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Analisi matematica. — A counterexample to Schauder estimates for elliptic operators with
unbounded coefficients. Nota (*) di Enrico Priola, presentata dal Socio G. Da Prato.

Abstract. — We consider a homogeneous elliptic Dirichlet problem involving an Ornstein-Uhlenbeck
operator in a half space R2

+ of R2. We show that for a particular initial datum, which is Lipschitz

continuous and bounded on R2
+, the second derivative of the classical solution is not uniformly continuous

on R2
+. In particular this implies that the well known maximal Hölder-regularity results fail in general for

Dirichlet problems in unbounded domains involving unbounded coefficients.

Key words: Optimal Hölder-regularity results; Dirichlet problems; The Ornstein-Uhlenbeck operator.

Riassunto. — Un controesempio alle stime di Schauder per operatori ellittici con coefficienti illimitati. Si
considera un problema ellittico di Dirichlet in un semispazio R2

+ di R2. In esso compare un operatore di
tipo Ornstein-Uhlenbeck. Si dimostra, con calcoli espliciti, che per un particolare dato iniziale lipschitziano
la corrispondente soluzione classica non ha la derivata seconda uniformemente continua su R2

+. Questo
risultato implica in particolare che le ben note stime di Schauder non valgono in generale per problemi di
Dirichlet su domini illimitati se i coefficienti sono illimitati.

1. Introduction and preliminaries

The global Schauder estimates for the Laplacian in spaces of Hölder continuous and
bounded functions is a well known topic in PDE’s. These estimates have been fruitfully
extended to linear and nonlinear elliptic equations, and elliptic boundary value problems
in sufficiently smooth domains, assuming that the coefficients are bounded (see for in-
stance [10, 11]). After the classical works [1, 2], only recently optimal Hölder-regularity
results have been obtained for a large class of second order elliptic and parabolic equa-
tions, on the whole of Rn, involving unbounded coefficients (see for instance [6-8, 15,
16]). Some of these results have been generalized to the infinite dimensional case, as
in [5, 17]. These papers are motivated by applications to stochastic differential equa-
tions (cf. [9, 12, 20, 21]) and to financial mathematics (cf. [4]). However very little is
known about global regularity results for elliptic problems with unbounded coefficients
in unbounded domains different from Rn; here we show that the maximal regularity
results fail in general for such problems. Let us consider the following equation on Rn

(1) λψ(z) − Uψ(z) = λψ(z) − 1
2
�ψ(z) −

n∑

i;j=1

BijziDjψ(z) = f (z); z ∈ Rn;

where λ > 0, B = (Bij ) is a nonzero matrix on Rn. The operator U is the prototype of
differential operators with unbounded coefficients; it is called the Ornstein-Uhlenbeck
operator. In [8] Schauder estimates for equation (1) have been established. We recall

(*) Pervenuta in forma definitiva all’Accademia il 7 novembre 2000.
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the theorem.

Let f ∈ Cθ
b (Rn), i.e. f is θ-Hölder continuous and bounded, θ ∈ (0; 1). Then equation (1) has

a unique classical solution ψ ∈ C2+θ

b (Rn) (i.e. ψ has all the first and second partial derivatives
which are θ-Hölder continuous and bounded on Rn) and further ‖ψ‖2+θ ≤ C ‖ f ‖θ; where
C = C (θ;λ;B;n) > 0.

The aim of this paper is to provide an example, which shows that the previous optimal
regularity result fails in general for Dirichlet problems involving the operator U in
unbounded domains. To this end we consider the canonical 2-dimensional open half
space R2

+ and study the following Dirichlet problem

(2)
{

ψ(x; y) − 1
2 Dxxψ(x; y) − 1

2 Dyyψ(x; y) + yDyψ(x; y) = | cos(y)|; x > 0;

ψ(0; y) = 0; y ∈ R

(note that the map: (x; y) �→ | cos(y)| is Lipschitz continuous and bounded on R2
+ and

independent of the first variable). We prove the following statement.

Theorem 1. There exists a unique classical solution ψ to problem (2) (cf. Lemma 2).
Moreover the second partial derivative Dxxψ is not uniformly continuous on R2

+.

In particular this implies that the Schauder estimates do not hold for problem (2)
(remark that Theorem 1 gives even more since ∪θ∈(0;1)C

θ
b (R2

+) ⊂ U Cb(R2
+) with a

strict inclusion). To prove our theorem, we find an explicit formula for the solution ψ

of (2) and perform direct computations on Dxxψ. We point out that in [18] we provide
additional conditions, under which the desidered optimal regularity results for (2) can
be proved. We finish Section 2, by giving an interpretation of Theorem 1 from the
point of view of semigroups theory, see Remark 4.

In the last section we show that the Schauder estimates for problem (2) fail to hold
even in spaces of Hölder continuous functions having polynomial growth, see Theo-
rem 5. To this end we study (2), replacing the initial datum | cos(y)| with y2| cos(y)|.

We fix notations and give some preliminaries. Let Ω be any open subset of Rn, n ∈
∈ Z+, Z+ = N ∪ {0}. We denote by Bb(Ω) the Banach space of all real, Borel
and bounded functions on Ω, endowed with the sup norm: ‖f ‖0 = supx∈Ω |f (x)|,
f ∈ Bb(Ω): Moreover the space U Cb(Ω) stands for the Banach space of all real, uniformly
continuous and bounded functions, endowed with the sup norm. Note that the uniform
continuity of a map f ∈ U Cb(Ω) allows to consider values of f on @Ω and implies
that U Cb(Ω) = U Cb(Ω). The space U Ck

b (Ω); k ∈ Z+; is the set of all k-
times differentiable functions f , whose partial derivatives, D

α f , α ∈ Zn
+; are uniformly

continuous and bounded on Ω up to the order k. It is a Banach space endowed with
the norm ‖f ‖k = ‖f ‖0 +

∑
|α|≤k ‖D

α
f ‖0; f ∈ U Ck

b (Ω); |α| = α1 + · · · + αn:

Finally we define the space Cθ
b (Ω), θ ∈ (0; 1), as the set of all functions f ∈ U Cb(Ω)

such that

[f ]θ = sup
z;w∈Ω; z �=w

|z − w|−θ |f (z) − f (w)| < ∞:
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It is a Banach space endowed with the norm ‖f ‖
θ

= ‖f ‖0 + [f ]
θ
; f ∈ Cθ

b (Ω).
Let m > 0, x ∈ R. We denote by N (x; m); the Gaussian measure on R with

mean x and covariance m; it has density 1√
2πm

e− |x−y|2
2 m , with respect to the Lebesgue

measure dy. Let us define the 1-dimensional Ornstein-Uhlenbeck semigroup Ut ,

(3) Ut f (x) =

∫

R
f (e−t x + v) N (0; qt ) dv; f ∈ Bb(R); x ∈ R; t > 0;

U0 = IBb (R), where qt = 1− e−2t

2 . It is not difficult to show that Ut ∈ L(U Cb(R)),
Ut+s = Ut Us , t; s ≥ 0 and ‖Ut‖L(UC

b
(R)) ≤ 1, t ≥ 0 (if (X; ‖ · ‖X ) is a Banach

space, L(X ) stands for the Banach space of all bounded linear operators from X into
X , endowed with the norm: ‖T ‖L(X ) = sup‖x‖X ≤1 ‖Tx‖X ; T ∈ L(X )). One can also
verify that the map: (t; x) �→ Ut g (x) satisfies:

(4) Dt Ut g (x) =
1
2

DxxUt g (x) − x DxUt g (x); g ∈ Bb(R); x ∈ R; t > 0:

Moreover, for any M > 0, there results:

(5) lim
s→0

sup
|y|≤M

|Ut+s f (y) − Ut f (y)| = 0; t ≥ 0; f ∈ U Cb(R) :

2. Proof of the main result

Throughout this section, for simplicity of notation, we will set

fo(y) = | cos(y)|; y ∈ R:

We need to establish a preliminary lemma concerning the existence and uniqueness of
classical solutions ψ for (2). It also provides an explicit expression for Dxxψ. This
lemma could be deduced following [18]. However, for the sake of completeness, we
will give a direct proof, avoiding semigroups and interpolation theory techniques, which
are necessary to treat the general case considered in [18].

Lemma 2. Let us consider the following map :

(6) ψ(x; y) =

∫ ∞

0
e−t η(t; x) Ut fo (y) dt; where η(t; x) = 2

∫ x

0

e− u2
2t

√
2πt

du;

t > 0; (x; y) ∈ R2
+

. The following statements hold :
(i) the map ψ ∈ U C1

b (R2
+) and there exist all the second partial derivatives of ψ in the

classical sense on R2
+ ; the maps Dxyψ; Dyyψ ∈ U Cb(R2

+) and Dxxψ is continuous and bounded

on R2
+.

(ii) ψ solves (2) and it is the unique classical solution of (2).

Proof. (i) It is straightforward to obtain the following estimates:

(7) ‖Dxη(t; ·)‖0 = sup
x>0

∣∣∣2 e− x2
2t

√
2πt

∣∣∣ ≤ c√
t

; ‖Dy Ut fo‖0 ≤ ‖ f ′
o ‖0 ≤ 1
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t ≥ 0, where the derivative f ′
o (x) = − sin(x) cos(x)

| cos(x)| , x �= π
2 + kπ, k ∈ Z. Using (7), we

can differentiate under the integral sign in (6) and get that there exist Dxψ and Dyψ

in the classical sense on R2
+

; in addition these derivatives are bounded on R2
+

. Let
us remark that the global estimates (7) allow us to prove also the uniform continuity
of Dxψ and Dyψ. Now note that

DyyUt fo(y) =
e−2t

qt

∫

R
f ′
o (e−t y + v)v N (0; qt )dv:

It follows that ‖DyyUt fo‖0 ≤ c
(
1 + 1√

t

)
, t > 0. Using this estimate and the previous

ones we get easily that there exists Dxyψ and Dyyψ on the whole R2
+. Moreover we

deduce that Dxyψ and Dyyψ ∈ U Cb(R2
+). It remains to treat Dxxψ. We have

(8) Dxxη(t; x) = − 2x

t
√

2πt
e− x2

2t ; x ≥ 0; t > 0:

Let us consider the global estimate: supx>0 |Dxxη(t; x)| = c
t , t > 0. This is not

useful in order to obtain the existence of Dxxψ (the map 1
t is not integrable on [0; 1]).

Therefore we need to use the estimate

(9) sup
x≥δ

|Dxxη(t; x)| ≤ 4
e
√

2π
1√
t

1
δ

≤ C max
(

1;
1√
t δ

)
; t > 0; δ > 0:

Thanks to (9), one obtains that there exists Dxxψ on the whole of R2
+ and further

(10) Dxxψ(x; y) = − 2√
2π

∫ ∞

0
e−t x

t
√

t
e− x2

2t Ut fo(y)dt; (x; y) ∈ R2
+:

By (9), it follows the continuity of Dxxψ on R2
+ as well. To establish the boundedness

of Dxxψ, we change variable in (10): x√
t = u, x > 0. We find

(11)
|Dxxψ(x; y)| =

∣∣∣∣−
4√
2π

∫ ∞

0
e− u2

2 e− x2

u2 U x2
u2

fo(y)du

∣∣∣∣ ≤

≤ 4√
2π

∫ ∞

0
e− u2

2 du = 2; (x; y) ∈ R2
+:

(ii) First note that Dtη(t; x) = 1
2 Dxxη(t; x), x; t > 0. Then, using the previous

estimates, formula (4) and an integration by parts, we get:
[

1
2

Dxx +
1
2

Dyy − yDy

]
ψ(x; y) =

=

∫ ∞

0
e−t 1

2
Dxxη(t; x) Ut fo(y)dt +

∫ ∞

0
e−t η(t; x)

[
1
2

Dyy − yDy

]
Ut fo(y)dt =

=

∫ ∞

0
e−t Dt

(
η(t; x) Ut fo (y)

)
dt =

= − lim
t→0+

e−tη(t; x)Ut fo(y) +

∫ ∞

0
e−t η(t; x)Ut fo(y)dt = −fo(y) + ψ(x; y);
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(x; y) ∈ R2
+

. The uniqueness of ψ follows by a standard maximum principle, see for
instance [11].

We point out that, proceeding as in Lemma 4.2 of [18], one can actually show
that Dxyψ; Dyyψ ∈ Cθ

b (R2
+), for any θ ∈ (0; 1). In the proof of Theorem 1, we will

use the following result.

Lemma 3. The following statement holds :

(12) lim sup
x→0+

sup
y∈R

∣∣∣ 2√
2π

∫ ∞

0
e− u2

2 | cos( e− x2

u2 y)| du − | cos(y)|
∣∣∣ ≥

√
3 −

√
2

3
√

2π
:

Proof. First note that, applying the Dominated Convergence Theorem, it is easy to
check that

lim
x→0+

sup
|y|≤M

∣∣∣ 2√
2π

∫ ∞

0
e− u2

2 | cos( e− x2

u2 y)|du − | cos(y)|
∣∣∣ = 0; M > 0:

Then assertion (12) is equivalent to the next one:

(13) lim sup
x→0+

sup
y∈R

∣∣∣
∫ ∞

0
e− u2

2

[
| cos( e− x2

u2 y)| − | cos(y)|
]

du
∣∣∣ ≥

√
3 −

√
2

6
:

Let a ∈ (0; 1) to be chosen later, we write

sup
y∈R

∣∣∣
∫ ∞

0
e− u2

2

[
| cos( e− x2

u2 y)| − | cos(y)|
]

du
∣∣∣ ≥

≥ sup
k∈Z

∫ ∞

0
e− u2

2

∣∣∣ cos
(

e− x2

u2 [4k + 1]
π

2

)∣∣∣ du ≥

≥ sup
k∈Z

∫ 1

a

e− u2
2

∣∣∣ cos
(

e− x2

u2 [4k + 1]
π

2

)∣∣∣ du ≥

≥ e−1=2(1 − a) sup
k∈Z

inf
u∈[a;1]

∣∣∣ cos
(

e− x2

u2 [4k + 1]
π

2

)∣∣∣; x > 0:

We are going to prove that if 1 > a ≥
√

2√
3 , then it holds:

(14) lim sup
x→0+

sup
k∈Z

inf
u∈[a;1]

∣∣∣ cos
(

e− x2

u2 [4k + 1]
π

2

)∣∣∣ ≥ 1
2

:

This will imply (13). To verify (14), we construct a sequence (xn), which tends to 0
and satisfies:

(15) 1 − 1
2 (4n + 1)

< e
−x2

n
a2 < e−x2

n < 1 − 1
3 (4n + 1)

; n ∈ Z+:

Since the map: v �→ e− r
v2 is increasing on (0;∞), for r > 0, in order to obtain (15)

it is enough that (xn) verifies:

(16) a2 log
(

1 − 1
2 (4n + 1)

)
< −x2

n < log
(

1 − 1
3 (4n + 1)

)
:
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Let us define kn = a2 log
(
1− 1

2 (4n+1)

)
and hn = log

(
1− 1

3 (4n+1)

)
, n ∈ Z

+
. Because

a2 ≥ 2
3 , it is straightforward to check that

a2 log
(

1 − r
2

)
− log

(
1 − r

3

)
< 0; r ∈ [0; 2):

It follows that (16) is satisfied by taking

xn =
√

−(hn + kn)=2; n ∈ Z+:

Now note that, for any n ∈ Z+, one has:

Jn = sup
k∈Z

inf
u∈[a;1]

∣∣∣ cos
(

e− x2
n

u2 [4k + 1]
π

2

)∣∣∣ ≥ inf
u∈[a;1]

∣∣∣ cos
(

e− x2
n

u2 [4n + 1]
π

2

)∣∣∣ ≥

≥ inf

s∈
[

e
− x2

n
a2 (4n+1) π

2 ; e−x2
n (4n+1) π

2

] | cos(s)|:

Using (15), we deduce

Jn ≥ inf
s∈
[

(1− 1
2 (4n+1) ) (4n+1) π2 ; (1− 1

3 (4n+1) ) (4n+1) π2

] | cos(s)| ≥ inf
s∈
[

π
4 ; π

3

] | cos(s)| =
1
2

; n ∈ Z
+

:

Thus (14) is proved. The proof is complete.

Now we are in position to prove the main result.

Proof of Theorem 1. Let ψ be the classical solution of (2), see (6). Thanks to (11),
we know that

(17) Dxxψ(x; y) = − 4√
2π

∫ ∞

0
e− u2

2 e− x2

u2 U x2
u2

fo(y) du:

Let us remark that, by (5) and the Dominated Convergence Theorem, we infer:

(18) lim
x→0+

sup
|y|≤M

|Dxxψ(x; y) + 2fo(y)| = 0; M > 0:

Thanks to (18) we obtain that Dxxψ has a unique continuous extension to R2
+, which

is equal to −2fo on the boundary of R2
+. In order to prove that Dxxψ is not uniformly

continuous on R2
+, it is enough to show that

(19) lim sup
x→0+

sup
y∈R

|Dxxψ(x; y) + 2fo(y)| > 0:

To verify (19) we proceed into two steps.

Step I. We introduce a map φ : R2
+ → R,

(20) φ(x; y) = − 4√
2π

∫ ∞

0
e− u2

2 fo( e− x2

u2 y) du; x ≥ 0; y ∈ R;

and prove that limx→0+ supy∈R |Dxxψ(x; y) − φ(x; y)| = 0:
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Setting c ′ = − 4√
2π

, we have

Dxxψ(x; y) − φ(x; y) = G1(x; y) + G2(x; y) where

G1(x; y) = c ′
∫ ∞

0
e− u2

2

[
e− x2

u2 − 1
]

U x2
u2

fo(y)du;

G2(x; y) = c ′
∫ ∞

0
e− u2

2

[
U x2

u2
fo(y) − fo( e− x2

u2 y)
]

du; (x; y) ∈ R2
+

:

As for G1, using that Ut is a semigroup of contractions on U Cb(R2
+), we readly infer

limx→0+ supy∈R |G1(x; y)| = 0: To treat G2 we remark that

|Ut fo(y) − fo(e
−t y)| ≤

∫

R
| fo(e

−t y + w) − fo(e
−t y)|N (0; qt )dw ≤

≤
∫

R
|w|N (0; qt )dw ≤ √

qt =

√
1 − e−2t

2
; t ≥ 0; y ∈ R:

It follows that

sup
y∈R

|G2(x; y)| ≤ c ′′
∫ ∞

0
e− u2

2

√
1 − e− 2 x2

u2 du → 0; as x → 0+:

This proves the assertion.

Step II. We show that lim supx→0+ supy∈R |φ(x; y) + 2fo(y)| > 0.

This will imply (19), combining Step I and the inequality

(21)

lim sup
x→0+

‖φ(x; ·) + 2fo‖0 ≤

≤ lim sup
x→0+

‖φ(x; ·) − Dxxψ(x; ·)‖0 + lim sup
x→0+

‖Dxxψ(x; ·) + 2fo‖0:

Our claim is equivalent to the next one:

(22) lim sup
x→0+

sup
y∈R

∣∣∣ 2√
2π

∫ ∞

0
e− u2

2 | cos( e− x2

u2 y)|du − | cos(y)|
∣∣∣ > 0:

This is proved in Lemma 3. The proof is complete.

Remark 4. Let us introduce the following semigroup Tt of linear contractions
on U Cb(R),

Tt f (y) =
1

2
√
π

∫ ∞

0

t
s
√

s
e− t2

4s e−sUs f (y)ds; y ∈ R; f ∈ U Cb(R); t > 0;

T0 = I , where Ut is the Ornstein-Uhlenbeck semigroup, see (3). In [18] (see in
particular the proof of Proposition 4.5) we have proved that Tt is an analytic semigroup
on U Cb(R) (we refer to [13] for the theory of analytic semigroups). According to the
classical Bochner theory on subordination of semigroups, compare with [3, 19], we have
called Tt the subordinated semigroup associated to the semigroup e−t Ut .
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By Lemma 3, we deduce an interesting property of Tt . Let ψ be the solution of (2).
Then we have: Dxxψ(x; y) = −2 T(

√
2x) fo(y); x > 0; y ∈ R; where fo(y) = | cos(y)|,

y ∈ R. Thanks to (19) we obtain that

(23) lim sup
t→0+

‖Tt fo − fo‖0 > 0:

It follows that Tt is not strongly continuous on U Cb(R). Hence if A denotes the generator
of the analytic semigroup Tt , then its domain D(A) is not dense in U Cb(R).

3. An extension

In [14] Schauder estimates for problem (1) have been established in spaces of Hölder
continuous functions having polynomial and exponential growth. Here we show that
even this optimal regularity result can not be extended to the Dirichlet problem (2).

Let us fix the weight function p(z) = 1 + |z |2, z ∈ Rn, and introduce the Banach
space U Ck

p (Ω), k ∈ Z+ (here Ω is any open subset of Rn). It consists of all functions

f : Ω → R such that the map: z �→ f (z)=p(z) belongs to U Ck
b (Ω) (recall that U C0

b (Ω)
= U Cb(Ω)) and it is endowed with the norm: ‖f ‖k;p = ‖f=p‖k , f ∈ U Ck

p (Ω), see

the notations in Section 1. Moreover we define the space Cθ

p (Ω), θ ∈ (0; 1), as the

set of all functions f ∈ U Cp(Ω) such that f=p ∈ Cθ
b (Ω). It is a Banach space endowed

with the norm: ‖f ‖θ;p = ‖f=p‖θ, f ∈ Cθ

b (Ω).
Let us consider the following problem

(24)
{

ψ(x; y) − 1
2 Dxxψ(x; y) − 1

2 Dyyψ(x; y) + yDyψ(x; y) = go(y) = y2| cos(y)|;
ψ(0; y) = 0; y ∈ R; x > 0

(note that the map: (x; y) �→ y2| cos(y)|
1+y2+x2 is Lipschitz continuous and bounded on R2

+).
We can prove the following theorem.

Theorem 5. There exists a unique classical solution ψ to problem (24). Moreover the second
partial derivative Dxxψ does not belong to U Cp(R2

+).

Proof. The proof is similar to the one of Theorem 1 with some changes. We
proceed in several steps.

Step 1. We consider the semigroup Ut , see (3), acting on U Cp(R).

Using standard properties of gaussian measures, we extend the semigroup Ut to the
space U Cp(R);

(25) Ut f (x) =

∫

R
f (e−t x + v) N (0; qt ) dv; f ∈ U Cp(R); x ∈ R; t > 0;

U0 = I , qt = 1−e−2t

2 . It is not difficult to show that Ut is a semigroup of bounded
linear operators on U Cp(R). Moreover it holds: ‖Ut‖L(UCp (R)) ≤ 4, t ≥ 0. Indeed one
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has, for any f ∈ U Cp(R), t ≥ 0; y ∈ R,

|Ut f (y)|
1 + y2 ≤

∫

R

| f (e−t y + w)|
1 + (e−t y + w)2

1 + (e−t y + w)2

1 + y2 N (0; qt )dw ≤

≤ ‖f ‖0;p

∫

R

1 + e−2t y2 + w2 + 2e−t yw

1 + y2 N (0; qt )dw ≤ 4 ‖f ‖0;p :

Remark that the map Ut g satisfies equation (4), for any g ∈ U Cp(R).

Step 2. One shows that the map ψ, defined in (6) (where fo is replaced by go), is
the unique classical solution of (24).

To check the claim one can argue as in the proof of Lemma 2. First note that there
results:

‖DyUt go‖0;p ≤ 4‖g ′
o‖0;p ≤ 8; ‖DyyUt go‖0;p ≤ c

(
1 +

1√
t

)
; t > 0:

Then, using these estimates and the ones given in (7) and (9), one deduces that ψ ∈
∈ U C1

p (R2
+) and there exist all the second partial derivatives of ψ in the classical sense

on R2
+; moreover the maps Dxyψ; Dyyψ ∈ U Cp(R2

+). We also obtain that formula
(10), concerning Dxxψ, holds when fo is replaced by go. Now to finish the proof it is
enough to show that

(26) lim sup
x→0+

sup
y∈R

∣∣∣ Dxxψ(x; y)

1 + y2 + x2 +
2go(y)

1 + y2

∣∣∣ > 0:

Step 3. We consider the map φ, defined in (20) replacing fo with go, and prove that
limx→0+ supy∈R

∣∣Dxxψ(x;y) −φ(x;y)
1+y2+x2

∣∣ = 0:

To this end we can proceed as in Step I of the proof of Theorem 1, using the
estimate

sup
y∈R

∣∣∣Ut go(y) − go(e
−t y)

1 + y2

∣∣∣ ≤

≤ sup
y∈R

∫

R

e−2t y2
∣∣| cos(e−t y + w)| − | cos(e−t y)|

∣∣ + w2 + 2e−t |yw|
1 + y2 N (0; qt )dw ≤

≤ 2(
√

qt + qt ); t ≥ 0:

Step 4. We prove that

(27) lim sup
x→0+

sup
y∈R

∣∣∣ 2√
2π

∫∞
0 e− u2

2 e− 2x2

u2 y2| cos( e− x2

u2 y)| du

1 + y2 + x2 − y2| cos(y)|
1 + y2

∣∣∣ > 0:
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Let a ∈ [
√

2√
3 ; 1), x ∈ (0; 1), we write:

sup
y∈R

∣∣∣
∫∞

0 e− u2
2 e− 2x2

u2 y2| cos( e− x2

u2 y)| du

1 + y2 + x2 − y2| cos(y)|
1 + y2

∣∣∣ ≥

≥ sup
k∈Z

∫ 1

a

e− u2
2 e− 2x2

u2
[4k + 1]2 π2=4 | cos( e− x2

u2 [4k + 1] π
2 )| du

1 + [4k + 1]2 π2=4 + 1
≥

≥ 1
3

sup
k∈Z

∫ 1

a

e− u2
2 e− 2

a2 | cos
(

e− x2

u2 [4k + 1]
π

2

)
| du ≥

≥ e−1=2(1 − a) e− 2
a2

3
sup
k∈Z

inf
u∈[a;1]

∣∣∣ cos
(

e− x2

a2 [4k + 1]
π

2

)∣∣∣:

Now, appealing to (14), we obtain assertion (27).
From (27) it follows that (26) is verified replacing Dxxψ with φ. Using Step 3 and

a simple inequality as in (21), we finally get (26). The proof is complete.
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