
(

1
n
πn(Lα;β)

)−1 ∣∣∣
∣∣∣
∣∣∣ ≤ C:

Suppose now (by contradiction) that α is a cluster point, so there exists a sequence
of non-zero Pj ∈ Vnj

such that dπnj
(Lαj ;β

)Pj = 0 with αj → α. Hence
∥∥∥∥∥

1
nj

dπnj
(Lα;β)Pj

∥∥∥∥∥
π̃nj

≤
α− αj

nj

∥∥∥∥u
d
du

Pj

∥∥∥∥
π̃nj

≤
α− αj

nj

∣∣∣
∣∣∣
∣∣∣u d

du

∣∣∣
∣∣∣
∣∣∣ ‖Pj‖π̃nj

:

It is easy to verify (using the monomial basis of Vn) that |||u d
du ||| = nj , so

∥∥∥∥∥
1
nj

dπnj
(Lα;β)Pj

∥∥∥∥∥
π̃nj

≤ (α− αj )‖Pj‖π̃nj
;

whence we get a contradiction.

Note finally that the operator Lα;β is globally solvable on L2
0 for all non real α.

Namely, writing d π̃n(Lα;β) = An + αBn as before, we get
∣∣∣
∣∣∣
∣∣∣(An + αBn)−1

∣∣∣
∣∣∣
∣∣∣ = |α−1| |||A− 1

2
n |||2

∣∣∣
∣∣∣
∣∣∣
(

A− 1
2

n BnA− 1
2

n + α−1I
)−1 ∣∣∣

∣∣∣
∣∣∣

≤ C
n

|α−1| |Imα−1|−1:
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Institut de Mathématiques Élie Cartan (UMR CNRS 9973)
54506 Vandoeuvre-lès-nancy, Cedex (Francia)

jeremie.unterberger@iecn.u–nancy.fr


