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General and physically privileged solutions
to certain symmetric systems of linear P.D.E.s

with tensor functionals as unknowns

Memoria (*) di Adriano Montanaro e Diego Pigozzi

Abstract. — We characterize the general solutions to certain symmetric systems of linear partial differ-
ential equations with tensor functionals as unknowns. Then we determine the solutions that are physically
meaningful in suitable senses related with the constitutive functionals of two simple thermodynamic bodies
with fading memory that are globally equivalent, i.e. roughly speaking that behave in the same way along
processes not involving cuts. The domains of the constitutive functionals are nowhere dense subsets of a
suitable infinite-dimensional Hilbert space. By using the condition of material frame-indifference on the
constitutive functionals and the theory [1] of differential calculus on convex sets (that may be nowhere
dense), we give a rigorous meaning from a general point of view to the derivatives of these functionals,
without assuming the possibility of extending them to an open set. Such results appear necessary for char-
acterizing the couples of thermodynamic bodies with memory that are globally equivalent but are physically
different; and such bodies exist.

Key words: Linear partial differential equations; Tensor functionals; Symmetric linear systems.

Riassunto. — Soluzione generale e soluzioni fisicamente privilegiate di sistemi simmetrici di equazioni
lineari alle derivate parziali aventi come incognite funzionali tensoriali. Si caratterizza la soluzione generale
di certi sistemi simmetrici di equazioni lineari alle derivate parziali aventi funzionali tensoriali come inco-
gnite. Quindi si determinano le soluzioni fisicamente significative in certi sensi collegati con i funzionali
costitutivi di due corpi termodinamici con memoria evanescente che sono globalmente equivalenti, ossia
che si comportano allo stesso modo nei processi non involgenti tagli. I domini dei funzionali costitutivi
sono sottoinsiemi ovunque non densi di un opportuno spazio di Hilbert a infinite dimensioni. Usando la
condizione di indifferenza materiale per i funzionali costitutivi e la teoria [1] di calcolo differenziale su un
insieme convesso (che può essere ovunque non denso), viene dato un significato rigoroso, da un punto di
vista generale, alle derivate di questi funzionali, senza assumere la possibilità di estenderli a qualche insieme
aperto. Tali risultati sembrano necessari per caratterizzare le coppie di corpi termodinamici con memoria
che sono globalmente equivalenti ma fisicamente diversi; e tali corpi esistono.

1. Introduction

Let Lin (� R3×3) be the vector space of all second-order tensors on the real vector
space V = R3 equipped with the usual inner product, that in Cartesian co-ordinates is
defined by

(1) x1 · x2 = tr(x1xT
2 ) = x ij

1 x ij
2 for x1; x2 ∈ Lin:

Let h : R+ → R+ be an influence function, that is a positive continuous function which

(*) Pervenuta in forma definitiva all’Accademia il 25 luglio 2000.
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is bounded, monotone-decreasing and square-integrable. In continuum mechanics, with
regard to simple materials with memory, an influence function is used to characterize
the rate at which the memory of the material fades (cf. [2]). For each normed vector
space S ∈ {Lin;V;R} let us consider the inner product

(2) 〈γ1; γ2〉 =

[∫ ∞

0
γ1(s) · γ2(s) h2(s)ds

] 1
2

for functions γi : (0;∞) → S. The set S∞ of all Lebesgue-measurable functions
γ : (0;∞) → S such that 〈γ; γ〉 < ∞ is a Hilbert space with the norm

(3) ||γ|| =
[∫ ∞

0
|γ(s)|2h2(s)ds

] 1
2

< ∞; |γ(s)|2 = γ(s) · γ(s) (1)

induced by (2).
Consider the (smooth) functional

(4) F̂ : A× U → Lin ; F = F̂(x; z; ξ; ζ); (x; z) ∈ A; (ξ; ζ) ∈ U;

where A and U are open connected subsets of Lin×V and Lin∞×V∞, respectively. We
characterize the solutions to the symmetric system of linear partial differential equations

(5)

@F aA

@xb
B

+
@F aB

@xb
A

= 0 ;
@F aA

@zB

+
@F aB

@zA

= 0 ;

@F aA

@ξb
B

+
@F aB

@ξb
A

= 0 ;
@F aA

@ζB

+
@F aB

@ζA

= 0 ;

where the indices a, b, A and B run over {1; 2; 3}, in the unknown functional (4),
which we assume to be of class C 1.

We also study the symmetric system of linear partial differential equations

(6)

@QA

@xb
B

+
@QB

@xb
A

= 0 ;
@QA

@zB

+
@QB

@zA

= 0 ;

@QA

@ξb
B

+
@QB

@ξb
A

= 0 ;
@QA

@ζB

+
@QB

@ζA

= 0 ;

where b, A and B run over {1; 2; 3}, in the unknown functional

(7) Q̂ : A× U → V ; Q = Q̂(x; z; ξ; ζ); (x; z) ∈ A; (ξ; ζ) ∈ U ;

which we assume to be of class C 1.
In addition to the general solution we also characterize the classes of solutions that

are physically privileged in certain senses specified below.

(1) Note that S∞ is the «weighted» L2 space, L2
h (R+;S), relative to the weighted element of measure

h2(s)ds:



general and physically privileged solutions to certain symmetric : : : 247

The symmetric systems (5) and (6) arise in continuum thermodynamics: the differ-
ence F [Q], between corresponding constitutive functionals of any two globally equiva-
lent simple bodies with fading memory, satisfies (5) [(6)] as a consequence of the local
balance laws.

In more detail, in connection with any given material point X of a continuous simple
body B with fading memory, let x be the deformation gradient, z the temperature
gradient and ξ [ζ] the past time-history of x [z]; i.e., at the present time t we have

(8) ξ(s) := xt (s) := x(t − s); ζ(s) := zt (s) := z(t − s); s ∈ (0;∞):

The constitutive relations for the stress and heat flux in B at X are expressed in terms
of functionals having the forms (4) and (7), respectively, where the dependence upon
temperature has been neglected only for simplicity of notation. Furthermore, the domain
of the response functionals for the stress, heat flux, internal energy and entropy in B
at X is of the type A×U for suitable choices of the open connected sets A ⊂ Lin ×V
and U ⊂ Lin∞ × V∞.

In [3] the notion of global physical equivalence for simple bodies is introduced.
Roughly, let k be a bijection between the material points of the bodies B and B′.
We say that in the time interval I = [t0; t1] the bodies B and B′ are subjected to
the same external actions if in I they are subjected to k-corresponding fields for the
body force and the heat supply and to k-corresponding boundary conditions. Assume
that in the time interval I the bodies B and B′ undergo k-corresponding (thermoki-
netic) processes if and only if they are subjected to the same external actions and
to k-corresponding initial conditons (at time t0 for position, velocity and tempera-
ture). In this case we say that B and B′ are globally k-equivalent (from the physi-
cal point of view, see [3, Definition 2.2]). Of course, the aforementioned processes
constitute the solutions of the typical initial-boundary-value problem for the involved
bodies.

Now, let B and B′ be two simple bodies with fading memory that, with respect to
certain configurations, are globally k-equivalent. If we interpret the functional F̂ in (4)
[Q̂ in (7)] as the difference P̂ − P̂ ′ [q̂ − q̂′] between the response functionals for the
first Piola stress tensors [heat flux vectors] in B and B′, then it is easy to show [3] that
F̂ [Q̂] must solve equations (5) [(6)] along any couple of k-corresponding processes
of B and B′. Hence, the frame-indifferent solutions to (5) and (6) are useful in order
to find relations between the corresponding response functionals P̂ and P̂ ′ [q̂ and
q̂′] of the two globally equivalent bodies B and B′.

We say that the functional (4) is a physically privileged solution to (the system of)
equations (5) if it satisfies the condition

(9) F aAxb
A = FbAxa

A ;

which is related to the symmetry of the stress and furthermore satisfies the (material)
frame-indifference property with respect to the groups of Galileian or Euclidean co-
ordinate transformations of space-time (see Section 8).
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Similarly, we say that the functional (7) is a physically privileged solution to equa-
tions (6) if it satisfies the property of frame-indifference with respect to the group of
Galileian or Euclidean co-ordinate transformations of space-time (see Section 8).

In the present paper we characterize the classes of physically privileged solutions to
(5) and (6) in each one of the two aforementioned senses.

The results of this paper extend to the infinite-dimensional case certain theorems
of the paper [4] for tensor functions defined in finite-dimensional domains, which are
related with the response functions of a thermoelastic body. The results of [4] are used
in [3] to characterize the class of the thermoelastic bodies that are globally equivalent
to a given thermoelastic body referred to a given configuration; parallel to the results of
[4], the results of the present paper constitute the essential tool in order to study the
anologous class of global equivalence in the case of simple bodies with fading memory.

Any result of Sections 1 to 8 refers to a functional (4) or (7), which is defined on
an open subset of a suitable Hilbert space. But the true physical domain D of the
constitutive functionals of a continuous simple body with fading memory is a nowhere
dense subset of a suitable infinite-dimensional Hilbert space (cf. [5]). As a consequence
the derivatives of the functionals (4) and (7) can be considered only if such functionals
are extended to an open set containing D.

Note that D is nowhere dense and nonconvex; however the restrictions of the con-
stitutive functionals to pure-stretch histories are defined on a convex subset of D.

By invoking the theory of differential calculus [1] on convex sets, in Section 9
we show that a rigorous meaning can be given to the derivatives of the constitutive
functionals which are defined on the nowhere dense and nonconvex set D.

The property of frame-indifference, in the stronger form of Euclidean invariance, is
essentially used to reach the objective. As a consequence all the results of the present
paper remain valid without extending the constitutive functionals (4) and (7) to an
open set.

2. General solution to equations (5)4 and (6)4

Now we consider the functional

(10) Q̂ : U1 → V; ζ �→ Q = Q̂(ζ);

with U1 open connected subset of V∞, and the symmetric system of equations

(11)
@QA

@ζB

+
@QB

@ζA

= 0 (A; B = 1; 2; 3)

in the unknown functional (10); note that 〈@QA=@ζ B | γ B〉, with γ B ∈ R∞ , rewritten
in Coleman’s notations [2] is δQA(ζ B |γ B).

Equations (11) extend to the infinite-dimensional case equations

(12)
@Q A

@GB

+
@Q B

@GA

= 0; (A; B = 1; 2; 3)
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in the unknown function

(13) Q̂ : U0 → V; G �→ Q = Q̂ (G );

with U0 open connected subset of V . The general solution to equations (12), due to
Euler, is

(14) Q = V + MG; i.e. Q A = V A + M ABGB ;

where V is any vector and M is any second-order skew tensor. Therefore, we have
M AB = εABC WC with WC = εCAB M BA=2. Hence (14)2 becomes

(15) Q A = V A + εABC WC GB :

A proof of (14) which uses the assumption Q ∈ C 1 is due to Gurtin and Williams
(see [6, pp. 98, 258]).

We point out that the proof of Gurtin and Williams remains valid by replacing
V with V∞ and thus (10) and (11) with (13) and (12), respectively. To allow this
generalization we preliminarly need some definitions.

Definition 2.1. Let n ≥ 1, D := (0; + ∞)n ⊂ Rn and let S be a normed space.
Then L2

h(D;S) denotes the (weighted) L2 space of all functions from D to S, with
(weighted) element of measure

h2(s1) : : : h2(sn)ds1 : : : dsn ;

whose inner product and norm are given by

(16) 〈a|b〉 =

∫∫
: : :

∫

D

a(s1; : : : ; sn) · b(s1; : : : ; sn)h2(s1) : : : h2(sn)ds1 : : : dsn

and ‖a‖ = 〈a; a〉 1
2 ; respectively; in (16) the dot « · » denotes the inner product on S.

Remark 2.1. Let each function gi(si), i = 1; : : : ; n, assume tensor values of order
o(gi) = 1 or 2 and let the function f (s1; : : : ; sn) assume tensor values whose order is
greater than

∑n
i=1 o(gi). By the Riesz representation theorem any multilinear function

from Lin∞ to R has the form

(17)
〈f |g1; g2;: : :; gn〉=

∫ ∞

0

{
: : :

[∫ ∞

0
f (s1;: : :; sn) · g1(s1)h2(s1)ds1

]
: : :

}
· gn(sn)h2(sn)dsn =

=

∫∫
: : :

∫

D

f (s1; : : :; sn) · g1(s1) : : : · gn(sn)h2(s1) : : : h2(sn)ds1 : : : dsn :

As pointed out above Definition 2.1, by (14) the general solution (10) to equations
(11) is given by

(18) QA = V A + 〈M AB(s) | ζB(s)〉; (A; B = 1; 2; 3)

or, equivalently, by

(19) QA = V A + εABC 〈WC (s) | ζB(s)〉; WC (s) =
1
2
εCAB M BA(s);
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for any choice of the constants V A ∈ R and of the tensor functions M AB(·) ∈ L2
h[R+;R]

such that M AB = −M BA.

This result holds also for any functional F̂ = [F̂ a1:::an A], which solves equations (5)4.
To simplify notations we put

a := a1a2 : : : an for n > 0 and a := ∅ for n = 0 :

For instance, when n = 0 we have S = V , F = [F̂A] and when n = 1 we have S = Lin,
F = [F̂ aA].

The above considerations in the case n = 1, where

(20) F̂ = [F̂ aA] : U1 → Lin; ζ �→ F = F̂(ζ) ;

with U1 open connected subset of V∞ , yield the following

Lemma 2.1. The functional (20) is a solution on U1 to equations (5)4 if and only if

(21) F aA = F̂ aA(ζ) = V aA + 〈M aAB(s) | ζB(s)〉 (a; A = 1; 2; 3) ;

for any choice of the constants V aA ∈ R and of the functions M aAB(·) ∈ L2
h[R+;R] such that

the tensor M aAB is skew in the indices A; B.

Note that by putting W a
C (s) = εABC M aBA=2 the equalities (21) become

(22) F aA = V aA + εABC 〈W a
C (s) | ζB(s)〉;

with W a
C (·) ∈ L2

h[R+;R].

3. General solution to equations (5)3

Now we apply the results of the previous section in order to characterize the solutions
to equations (5)3 in the unknown functional

(23) F̂ = [F̂ aA] : U2 → S; ξ �→ F = F̂(ξ);

where U2 is an open connected subset of Lin∞.

Lemma 3.1. The functional (23) is a solution on U2 to equations (5)3 if and only if (2)

(24)

F aA = F̂ aA(ξ) = 〈LaABCD(s1; s2; s3) | ξ1
B(s1); ξ2

C (s2); ξ3
D(s3)〉 +

+
3∑

b=1

〈M abABC (sb+1; sb+2) | ξb+1
B (sb+1); ξb+2

C (sb+2)〉 +

+ 〈N a AB
b (s) | ξb

B(s)〉 + U aA (a; A = 1; 2; 3)

(2) In the equality below, b + i is replaced by its remainder when divided by 3, for b + i > 3.
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for any choice of the constants U aA ∈ R and of the functions

LaABCD = LaABCD(s1; s2; s3); LaABCD(·) ∈ L2
h[R+ ×R+ ×R+;R];

M abABC = M abABC (s1; s2); M abABC (·) ∈ L2
h[R+ ×R+;R];

N a AB
b = N a AB

b (s); N a AB
b (·) ∈ L2

h[R+;R];

such that the tensors LaABCD , M abABC and N a AB
b are skew in their capital indices.

Proof. Let (23) be solution of (5)3. Fix B ∈ {1; 2; 3}; by Lemma 2.1 the function
F aA is linear in ξb

B for b = 1; 2; 3; thus F aA is multilinear in ξb
B for b; B = 1; 2; 3.

Now by Remark 2.1 F̂ aA is a sum of monomials of the types

〈LaABCD(s1; s2; s3) | ξ1
B(s1); ξ2

C (s2); ξ3
D(s3)〉;

〈M abABC (sb+1; sb+2) | ξb+1
B (sb+1); ξb+2

C (sb+2)〉; 〈N a AB
b (s1) | ξb

B(s1)〉:

By Lemma 2.1 the tensors LaABCD , M abABC and N a AB
b are skew in the pairs of in-

dices (A; B), (A; C ) and (A; D), respectively. Hence these tensors are (totally) skew
(-symmetric) in their capital indices (3) and (24) holds. Conversely, by substitution one
checks that the functional (24) solves (5)3.

Remark 3.1. Note that (a) a totally skew tensor of order greater than 3 vanishes; (b)
up to the multiplication by a real number, the Ricci tensor is the unique third-order
skew tensor; (c) any second-order skew tensor W has components W AB = εABC wC for
some vector w.

By this Remark the functions LaABC (·) vanish whereas the functions M abABC (·) and
N a AB

b (·) have the form

M abABC (·) = εABC V ab(·) ; N a AB
b (·) = εABC W a

bC (·):

Consequently, the general solution (24) to equations (5)3 becomes

(25) F aA =εABC
3∑

b=1

〈V ab(sb+1;sb+2) | ξb+1
B (sb+1);ξb+2

C (sb+2)〉+εABC 〈W a
bC (s) | ξb

B(s)〉+U aA;

that is,

(26) F aA =
1
2
εbcd εACD〈V ab(sb+1; sb+2) | ξc

C (sc ); ξd
D(sd )〉 + εABC 〈W a

bC (s) | ξb
B(s)〉+U aA:

We have proved the following

Lemma 3.2. The functional (23) is a solution on U1 to equations (5)3 if and only if
the components of (23) are given by (25) or (26) for any choice of the functions V ab(·) ∈
∈ L2

h[R+ ×R+;R] and W a
bC (·) ∈ L2

h[R+;R].

(3) Let A and B be non-disjoint sets of indices of a given tensor L; if L is skew in both A and B, then L
is skew in A ∪ B.
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Incidentally, note that in the proof of Theorem 4.1 below, equation (26) is used in
the equivalent form

(27) F aA =
1
2
εbcd 〈M

abACD(sb+1; sb+2) | ξc
C (sc ); ξd

D(sd )〉 + 〈N a AB
b | ξb

B〉 + U aA;

where M abACD and N a AB
b are skew in the capital indices.

4. General solution to equations (5)3-4

Now we consider the functional

(28) F̂ : U2 × U1 → Lin; (ξ; ζ) �→ F = F̂(ξ; ζ);

with U1 × U2 open connected subset of Lin∞ × V∞, and the coupled equations

(29)
@F aA

@ξb
B

+
@F aB

@ξb
A

= 0;
@F aA

@ζB

+
@F aB

@ζA

= 0

in the unknown functional (28). The next theorem characterizes the general solution
to equations (29).

Theorem 4.1. The functional (28) is a solution on U2 ×U1 to equations (29) if and only if

(30)
F aA =

[00]
τ aA + εABC 〈[10]

τ a
bC | ξb

B〉 + εACE 〈[01]
τ a

C | ζE 〉 +

+ εbcd ε
ACD〈[20]

τ ab(sb+1; sb+2) | ξc
C (sc ); ξd

D(sd )〉 + εABE 〈[11]
τ a

b | ξb
B; ζE 〉

for any choice of the constants
[00]
τ aA ∈ R and of the functions

[01]
τ a

C (·); [10]
τ a

bC (·) ∈ L2
h[R+;R] ;

[11]
τ a

b(·); [20]
τ ab(·) ∈ L2

h[R+ ×R+;R]:

Proof. By Lemmas 3.2 and 2.1 each solution to equations (29) can be written in
both the forms (27) and (21); hence we obtain

F aA =
[00]
ψ aA + 〈

[10]
ψ a AB

b (s) | ξb
B(s)〉 + 〈

[01]
ψ aAE (s) | ζE (s)〉 +

+ εbcd 〈
[20]
ψ abACD(sb+1;sb+2) | ξc

C (sc ); ξd
D(sd )〉 + 〈

[11]
ψ a ABE

b (s1;s2) | ξb
B(s1); ζE (s2)〉 +

+ εbcd 〈
[21]
ψ abACDE (sb+1; sb+2; sb) | ξc

C (sc ); ξd
D(sd ); ζE (sb)〉;

with
[00]
ψ aA ∈R;

[01]
ψ aAE (·);

[10]
ψ a AB

b (·)∈L2
h[R+;R];

[11]
ψ a ABD

b (·);
[20]
ψ abACD(·)∈L2

h[R+×R+;R]

and
[21]
ψ abACDE (·) ∈ L2

h[R+ ×R+ ×R+;R]:
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By Lemmas 3.2 and 2.1 again, the tensor functions
[::]
ψ :::(·) are skew in their capital

indices. Hence Remark 3.1 yields
[21]
ψ (·) ≡ 0 and

[10]
ψ a AB

b (·) ≡ εABC [10]
τ a

bC (·);
[01]
ψ aAE (·) ≡ εACE [01]

τ a
C (·);

[20]
ψ abACD(·) ≡ εACD [20]

τ ab(·);
[11]
ψ a ABE

b (·) ≡ εABE [11]
τ a

b(·)

for some functions
[01]
τ a

C (·); [10]
τ a

bC (·); [20]
τ ab(·) and

[11]
τ a

b(·); hence (30) holds.

5. General solution to equations (5)

Now we characterize the general solution to equations (5) in the unknown func-
tional (4).

Theorem 5.1. The functional (4) is a solution on A× U to equations (5) if and only if

(31)

F aA =
[0000]
τ aA + εABC [1000]

τ a
bC xb

B + εALC [0100]
τ a

C zL +

+ εADC 〈 [0010]
τ a

dC (s) | ξd
D(s) 〉 + εAMC 〈 [0001]

τ a
C (s) | ζM (s) 〉 +

+ εABL [1100]
τ a

b xb
BzL + εABD〈 [1010]

τ a
bd (s) | ξd

D(s) 〉xb
B +

+ εABM 〈 [1001]
τ a

b(s) | ζM (s) 〉 xb
B + εADL〈 [0110]

τ a
d (s) | ξd

D(s) 〉zL +

+ εAML〈 [0101]
τ a(s) | ζM (s) 〉zL + εADM 〈 [0011]

τ a
d (s1; s2) | ξd

D(s1); ζM (s2) 〉 +

+ εhbcε
ABC [2000]

τ ah xb
Bxc

C + εhdeε
ADE 〈 [0020]

τ ah(s1; s2) | ξd
D(s1); ξe

E (s2) 〉;

a; A = 1; 2; 3; for any choice of the constants

[0000]
τ aA ;

[1000]
τ a

bC ;
[0100]
τ a

C ;
[1100]
τ a

b ;
[2000]
τ ah ∈ R ;

and of the functions

[0010]
τ a

dC (·) ;
[0001]
τ a

C (·) ;
[1010]
τ a

bd (·) ;
[1001]
τ a

b(·) ;
[0110]
τ a

d (·) ;
[0101]
τ a(·) ∈ L2

h[R+;R] ;

[0101]
τ a

d (·) ;
[0020]
τ ah(·) ∈ L2

h[R+ ×R+;R]:

Proof. From [1], firstly, we note that when the functional in (4) does not depend
on ξ and ζ, i.e. F = F̂(x; z), the general solution to equations (5)1;2 is given by

(32) F aA =
[00]
ϕ aA +

[10]
ϕ a AB

b xb
B +

[01]
ϕ aABzB + εbcd

[20]
ϕ abACDxc

C xd
D +

[11]
ϕ a ABD

b xb
B zD ;

where the tensors
[::]
ϕ are skew in their capital indices.
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Now let (4) solve (5). By Remark 2.1 and Lemmas 2.1, 3.2 it follows that F aA can
be simultaneously written in each of the forms (32), (21) and (27):

(33)

F aA =
[0000]
ψ aA +

[1000]
ψ a AB

b xb
B +

[0100]
ψ aAL zL + 〈

[0010]
ψ a AD

d (s) | ξd
D(s)〉 +

+ 〈
[0001]
ψ aAM (·) | ζM (s)〉 +

[1100]
ψ a ABL

b xb
BzL + 〈

[1010]
ψ a ABD

bd (s) | ξd
D(s)〉xb

B +

+ 〈
[1001]
ψ a ABM

b (s) | ζM (s)〉xb
B + 〈

[0110]
ψ a ADL

d (s) | ξd
D(s)〉zL +

+ 〈
[0101]
ψ aAML(s) | ζM (s)〉zL + 〈

[0011]
ψ a ADM

d (s1; s2) | ξd
D(s1); ζM (s2)〉 +

+
[2000]
ψ a

bcx
b
Bxc

C + 〈
[0020]
ψ a ADE

de (s1; s2) | ξd
D(s1); ξe

E (s2)〉 +

+ 〈
[1110]
ψ a ABDL

bd (s) | ξd
D(s)〉xb

BzL + (: : : );

where (: : : ) denotes the sum of all monomials whose components
[::: ]
ψ ::: have more than 3

capital indices and the tensors
[::: ]
ψ ::: are totally skew in their capital indices.

Thus, e.g.,
[1110]
ψ a ABDL

bd is skew in both (A; B) and (A; L) because (33) solves (5)1;2;

furthermore it is skew in (A; D) because (33) solves (5)3; consequently
[1110]
ψ a ABDL

bd

is totally skew in (A; B; D; L). By Remark 3.1 equations (33) and (31) are equiv-
alent. Conversely, by direct substitution one cheks that the functional (4) solves
equations (5).

6. Frame-indifferent solutions to equations (5)

Next we characterize the solutions (4) to equations (5) which are frame-indifferent
in each one of the two senses (GI ) and (EI ) below.

Remind that the functional F̂ in (4) may be interpreted as the difference between
the constitutive functionals P̂ and P̂ ′ for the Piola stress-tensor in certain two globally
equivalent bodies. The principle of material frame-indifference requires that the response
of a material do not depend on the motion of the observer frame (e.g., see [6]).

A Galilean frame of reference represents an observer that moves with a constant
translatory rigid motion w.r.t. an inertial frame, whereas an Euclidean frame of reference
represents an observer that moves with an arbitrarily given rigid motion w.r.t. an inertial
frame. Here we characterize the solutions of equations (5) that are frame-indifferent in
the sense of Galilean invariance and then in the stronger sense of Euclidean invariance.
These solutions can be used to investigate how the class of the bodies (with fading
memory), that are globally equivalent to a given body, depends on the observer motion.

In the two conditions of frame-indifference below, R and ρ respectively represent
the constant value of the rotation tensor and the total history in the observer motion.
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As is customary, let

(34) I = identity tensor; Lin+ := {L ∈ Lin | det L > 0};

(35) Orth := {Q ∈ Lin | QQ T = I }; Orth+ := Orth ∩ Lin+ :

(GI ) - (Galilean invariance condition)

(36) F̂(Rx; z; Rξ; ζ) = RF̂(x; z; ξ; ζ)

for each R ∈ 0rth+ and (x; z; ξ; ζ) ∈ A× U .

(EI ) - (Euclidean invariance condition)

(37) F̂(Rx; z; ρ ξ; ζ) = RF̂(x; z; ξ; ζ) ; R := ρ(0) ;

for each history ρ : [0;∞) → 0rth+ and (x; z; ξ; ζ) ∈ A× U .

Remark 6.1. A tensor T is said to be weakly isotropic if it is Orth+-invariant, i.e.

T h1h2:::hn Rh1k1
Rh2k2

: : : Rhnkn
= T k1k2:::kn ’ R ∈ Orth+:

As a consequence, any weakly isotropic tensor of order 1 vanishes and any weakly
isotropic tensor of order 2 or 3 has the respective form

(38) T ij = d δij or T ijk = d εijk; d ∈ R:

The next two theorems characterize the solutions to equations (5) which satisfy (GI )
or (EI ). To prove them we use the general solution (31) to equations (5) given by
Theorem 5.1. In the proofs below we shall use the following

Remark 6.2. In view of (17), if

〈T :::(s1; : : : ; sn) | η1(s1); ::; ηn(sn) 〉 = 0 ’ η1(s1); ::; ηn(sn) ∈ R∞ ;

then T :::(s1; : : : ; sn) identically vanishes almost everywhere on its domain. For functions
belonging to a L2 space the symbol « ≡ » will be used to mean equality almost every-
where. For instance T :::(·) ≡ U :::(·) means that T :::(·) and U :::(·) differ in values at
most on a set of points of measure zero.

Theorem 6.1. The solution (31) to equations (5) satisfies the invariance condition (36)
if and only if

(39)

[0000]
τ aA = 0;

[0100]
τ a

C = 0;
[0001]
τ a

C ≡ 0;
[0101]
τ a ≡ 0;

[1000]
τ a

bC =
[1000]

d C δ
a

b;
[0010]
τ a

dC ≡
[0010]

d C δ
a

d ;
[1100]
τ a

b =
[1100]

d δa
b;

[1010]
τ a

bd ≡
[1010]

d εa
bd ;

[1001]
τ a

b ≡
[1001]

d δa
b;

[0110]
τ a

d ≡
[0110]

d δa
d ;

[0011]
τ a

d ≡
[0011]

d δa
d ;

[2000]
τ ah =

[2000]
d δah;

[0020]
τ ah ≡

[0020]
d δah ;
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hence, if and only if

(40)

F aA = εABC
[1000]

d C xa
B + εADC 〈

[0010]
d C (s) | ξa

D(s)〉 + εABL
[1100]

d xa
BzL +

+ εABDεa
bd 〈

[1010]
d (s) | ξd

D(s)〉xb
B + εABM 〈

[1001]
d (s) | ζM (s)〉xa

B +

+ εADL〈
[0110]

d (s) | ξa
D(s)〉zL + εADM 〈

[0011]
d (s1; s2) | ξa

D(s1); ζM (s2)〉 +

+ εABC εa
bc

[2000]
d xb

Bxc
C + εADE εa

de〈
[0020]

d (s1; s2) | ξd
D(s1); ξe

E (s2)〉
for any choice of the constants

[1000]
d C ;

[1100]
d ;

[2000]
d ∈ R

and of the functions

[0010]
d C ;

[1010]
d ;

[1001]
d ;

[0110]
d ∈ L2

h(R+;R) ;
[0011]

d ;
[0020]

d ∈ L2
h[R+ ×R+;R]:

Theorem 6.2. The solution (31) to equations (5) satisfies the invariance condition (37)
if and only if equations (39) hold and furthermore

(41)
[0010]

d C ≡ 0;
[1010]

d ≡ 0;
[0110]

d ≡ 0;
[0011]

d ≡ 0;
[0020]

d ≡ 0 ;

hence, if and only if

(42)
F aA = εABC

[1000]
d C xa

B + εABL
[1100]

d xa
BzL +

+ εABM 〈
[1001]

d (s) | ζM (s)〉xa
B + εABC εa

bc

[2000]
d xb

Bxc
C

for any choice of the constants

[1000]
d C ;

[1100]
d ;

[2000]
d ∈ R

and of the function
[1001]

d ∈ L2
h(R+;R):

Remark 6.3. The invariance condition (EI ) is stronger than (GI ); consequently, we
can prove Theorems 6.1 and 6.2 in a unified manner by applying to each monomial
of the general solution (31) to (5) the steps (i ) to (iii ) below.

(i ) To replace the general solution (31) to (5) in (37).

(ii ) To find the restrictions that the invariance condition (GI ) implies on
[::: ]
τ by

choosing a constant rotation history

(43) ρ : [0;∞) → Orth+ ; ρ(s) ≡ R := ρ(0) ’ s > 0 ;

where ρ(0) ∈ Orth+ is pre-fixed ad arbitrium.
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(iii ) To find the restrictions that (EI ) imposes on
[::: ]
τ by choosing ad arbitrium some

non-constant history ρ : [0;∞) → Orth+ which satisfies condition (A) or condition (B)
below.

(A) For all s1; s2 > 0 there is ρ such that

(44) ρ := ρ(s1) = ρ(s2) �= R := ρ(0):

(B) For all s > 0 there is ρ such that

(45) ρ := ρ(s) �= R := ρ(0):

In the proofs below the well known identities

(46) εa
bd R m

a Rb
i = εm

isR
s

d ; εa
deR

d
r R e

s = εi
rsR

a
i; εhdeR

d
r R

e
s = εirsR

i
h ;

where R ∈ Orth+, will be used.

Proof of both Theorems 6.1, 6.2.

(Step (i) in Remark 6:3). The solution (31) to equations (5) satisfies (37) of (EI )
if and only if for each ρ : [0;∞) → Orth+ we have

(47)

[0000]
τ aA + εABC [1000]

τ a
bC Rb

jx
j
B + εALC [0100]

τ a
C zL +

+ εADC 〈[0010]
τ a

dC (s) | ρd
j (s)ξ

j
D(s)〉 + εAMC 〈[0001]

τ a
C (s) | ζM (s)〉 +

+ εABL [1100]
τ ab Rb

ix
i
BzL + εABD〈[1010]

τ a
bd (s) | ρd

j (s)ξ
j

D(s)〉 Rb
ix

i
B +

+ εABM 〈[1001]
τ a

b(s) | ζM (s)〉 Rb
ix

i
B + εADL〈[0110]

τ a
d (s) | ρd

j (s)ξ
j

D(s)〉zL +

+ εAML〈[0101]
τ a(s) | ζM (s)〉zL + εADM 〈[0011]

τ a
d (s1; s2) | ρd

j (s1)ξj
D(s1); ζM (s2)〉 +

+ εABC εhbc

[2000]
τ ah Rb

ix
i
B Rc

j x
j

C +

+ εADEεhde〈
[0020]
τ ah(s1; s2) | ρd

i(s1)ξi
D(s1); ρe

j (s2)ξj
E (s2)〉 =

= Ra
‘

[0000]
τ ‘A + Ra

‘ ε
ABC [1000]

τ ‘
bC xb

B + Ra
‘ ε

ALC [0100]
τ ‘

C zL +

+ Ra
‘ ε

ADC 〈[0010]
τ ‘

dC (s) | ξd
D(s)〉 + εAMC Ra

‘〈
[0001]
τ ‘

C (s) | ζM (s)〉 +

+ Ra
‘ ε

ABL [1100]
τ ‘

b xb
BzL + Ra

‘ ε
ABD〈[1010]

τ ‘
bd (s) | ξd

D(s)〉xb
B +

+ εABM Ra
‘〈

[1001]
τ ‘

b(s) | ζM (s)〉xb
B +

+ Ra
‘ ε

ADL〈[0110]
τ ‘

d (s) | ξd
D(s)〉zL + Ra

‘ ε
AML〈[0101]

τ ‘(s) | ζM (s)〉zL +

+ Ra
‘ ε

ADM 〈[0011]
τ ‘

d (s1; s2) | ξd
D(s1); ζM (s2)〉 +

+ Ra
‘ ε

ABC εhbc

[2000]
τ ‘hxb

Bxc
C + εADE εhde Ra

‘ 〈
[0020]
τ ‘h(s1; s2) | ξd

D(s1); ξe
E (s2) 〉:
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Next we isolate the terms involving
[0020]
τ in (47) by taking the derivative @2=@ξr

R@ξs
S

of both its sides; using (17) we obtain

(48)

εARSεhde

∫ +∞

0

∫ +∞

0

[0020]
τ ah(s1; s2)[ ρd

r (s1) ρe
s(s2) +

+ ρe
s(s1) ρd

r (s2)]f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

= 2εARSεhrs Ra
‘

∫ +∞

0

∫

0

[0020]
τ ‘h(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2

for all increments f; g ∈ R∞.

(Step (ii) in Remark 6.3). Choose ρ satisfying (43); then (48) yields

(49)

εhdeR
d
r R

e
s

∫ +∞

0

∫ +∞

0

[0020]
τ ah(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

= εhrsR
a
‘

∫ +∞

0

∫ +∞

0

[0020]
τ ‘h(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 ;

which by the arbitrariness of the increments f , g ∈ R∞ yields

(50) εhdeR
d
r R

e
s

[0020]
τ ah(s1; s2) ≡ εhrsR

a
‘

[0020]
τ ‘h(s1; s2):

By (46)3 , equation (50) becomes

(51) εirsR
i

h

[0020]
τ ah(s1; s2) ≡ εhrsR

a
‘

[0020]
τ ‘h(s1; s2):

The multiplication of both the sides of (51) by εmrsR k
a yields

(52) R m
h R k

a

[0020]
τ ah =

[0020]
τ km;

thus the tensor
[0020]
τ is weakly isotropic (see Remark 6.1) and (39)13 holds.

(Step (iii) in Remark 6:3). By replacing (39)13 in (48) we obtain

(53)

δahεhde

∫ +∞

0

∫ +∞

0

[0020]
d (s1; s2)[ρd

r (s1)ρe
s(s2) +

+ ρe
s(s1)ρd

r (s2)]f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

= 2δ‘hεhrs

∫ +∞

0

∫ +∞

0

[0020]
d (s1; s2)f (s1)g (s2)Ra

‘h
2(s1)ds1h2(s2)ds2

and thus by the arbitrariness of f; g ∈ R∞ we have

(54) δahεhde

[0020]
d (s1;s2)[ρd

r (s1)ρe
s(s2)+ρe

s(s1)ρd
r (s2)] ≡ 2δ‘hεhrs

[0020]
d (s1;s2)Ra

j ’ ρ∈Orth+
∞:

By (A) in Remark 6.3 the last equation yields

(55) δahεhde

[0020]
d (s1; s2)ρd

rρ
e

s ≡ δ‘hεhrs

[0020]
d (s1; s2)Ra

‘ ;



general and physically privileged solutions to certain symmetric : : : 259

which by (46)3 becomes

(56) δahεirs

[0020]
d (s1; s2) ρ i

h ≡ δ‘hεhrs

[0020]
d (s1; s2)Ra

‘;

i.e.

(57)
[0020]

d (s1; s2)[ρah − R ah] ≡ 0:

By (44)3 we have ρah �= Rah for some a; h ∈ {1; 2; 3}; hence (57) yields (39)5.

Next we isolate the terms involving
[2000]
τ in (47) by taking the derivative @2=@xr

R@xs
S

of both its sides; we obtain

(58) εhbc

[2000]
τ ahR b

r R
c

s = R a
‘ εhrs

[2000]
τ ‘h;

which by (46)3 is equivalent to

(59) εirsR
i

h

[2000]
τ ah = R a

‘ εhrs

[2000]
τ ‘h:

By multiplying both the sides of equation (59) by εkrsR j
a we obtain

R j
a R i

h

[2000]
τ ah =

[2000]
τ ji;

so that the tensor
[2000]
τ is weakly isotropic and (39)12 holds.

Next we study the terms of (47) involving
[0011]
τ . By taking the derivative @2=@ξs

S @ζR

of both the sides of equation (47) we obtain

(60)

∫ +∞

0

∫ +∞

0

[0011]
τ a

d (s1; s2)ρd
s(s1)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

= R a
‘

∫ +∞

0

∫ +∞

0

[0011]
τ ‘

s(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 :

(Step (ii) in Remark 6.3). The arbitrariness of f; g ∈ R∞ in (60) yields (see (43))

(61) Rd
s

[0011]
τ a

d (s1; s2) ≡ Ra
‘

[0011]
τ ‘

s(s1; s2);

hence multiplying both the sides of equation (61) by R s
m yields

(62)
[0011]
τ a

m(s1; s2) ≡ Ra
‘R

s
m

[0011]
τ ‘

s(s1; s2);

namely,
[0011]
τ is weakly isotropic and (39)11 holds.

(Step (iii) in Remark 6.3). By replacing (39)11 in (60) we obtain

(63)

∫ +∞

0

[0011]
d (s1; s2)ρa

s(s1)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

= R a
s

∫ +∞

0

[0011]
d (s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2) ds2 ;
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which by the arbitrariness of f; g ∈ R∞ yields

(64)
[0011]

d (s1; s2)ρa
s(s1) ≡ R a

s

[0011]
d (s1; s2) :

By (B) in Remark 6.3, the last equation yields
[0011]

d (s1; s2)(ρa
s − R a

s) ≡ 0 ; which by
(44)3 yields (41)4 .

Next we study the terms of (47) involving
[0101]
τ . By taking the derivative @2=@zR@ζS

of both the sides of equation (47) and using (17) we obtain

(65)
∫ +∞

0

[0101]
τ a(s)f (s)h2(s)ds = R a

‘

∫ +∞

0

[0101]
τ ‘(s)f (s)h2(s)ds:

By the arbitrariness of f ∈ R∞ the last equation yields

(66)
[0101]
τ a ≡ R a

‘

[0101]
τ ‘;

so that
[0101]
τ vanishes (see Remark 6.1) and (39)4 holds.

Next we study the terms of (47) involving
[0110]
τ . By taking the derivative @2=@ξs

S @zR

of both the sides of equation (47) we obtain

(67)
∫ +∞

0

[0110]
τ a

d (s)ρd
s(s)f (s)ds = R a

‘

∫ +∞

0

[0110]
τ ‘

s(s)f (s)ds;

which by the arbitrariness of f ∈ R∞ yields

(68)
[0110]
τ a

d (s)ρd
s(s) ≡

[0110]
τ ‘

s(s)R
a

‘ :

(Step (ii) in Remark 6.3). Let ρ satisfy equation (43); multiplying both the sides of
equation (68) by R s

m yields

(69)
[0110]
τ a

m(s) ≡ [0110]
τ ‘

s(s)R
a
‘R

s
m ;

so that
[0110]
τ is weakly isotropic and (39)10 holds.

(Step (iii) in Remark 6.3). By replacing (39)10 in (67) we obtain

(70)
[0110]

d (s)ρa
s(s) ≡

[0110]
d (s) R a

s ;

which by (B) in Remark 6.3 implies (41)3.

Next we study the terms of (47) involving
[1001]
τ . By taking the derivative @2=@xi

B@ζR

of both the sides of equation (47) we obtain

(71) R b
i

∫ +∞

0

[1001]
τ a

b(s)f (s)h2(s)ds = R a
‘

∫
[1001]
τ ‘

i(s)f (s)h2(s)ds:

The arbitrariness of f ∈ R∞ in the last equation yields

(72)
[1001]
τ a

b ≡ [1001]
τ ‘

i R a
‘ R i

b ;
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so that the tensor
[1001]
τ is weakly isotropic and (39)9 holds. Note that in (71) the

rotation history ρ = ρ(s) appears just through its value R := ρ(0); hence the stronger

condition (EI ) give no further restriction on
[1001]
τ .

Next we study the terms of (47) involving
[1010]
τ : By taking the derivative @2=@ξd

D@xb
B

of both the sides of equation (47) we obtain

(73)
∫ +∞

0

[1010]
τ a

bd (s)ρd
j (s) R b

i f (s)h2(s)ds = R a
‘

∫ +∞

0

[1010]
τ ‘

ij (s)f (s)h2(s)ds;

which by the arbitrariness of f ∈ R∞ yields

(74)
[1010]
τ a

bd ρd
jR

b
iR

m
a ≡ [1010]

τ m
ij :

(Step (ii) in Remark 6.3). Let ρ satisfy equation (43); then, by (74), the tensor
[1010]
τ

is weakly isotropic and thus (39)8 holds.

(Step (iii) in Remark 6.3). By replacing (39)8 in (73) we obtain

(75)
[1010]

d εa
bd ρ d

j R b
i R m

a ≡
[1010]

d εm
ij ;

by (46)1 this equality is equivalent to

(76)
[1010]

d εm
is R s

d ρ d
j ≡

[1010]
d εm

ij;

which by (B) in Remark 6.3 yields (41)2.

Next we study the terms in (47) involving
[1100]
τ . By taking the derivative @2=@xi

B@zL

of both the sides of equation (47) we obtain an integral equality which is equivalent to
[1100]
τ a

b R b
i = R a

‘

[1100]
τ ‘

i ; multiplying this by R i
m yields

(77)
[1100]
τ a

m = R i
m R a

‘

[1100]
τ ‘

i ;

so that
[1100]
τ is weakly isotropic and (39)7 holds.

Note that in (77) the rotation history ρ = ρ(s) appears just through its value R :=

:= ρ(0); hence the stronger condition (EI ) give no further restriction on
[1100]
τ .

Next we study the terms of (47) involving
[0001]
τ . By taking the derivative @=@ζM of

both the sides of equation (47), in view of the already proved equalities (39)2;4;5;7-13

and (41)3-5, we obtain an integral equality which is equivalent to
[0001]
τ a

C = R a
‘

[0001]
τ ‘

C ;

hence for any fixed C ∈ {1; 2; 3} the vector
[0001]
τ ‘

C is weakly isotropic and (39)3 holds.

In an analogous way one shows that (39)2 holds.

Next we study the terms of (47) containing
[0010]
τ . By taking the derivative @=@ξs

S

of both the sides of equation (47) and using the already proved equalities (39)2-5;7-13,
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we obtain

(78)
[0010]
τ a

dCρ
d

s ≡ Ra
‘

[0010]
τ ‘

sC :

(Step (ii) in Remark 6.3). Let ρ satisfy equation (43); the multiplication of (78) by
R s

m yields

(79)
[0010]
τ a

mC ≡ Ra
‘R

s
m

[0010]
τ ‘

sC ;

hence for any fixed C ∈ {1; 2; 3} the second-order tensor
[0010]
τ a

mC is weakly isotropic
and (39)6 holds.

(Step (iii) in Remark 6.3). By replacing (39)6 in (78) we obtain

(80)
[0010]

d C ρ a
s ≡ R a

s

[0010]
d C ;

which by (B) in Remark 6.3 yields (41)1.

Lastly we study the terms of (47) involving
[0000]
τ ; by replacing the already proved

equalities (39)2-13 we obtain

(81)
[0000]
τ aA = Ra

‘

[0000]
τ ‘A;

hence for any fixed A ∈ {1; 2; 3} the vector
[0000]
τ aA is weakly isotropic and (39)1

holds.

7. Frame-indifferent solutions to equations (5) satisfying

a certain symmetry condition

For a simple body the local law of angular momentum is equivalent to

(82) PxT = xPT ;

where P is the first Piola-Kirchhoff stress tensor and x is the deformation gradient.
The next theorems characterize the frame-indifferent solutions (4) to equations (5)

that are Galilean-invariant or Euclidean-invariant and furthermore satisfy the symmetry
condition (9), which is equivalent to (82).

Theorem 7.1. The Galilean invariant functional F̂ , with components (40), satisfies the
symmetry condition (9) if and only if

(83)

[1000]
d C = 0;

[0010]
d ≡ 0;

[1100]
d = 0;

[1010]
d ≡ 0;

[1001]
d ≡ 0;

[0110]
d ≡ 0;

[0011]
d ≡ 0;

[0020]
d ≡ 0 ;

hence, if and only if

(84) F aA = εa
bcε

ABC
[2000]

d xb
Bxc

C

for any choice of the constant
[2000]

d ∈ R .
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Proof. The solution (40) to (5) satisfies (9) if and only if

(85)

εABC
[1000]

d C xa
Bxb

A +

+ εADC 〈
[0010]

d C (s) | ξa
D(s)〉 xb

A + εACDεa
cd 〈

[1010]
d (s) | ξd

D(s)〉xc
C xb

A +

+ εABL
[1100]

d xa
Bxb

AzL + εABM 〈
[1001]

d (s) | ζM (s)〉xa
Bxb

A +

+ εADL〈
[0110]

d (s) | ξa
D(s)〉zL xb

A + εADM 〈
[0011]

d (s1; s2) | ξa
D(s1); ζM (s2)〉 xb

A +

+ εABC εa
sc

[2000]
d xs

Bxc
C xb

A + εADEεa
de〈

[0020]
d (s1; s2) | ξd

D(s1); ξe
E (s2)〉xb

A =

= εABC
[1000]

d C xb
Bxa

A +

+ εADC 〈
[0010]

d C (s) | ξb
D(s)〉 xa

A + εACDεb
cd 〈

[1010]
d (s) | ξd

D(s)〉xc
C xa

A +

+ εABL
[1100]

d xb
Bxa

AzL + εABM 〈
[1001]

d (s) | ζM (s)〉xb
Bxa

A +

+ εADL〈
[0110]

d (s) | ξb
D(s)〉zL xa

A + εADM 〈
[0011]

d (s1; s2) | ξb
D(s1); ζM (s2)〉 xa

A +

+ εABC εb
sc

[2000]
d xa

Axs
Bxc

C + εADEεb
de〈

[0020]
d (s1; s2) | ξd

D(s1); ξe
E (s2)〉xa

A :

Next, by using (85) we study the restrictions that (9) places on
[0020]

d . By taking the
derivative @3=@ξi

I @ξj
J @xm

M in both the sides of equation (85) we obtain

(86) εMIJ εa
ijδ

bm〈
[0020]

d (s1; s2) | f (s1); g (s2)〉 = εMIJ εb
ijδ

am〈
[0020]

d (s1; s2) | f (s1); g (s2)〉:
By the arbitrariness of f; g ∈ R∞, equation (86) yields

(87)
[0020]

d (εa
ijδ

bm − εb
ijδ

am) ≡ 0;

which implies (83)8 because εa
ijδ

bm �= εb
ijδ

am for some a; i; j; b; m.

Next, by using (85) we find the restrictions that (9) places on
[2000]

d ; by taking the
derivative @3=@xi

I @xj
J @xm

M in both the sides of equation (85) we obtain

[2000]
d (εMIJ εa

ijδ
mb +εJIM εa

imδ
jb +εMJI εa

jiδ
mb +εJMI εa

miδ
jb +εIJM εa

jmδ
ib +εIMJ εa

mjδ
ib) =

=
[2000]

d (εMIJ εb
ijδ

ma +εJIM εb
imδ

ja +εMJI εb
jiδ

ma +εJMI εb
miδ

ja +εIJM εb
jmδ

ia +εIMJ εb
mjδ

ia) ;

that is,

(88)
[2000]

d εIJM (εa
jiδ

mb + εa
miδ

jb + εa
jmδ

ib + εb
ijδ

ma + εb
miδ

ja + εb
jmδ

ia) = 0:
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Adding the vanishing quantity εi
mjδ

ab + εi
jmδ

ab in the left side of (88) yields

(89)
[2000]

d εIJM (εa
jiδ

mb+εi
jmδ

ab+εa
miδ

jb+εa
jmδ

ib +εb
ijδ

ma+εi
mjδ

ab+εb
miδ

ja +εb
jmδ

ia)=0:

By the identity [7, p. 843]

εb
ijδ

ma + εi
mjδ

ab + εb
miδ

ja + εb
jmδ

ia = 0

equation (89) holds for any
[2000]

d ∈ R; i.e. (9) does not restrict the coefficient
[2000]

d .

Next, by using (85) we study the restrictions that (9) places on
[0011]

d ; by taking the
derivative @3=@ξi

I @xj
J @ζL in both the sides of equation (85) we obtain

(90) εJIL〈
[0011]

d (s1; s2) | f (s1)δai; g (s2)〉δbj = εJIL〈
[0011]

d (s1; s2) | f (s1)δbi; g (s2)〉δaj ;

which by the arbitrariness of f; g ∈ R∞ yields

(91)
[0011]

d (δaiδbj − δbiδaj ) ≡ 0 ;

hence (83)7 holds because

(92) δaiδbj �= δajδbi for some a; b; i; j :

Next we study the restrictions that (9) places on
[0110]

d ; by taking the derivative
@3=@ξi

I @xj
J @zL in both the sides of equation (85) we have

(93) εJIL〈
[0110]

d (s) | f (s)δai〉δbj = εJIL〈
[0110]

d (s) | f (s)δbi〉δaj :

By the arbitrariness of f ∈ R∞ equation (93) yields

(94)
[0110]

d (s) (δaiδbj − δajδbi) ≡ 0;

which in view of (92) implies (83)6.

Next we find the restrictions that (9) places on
[1001]

d ; by taking the derivative
@3=@xi

I @xj
J @ζN in both the sides of equation (85) we obtain

εJIN 〈
[1001]

d (s) |f (s)〉δaiδbj + εIJN 〈
[1001]

d (s) |f (s)〉δajδbi =

= εJIN 〈
[1001]

d (s) |f (s)〉δajδbi + εIJN 〈
[1001]

d (s) |f (s)〉δaiδbj;

that is,

〈
[1001]

d (s) |f (s)〉(δaiδbj − δajδbi) = 0 ;

this by (92) is equivalent to

(95) 〈
[1001]

d (s) |f (s)〉 = 0;

which by the arbitrariness of f ∈ R∞ yields (83)5.
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Next we find the restrictions that (9) places on
[1010]

d ; by taking the derivative
@3=@ξi

I @xj
J @xm

M in both the sides of equation (85) we obtain

(96) 〈
[1010]

d (s) | f (s)〉(εMJI εa
jiδ

bm +εJMI εa
miδ

bj )=〈
[1010]

d (s) | f (s)〉(εMJI εb
jiδ

am +εJMI εb
miδ

aj );

that is,

(97) 〈
[1010]

d (s) | f (s)〉(εa
jiδ

bm − εa
miδ

bj − εb
jiδ

am + εb
miδ

aj ) = 0:

Note that εa
jiδ

bm−εa
miδ

bj−εb
jiδ

am + εb
miδ

aj �= 0 for some choice of (a; b;i; j; m);

e.g. for (a; j; i; b; m) = (1; 2; 3; 3; 3); hence (97) is equivalent to 〈
[1010]

d (s) | f (s)〉 = 0,
which by the arbitrariness of f ∈ R∞ yields (83)4 .

Next we find the restrictions that (9) places on
[1100]

d ; by taking the derivative
@3=@xi

I @xj
J @zN in both the sides of equation (85) we obtain

(98) εJIN
[1100]

d δaiδbj + εIJN
[1100]

d δajδbi = εJIN
[1100]

d δajδbi + εIJN
[1100]

d δaiδbj;

that is,

(99)
[1100]

d (δaiδbj − δajδbi) = 0:

This equality and (92) yield (83)3.

Next we find the restrictions that (9) places on
[0010]

d ; by taking the derivative
@2=@ξi

I @xj
J in both the sides of equation (85) and in view of the already proved

equalities (83)3-8 we obtain

(100) εJIC 〈
[0010]

d C (s) | f (s)δai〉δbj = εJIC 〈
[0010]

d C (s) | f (s)δbi〉δaj :

By the arbitrariness of f ∈ R∞ equation (100) yields

(101)
[0010]

d C (δa
iδ

b
j − δb

iδ
a
j ) ≡ 0;

which by (92) yields (83)2.

Lastly, by using (85) we study the restrictions that (9) places on
[1000]

d ; in view of
(83)2;3, by taking the derivative @2=@xi

I @xj
J in both the sides of equation (85) we

have

εJIC
[1000]

d C δaiδbj + εIJC
[1000]

d C δajδbi = εJIC
[1000]

d C δajδbi + εIJC
[1000]

d C δaiδbj;

that is,

(102)
[1000]

d C (δaiδaj − δajδbi) = 0:

By (92) this equality is equivalent to (83)1.
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The proof of the next theorem is quite similar to the proof of Theorem 7.1. In
the latter the Galilean invariant solutions (40) to equations (6) are required to satisfy
the symmetry condition (9). The same steps constitute a proof for the next theorem
because they can also be applied to the Euclidean invariant solutions (42) to equations
(6). Hence, to prove the next theorem one only has to disregard the terms in (40)
which do not appear in (42).

Theorem 7.2. The Euclidean invariant functional F̂ , with components (42), satisfies the
symmetry condition (9) if and only if equations (83)1;3;5 hold; hence, if and only if

(103) F aA = εa
bcε

ABC
[2000]

d xb
Bxc

C

for any choice of
[2000]

d ∈ R .

8. Frame-indifferent solutions to equations (6)

Next we characterize the classes of solutions (7) to equations (6) which are frame-
indifferent in each one of the two senses (GI ) or (EI ) in Section 6. We use the
general solution (104) to equations (6) given by Theorem 8.1 below, whose proof is
obtained simply by dropping the index «a» everywhere in (31) and in Theorem 5.1 (see
Remark 2.1).

Theorem 8.1. The functional (7) is a solution on A× U to equations (6) if and only if

(104)

QA =
[0000]
γ A + εABC [1000]

γ bC xb
B + εCAL [0100]

γ C zL + εCAD〈[0010]
γ dC | ξd

D〉 +

+ εAMC 〈[0001]
γ C | ζM 〉 + εABL [1100]

γ b xb
BzL + εABD〈[1010]

γ bd | ξd
D〉 xb

B +

+ εABM 〈[1001]
γ b | ζM 〉 xb

B + εADL〈[0110]
γ d | ξd

D〉zL + εAML〈[0101]
γ | ζM 〉zL +

+ εADM 〈[0011]
γ d | ξd

D; ζM 〉+εABC εhbc

[2000]
γ h xb

Bxc
C +εADEεhde〈

[0020]
γ h | ξd

D;ξe
E 〉

for any choice of the constants

[0000]
γ A;

[1000]
γ bC ;

[0100]
γ C ;

[1100]
γ b;

[2000]
γ h ∈ R

and of the functions

[0010]
γ dC ;

[0001]
γ C ;

[1010]
γ bd ;

[1001]
γ b;

[0110]
γ d ;

[0101]
γ ∈ L2(R+;R);

[0011]
γ d ;

[0020]
γ h ∈ L2[R+ ×R+;R]:

Remind that the functional (7) may be interpreted as the difference between the
constitutive functionals q̂ and q̂′ for the heat flux in two globally equivalent simple
bodies with fading memory. The property of material frame-indifference, in the form of
Galilean or Euclidean invariance, requires that the response of a material be independent
of the observer motion in the Galilean or Euclidean class of motions, respectively. Hence
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we require that the constitutive functionals q̂ and q̂′, thus Q̂ = q̂ − q̂′ too, satisfy the
conditions (GI ) or (EI ) below. In these conditions R [ ρ ] represents the constant
[possibly non constant] history of the rotation tensor in the observer motion.

(GI ) - (Galilean invariance condition)

(105) Q(Rx; z; Rξ; ζ) = Q(x; z; ξ; ζ)

for each R ∈ 0rth+ at any (x; z; ξ; ζ) ∈ A× U .

(EI ) - (Euclidean invariance condition)

(106) Q(Rx; z; ρξ; ζ) = Q(x; z; ξ; ζ)

for each history ρ : [0;∞) → 0rth+; where R := ρ(0) , at any (x; z; ξ; ζ) ∈ A× U .

The Theorems 8.2 and 8.3 below characterize the solutions to equations (6) which
satisfy the condition (GI ) and (EI ), respectively.

Theorem 8.2. The solution (104) to equations (6) satisfies the invariance condition (105)
if and only if

(107)

[1000]
γ bC = 0;

[0010]
γ dC ≡ 0;

[1100]
γ b = 0;

[1010]
γ bd ≡ [1010]

γ δbd ;

[1001]
γ b ≡ 0;

[0110]
γ d ≡ 0;

[0011]
γ d ≡ 0;

[2000]
γ h = 0;

[0020]
γ h ≡ 0 ;

hence, if and only if

(108)
QA =

[0000]
γ A + εALC [0100]

γ C zL + εAMC 〈[0001]
γ C | ζM 〉 +

+ εABD〈[1010]
γ bd | ξd

D〉 xb
B + εAML〈[0101]

γ | ζM 〉zL

for any choice of the constants
[0000]
γ A;

[0100]
γ C ∈ R and of the functions

[0001]
γ C ;

[1010]
γ bd ;

[0101]
γ ∈ L2

h(R+;R).

Theorem 8.3. The solution (104) to equations (5) satisfies the invariance condition (106)
if and only if the equalities (107) hold and, in addition,

(109)
[1010]
γ bd ≡ 0 ;

hence, if and only if

(110) QA =
[0000]
γ A + εALC [0100]

γ C zL + εAMC 〈[0001]
γ C | ζM 〉 + εAML〈[0101]

γ | ζM 〉zL

for any choice of the constants
[0000]
γ A;

[0100]
γ C ∈R and of the functions

[0001]
γ C ;

[0101]
γ ∈L2(R+;R).

The proofs of the above theorems are given below in a unified fashion; their scheme
is similar to the unified proof of Theorems 6.1, 6.2, which follows the steps written in
Remark 6.3. Here we use the version of this remark which is obtained by replacing in
it (5) with (6) on the third-fourth lines and (31) with (104) on the fourth line; when
below we invoke Remark 6.3 we always refer to this last version of it.
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Proof of both Theorems 8.2, 8.3.

(Step (i) in Remark 6.3). The solution (104) to equations (6) satisfies (106) if and
only if for each ρ : [0;∞) → Orth+ we have

(111)

[0000]
γ A + εABC [1000]

γ bC xb
B + εADC 〈[0010]

γ dC (s) | ξd
D(s)〉 +

+ εALC [0100]
γ C zL + εAMC 〈[0001]

γ C (s) | ζM (s)〉 +

+ εABL [1100]
γ b xb

BzL + εABD〈[1010]
γ bd (s) | ξd

D(s)〉 xb
B +

+ εABM 〈[1001]
γ b(s) | ζM (s)〉 xb

B + εADL〈[0110]
γ d (s) | ξd

D(s)〉zL +

+ εAML〈[0101]
γ (s) | ζM (s)〉zL + εADM 〈[0011]

γ d (s1; s2) | ξd
D(s1); zM (s2)〉 +

+ εABC εhbc

[2000]
γ h xb

Bxc
C + εADEεhde〈

[0020]
γ h(s1; s2) | ξd

D(s1); ξe
E (s2)〉 =

=
[0000]
γ A + εABC [1000]

γ bC Rb
s x s

B + εADC 〈[0010]
γ dC (s) | ρd

s (s)ξs
D(s)〉 +

+ εALC [0100]
γ C zL + εAMC 〈[0001]

γ C (s) | ζM (s)〉 +

+ εABL [1100]
γ b Rb

s x s
BzL + εABD〈[1010]

γ bd (s) | ρd
s (s)ξs

D(s)〉 Rb
‘ x‘

B +

+ εABM 〈[1001]
γ b(s) | ζM (s)〉 Rb

s x s
B + εADL〈[0110]

γ d (s) | ρd
s (s)ξs

D(s)〉zL +

+ εADM 〈[0011]
γ d (s1; s2) | ρd

s (s1)ξs
D(s1); ζM (s2)〉 +

+ εAML〈[0101]
γ (s) | ζM (s)〉zL + εABC εhbc

[2000]
γ h Rb

s x s
B Rc

‘ x‘
C +

+ εADEεhde〈
[0020]
γ h(s1; s2) | ρd

s (s1) ξs
D(s1); ρe

‘ (s2) ξ‘
E (s2)〉:

Next we study the terms of (111) involving
[0020]
γ : By taking the derivative @2=@ξm

M @ξs
S

of both the sides of (111) and using (17) we obtain

(112)

2εhsm

∫ +∞

0

∫ +∞

0

[0020]
γ h(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 +

=εhde

∫ +∞

0

∫

0

[0020]
γ h(s1;s2)[ρd

s (s1) ρe
m (s2)+ρe

m (s1) ρd
s (s2)]f (s1)g (s2)h2(s1)ds1h2(s2)ds2:

By the arbitrariness of f; g ∈ R∞ equation (112) yields

(113) 2εhsm

[0020]
γ h ≡ εhde

[0020]
γ h[ ρd

s ρe
m + ρe

m ρd
s ]:
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(Step (ii) in Remark 6.3). If ρ satisfies (43), then (113) becomes εh
sm

[0020]
γ h ≡

≡ εh
de

[0020]
γ hRd

s R
e
m; which by (46)2 is equivalent to

(114)
[0020]
γ h ≡ Ri

h

[0020]
γ i ;

that is, the vector
[0020]
γ is weakly isotropic and (107)9 holds.

Next we study the terms of (111) involving
[2000]
γ : By taking the derivative @2=@xs

S @xm
M

of both the sides of equation (111) we obtain

(115) εh
sm

[2000]
γ h = εh

bc

[2000]
γ h Rb

sR
c
m ;

which by (46)2 becomes

εh
sm

[2000]
γ h = εi

smRh
i

[2000]
γ h ;

up to the multiplication with εr
sm the last equality is equivalent to

(116)
[2000]
γ r = Rh

r

[2000]
γ h:

That is, the vector
[2000]
γ is weakly isotropic (see Remark 6.1) and (107)8 holds.

Next we study the terms of (111) involving
[0011]
γ . By taking the derivative @2=@ξs

S @ζN

of both the sides of (111) and using (17) we obtain

(117)

∫ +∞

0

∫ +∞

0

[0011]
γ s(s1; s2)f (s1)g (s2)h2(s1)ds1h2(s2)ds2 =

=

∫ +∞

0

∫ +∞

0

[0011]
γ d (s1; s2) ρd

s (s1)f (s1)g (s2)h2(s1)ds1h2(s2)ds2:

(Step (ii) in Remark 6.3). If ρ satisfies (43), then by the arbitrariness of f; g ∈ R∞
equation (117) yields

(118)
[0011]
γ s ≡ Rd

s

[0011]
γ d :

That is, the vector
[0011]
γ is weakly isotropic and thus (107)7 holds.

Next we study the terms of (111) involving
[0101]
γ : By taking the derivative @2=@zS @ζN

of both the sides of equation (111) we obtain an identity not involving ρ; thus no

restriction on
[0011]
γ is imposed by conditions (GI ) and (EI ).

Next we study the terms of (111) involving
[0110]
γ . By taking the derivative @2=@ξs

S @zN

of both the sides of equation (111) and using (17) we obtain

(119)
∫ +∞

0

[0110]
γ s(s)f (s)h2(s)ds =

∫ +∞

0

[0110]
γ d (s) ρd

s (s)f (s)h2(s)ds:
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By the arbitrariness of f ∈ R∞ equation (119) yields

(120)
[0110]
γ s ≡ Rd

s(s)
[0110]
γ d ;

which by Remark 6.1 yields (107)6.

Analogously, by taking the derivative @2=@xs
S @ζN [ @2=@xs

S @zN ] of both the

sides of equation (111) we see that the vector
[1001]
γ s [

[1100]
γ s] is weakly isotropic and

then by Remark 6.1 equation (107)5 [(107)3] holds.

Next we study the terms of (111) involving
[1010]
γ : By taking the derivative @2=@ξs

S @xm
M

of both the sides of equation (111) and using (17) we obtain

(121)
∫ +∞

0

[1010]
γ ms(s)f (s)h2(s)ds = Rb

m

∫ +∞

0

[1010]
γ bd (s) ρd

s (s)f (s)h2(s)ds:

The arbitrariness of f ∈ R∞ yields

(122)
[1010]
γ ms ≡ Rb

m ρd
s

[1010]
γ bd :

(Step (ii) in Remark 6.3). If ρ satisfies (43), then (122) becomes
[1010]
γ ms ≡Rb

mRd
s

[1010]
γ bd ;

hence the tensor
[1010]
γbd is weakly isotropic and (107)4 holds.

(Step (iii) in Remark 6.3). In view of (107)4 equation (122) becomes

(123)
[1010]

d (δms − Rb
m ρ b

s) ≡ 0 ;

which by (B) in Remark 6.3 yields (109).

Next we study the terms of (111) involving
[0010]
γ . By taking the derivative @=@ξs

S

of both the sides of equation (111) and using the already proved equalities (109), we
have

(124)
∫ +∞

0

[0010]
γ hs(s)f (s)h2(s)ds =

∫ +∞

0

[0010]
γ hd (s) ρ d

s(s)f (s)h2(s)ds:

(Step (ii)-(iii) in Remark 6.3). The arbitrariness of f ∈ R∞ in (124) yields

(125)
[0010]
γ hs ≡

[0010]
γ hd Rd

s :

Hence for each h ∈ {1; 2; 3} the vector
[0010]
γ hs is weakly isotropic and by Remark 6.1

equation (107)2 holds.
The deduction of (107)1 is quite similar to the above deduction of (107)2 .

Next we study the terms of (111) involving
[0001]
γ [

[0100]
γ ]. By taking the derivative

@=@ζS [ @=@zS ] of both the sides of equation (111) we obtain an identity not

involving ρ; thus the conditions (GI ) and (EI ) do not restrict
[0001]
γ [

[0100]
γ ].

Lastly note that equations (107) reduce each equality (111) to an identity involving
[0000]
γ . Thus the conditions (GI ) and (EI ) do not restrict

[0000]
γ .
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9. Differentiability of constitutive functionals defined on

physical domains that are nowhere dense and nonconvex

As is customary, let

Sym : = {S ∈ Lin | S = ST } ;

PSym : = {S ∈ Sym | S is positive definite } ;(126)

furthermore let Lin∞ [Lin∞] denote the Hilbert space of all Lebesgue-measurable
functions γ : (0;∞) → Lin [ γ : [0;∞) → Lin ] such that 〈γ; γ〉 < ∞;
equipped with the inner product (2) and norm (3); lastly, for each subset S of Lin
let S∞ [S∞] denote the subset of Lin∞ [Lin∞] formed by the S-valued functions.

Mizel and Wang [5] pointed out that the natural domain of the constitutive maps
of a continuous simple body with fading memory is the cone N formed by the (total)
histories

(F t (·); θt (·); Gt (·)) ∈ Lin∞ ×R∞ × V∞

such that

det F t (s) > 0 and θt (s) > 0 ’ s ≥ 0:

They pointed out that N is nowhere dense in the Banach space E := Lin∞×R∞×V∞
and thus the usual differential calculus, which is concerned with maps defined on open
sets, cannot be used for these maps. Then Mizel and Wang noticed that, in order
to use the standard notion of differentiability, one should assume that any constitutive
map admits a smooth extension from the cone N to the whole space E .

Incidentally, note that this assumption should also be made in the present paper
in order to render meaningful any result on the solutions to the symmetric systems of
equations studied here. But, even if the assumption seems mathematically reasonable,
it has no physical motivation.

In order to avoid the above requirements for smooth extendibility of constitutive
maps, Mizel and Wang [5, pp. 126, 127] proposed a new definition of Fréchet dif-
ferentiability for maps defined on nowhere dense sets. Precisely, they introduced the
following definitions.

Definition 9.1. A function Λ(·) = (F t (·); θt (·); Gt (·)) : (0;∞) → Lin × R × V is
admissible if Λ(·) ∈ E and det F (s) > 0; θ(s) > 0 for almost all s ≥ 0 :

Definition 9.2. Let W be a vector space. The functional

(127) f : N → W ; f = f (Λ(·));

is smooth if, for each fixed admissible Λ(·), the first-order asymptotic expansion

(128) f (Λ(·) + Γ(·)) = f (Λ(·)) + δf (Λ(·)) · Γ(·) + o(‖Γ(·)‖)

holds for all Γ(·) ∈ E for which Λ(·) + Γ(·) is admissible.
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Here δf (Λ(·)) denotes a continuous linear functional defined on the closed subspace
of E spanned by the collection of all Γ(·) such that Λ(·) + Γ(·) is admissible. It is
assumed that the linear functional δf (Λ(·)) is continuous in Λ(·).

Note that the aforementioned closed subspace, which is the domain of δf (Λ(·)), is
defined in correspondence with Λ(·), hence a priori it may depend on Λ(·).

In the paper [1] a differentiability notion is given for mappings f defined on any
given convex subset of a Banach space that may be nowhere dense. Incidentally, they
show that the afore-mentioned closed subspace, in which δf (Λ(·)) is defined, does not
depend on Λ(·). When the domain of f is open the frame of differential calculus in
[1] coincides with the usual one.

Now let f be the constitutive functional for the first Piola stress-tensor P in a heat-
conducting deformable body formed of a simple material with fading memory (4). That
is, at any time t let

(129) P = f (F t (·); θt (·); Gt (·)) :

The principle of material frame-indifference yields

(130) f (Q t (·)F t (·); θt (·); Gt (·)) = Q (t )f (F t (·); θt (·); Gt (·))

for each smooth function Q t (:) : [0;∞) → Orth+ at any admissible (F t (·); θt (·); Gt (·));
as a consequence, at any time t the tensor P reads

(131) P = R(t )f (U t (·); θt (·); Gt (·));

where U t : [0;∞) → PSym is the history of the right stretch tensor and R(t ) is the
rotation tensor.

Note that PSym∞ is a convex subset of Lin∞. Hence a natural constitutive domain

U for f can be chosen that is convex, for instance U := PSym∞ × R+

∞ × V∞. Thus
the theory of differential calculus presented in [1] can be applied to the (reduced)
constitutive functional f (U t (·); θt (·); Gt (·)) in (131), or equivalently to the restriction
of the functional (129) to pure-stretch histories.

Next we show that rigorous meanings can be given to the derivatives of the unrestricted
functional (129) simply by employing the condition of material frame-indifference (130)
and by applying the theory of differential calculus [1]. As a consequence any result of the
present paper, on the solutions to the symmetric systems of equations studied here, remains true for
the constitutive functionals of any simple material with fading memory, without requiring their
domains be extendible to an open set.

(4) The considerations below can be adapted for the heat flux vector functional and the scalar functionals
of internal energy and entropy. Indeed, by the condition of frame-indifference these functionals satisfy
condition (135) below, which is the point of departure in order to render meaningful the derivative of the
extension map f (ξ) in its left side provided the map f (v) in its right side be differentiable on its convex
(and nowhere dense) domain.
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As is well known, by the polar decomposition theorem any x ∈ Lin+ can be uniquely
written in the form

x = RU; with R ∈ Orth+; U ∈ PSym :

Consequently, any given ξ ∈ Lin+
∞ can be written as

ξ = ρυ; with ρ ∈ Orth+
∞ ; υ ∈ PSym∞:

At any fixed admissible (θt (·); Gt (·)) let us rewrite the functional (129) in the form

(132) f = f (x; ξ); f : ω ×W → Lin;

where ω is an open subset of Lin+ and

(133) W :=
⋃

ρ∈Orth+
∞

ρ U = {ρυ | ρ ∈ Orth+
∞ ; υ ∈ U}

for any given convex subset U of PSym∞ (5). In (132) the variable ξ represents the
past (i.e. only defined for s > 0) history of the position gradient and x is its value at
time t , so that (x; ξ) = F t (:). The subset W of Lin+

∞ is nowhere dense because it
is formed by histories ξ such that det ξ(s) > 0 almost everywhere on (0;∞) (see [1,
Section 2]).

The Euclidean condition of material frame-indifference (130) yields

(134) f = f (Qx; qξ) = Qf (x; ξ) ’ Q ∈ Orth+; ’q ∈ Orth+
∞;

at each (x; ξ) ∈ ω ×W .
For the sake of simplicity, from now onward we disregard in equations (132) to

(134) the dipendence on the finite-dimensional variable x .
We note that for Q = I and q = ρT equation (134) yields

(135) f (ξ) = f (υ); with ξ = ρυ;

’ρ ∈ Orth+
∞; ’υ ∈ U ; U ⊆ PSym∞ convex. Moreover note that W is a nowhere

dense subset of Lin∞ which is nonconvex; hence we cannot use the theory of [1]
to assert that f (ξ) is differentiable, i.e., that @f=@ξ exists. However we can consider
derivatives for the functional

(136) f = f (υ); f : U → Lin;

because U is convex in PSym∞, hence in Lin∞. Note that from [1] we have @f (υ)=@υ ∈
∈ L(VU; Lin), where

VU = cl 〈GU〉; with GU = {b ∈ Lin∞ | a + b ∈ U; for some a ∈ U};

(5) Remind that PSym is a convex subset of Lin; hence, e.g., U := PSym∞ is convex in Lin∞ (see [1]).
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is a closed subspace of Sym∞. In view of this, next we show that

(A) if the subset U of PSym∞ is convex, then the functional

(137) f = f (ξ); f : W → Lin; W =
⋃

ρ∈Orth+
∞

ρU ;

with

ξ = ρυ; ρ ∈ Orth+
∞; υ ∈ PSym∞;

is differentiable provided that its restriction (136) to U is differentiable, also when W is a
(nowhere dense and) nonconvex subset of Lin∞.

In fact, we show that

(B) for the functional (137) the asymptotic expansion

(138) f (ξ + b) = f (ξ) +

〈
@f
@υ

(υ) | υ′ − υ

〉
+ o(|υ′ − υ|);

holds if b = ρ′υ′ − ρυ for some ρ′ ∈ Orth+
∞ and υ′ ∈ U ; i.e., ’ b ∈ Lin∞ such that

ξ + b ∈ W .
Following [1, Section 3] we put

(139) VW := cl < GW > ; GW = {b ∈ Lin∞ : ξ + b ∈ W for some ξ ∈ W}:

In view of (B) we are induced to define the map 〈 @f
@ξ (ξ) | −〉 : VW → Lin by

(140)
〈

@f
@ξ

(ξ) | b

〉
:=

〈
@f
@υ

(υ) | υ′ − υ

〉
for ξ = ρυ ; b = ρ′υ′ − ρυ ;

so that 〈 @f
@ξ (ξ) | −〉 ∈ L(VW; Lin):

Thus

(C) the continuous linear map 〈 @f
@ξ (ξ) | −〉 in (140) is the first derivative of f : W → Lin

at ξ . Hence the asymptotic expansion

(141) f (ξ + b) = f (ξ) +

〈
@f
@ξ

(ξ) | b

〉
+ o(|b|)

holds for each b ∈ VW :

Conclusion

Any result of the present paper regarding the solutions to equations (5) and (6),
which has been proved in the previous sections for functionals defined on open sets,
also holds for functionals of the form (132), which are defined on the nowhere dense
nonconvex set (133), provided that U is convex. This extension of the results in the
present paper is possible by the existence, set up in the paper [1], of the derivatives for
functionals of the form (136) when U is convex. As a consequence, the constitutive
functionals (132) can be differentiated at any point (x; ξ) ∈ ω × W even if f is not
extended to an open set of ω × Lin∞ containing ω ×W .
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Next we give the proofs of the above assertions (A) to (C). For b = ρ′υ′ − ρυ we
have

(142) b = (ρ′ − ρ)υ + ρ′(υ′ − υ) and ρυ + b = ρ′υ + ρ′(υ′ − υ);

thus

f (ρυ + b) − f (ρυ) = f (ρυ + b) − f (ρ′υ) + f (ρ′υ) − f (ρυ) =

= f (ρ′υ + ρ′(υ′ − υ)) − f (ρ′υ) + f (ρ′υ) − f (ρυ):

Hence by (135) and (142)2 we have

(143) f (ρυ + b) − f (ρυ) = f (υ + (υ′ − υ)) − f (υ):

Now assume that the functional (136) is differentiable; by differentiation of the
right-hand side of equation (143) we obtain

f (ρυ + b) − f (ρυ) =

〈
@f
@υ

(υ) | υ′ − υ

〉
+ o(|υ′ − υ|);

hence assertion (B) is true. Now, by (140) and
〈

@f
@υ

(υ) | −
〉

∈ L(VU ; Lin);

we have 〈
@f
@ξ

(ξ) | −
〉

∈ L(VW ; Lin):

Hence (138) is equivalent to (141) and (C) holds.
Assertion (A) is a consequence of (B) and (C).
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Relazione

letta ed approvata nella seduta del 14 aprile 2000, sulla Memoria di Adriano Montanaro e Diego Pigozzi,
presentata nella seduta del 24 aprile 1998 dal Socio A. Bressan, intitolata: General and physically privileged
solutions to certain symmetric systems of linear P.D.E.s with tensor functionals as unknowns.

Gli Autori caratterizzano le soluzioni generali di certi sistemi simmetrici di equazioni
alle derivate parziali aventi come incognite dei funzionali con valori ed argomenti ten-
soriali. Inoltre essi determinano tra queste soluzioni quelle fisicamente significative (in
senso opportuno). Queste forniscono le condizioni sui funzionali costitutivi di due corpi
termodinamici semplici e con memoria evanescente, necessarie e sufficienti affinché essi
siano globalmente equivalenti, ossia, brevemente, affinché si comportino allo stesso modo
in assenza di tagli; e ciò equivale, un po’ più precisamente, a questa condizione: per
questi corpi i problemi di evoluzione con gli stessi dati iniziali e al contorno, hanno le
stesse soluzioni, comunque i dati siano scelti.

Ai suddetti sistemi di equazioni si perviene, ad esempio, quando, nella termodinamica
dei continui semplici con memoria evanescente, si considerano le condizioni di bilancio
locale sui funzionali costitutivi relativi a due corpi globalmente equivalenti e si assumono
come incognite le differenze tra i funzionali costitutivi corrispondenti.

Fissato uno dei suddetti corpi, le suaccennate condizioni permettono di determinare
tutti i corpi globalmente equivalenti a quello, che siano fisicamente realizzabili o no; e
riguardo a ciò quelle condizioni hanno una certa analogia con le restrizioni (o relazioni)
che la diseguaglianza dissipativa (o secondo principio della termodinamica) implica per
le equazioni costitutive di un corpo di un prefissato tipo.

Il problema della suddetta determinazione non è mai stato considerato da altri au-
tori, nemmeno per corpi termodinamici meno complessi. La sua importanza dal punto
di vista fisico, o addirittura tecnico, risulta dal fatto che nel lavoro in corso di stampa
su Archive for Rational Mechanics and Analysis Montanaro osserva, tra l’altro, che nel
caso termoelastico (privo di memoria), due corpi termodinamici possono essere global-
mente equivalenti ma fisicamente differenti in quanto, brevemente, due loro sottocorpi
corrispondenti non siano globalmente equivalenti. I risultati della presente Memoria
costituiscono, tra l’altro, il primo passo essenziale verso l’estensione ai considerati corpi
con memoria della importante suddetta osservazione di Montanaro.

I domini dei suaccennati funzionali, coincidenti con quelli delle considerate soluzioni
qui caratterizzate, sono sottoinsiemi ovunque non densi di un certo spazio Hilbertiano
di dimensione infinita. Nella presente Memoria si dà, da un punto di vista generale,
un significato rigoroso alle derivate dei detti funzionali, senza supporli estendibili a
qualche insieme aperto; e tale estensione non sembra avere supporto fisico, almeno
in generale. Al suddetto scopo gli Autori impongono ai funzionali di soddisfare il
principio di indifferenza materiale e usano risultati di un loro precedente lavoro di
Analisi matematica.

Essendo la presente Memoria tutta di Analisi matematica, la Commissione ha rite-
nuto opportuno chiedere un giudizio tecnico al noto analista Tullio Valent, esperto in
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applicazioni di analisi funzionale ai sistemi continui. La Commissione è lieta di poter
riportare da tale giudizio quanto segue: «Il lavoro appare rigoroso dal punto di vista
matematico e formalmente corretto. Si può notare come, in esso, gli Autori hanno
saputo superare ostacoli sia di natura teorica sia di carattere tecnico. Infatti i problemi
da loro affrontati, oltre a presentare delle difficoltà già a livello di una formulazione
matematicamente rigorosa, sono piuttosto complessi e ardui da trattare, e quindi hanno
richiesto una notevole abilità tecnica».

Pertanto la Commisssione ritiene il lavoro degno di essere accolto tra le Memorie
dell’Accademia.

Giuseppe Grioli

Carlo Cercignani

Gianfranco Capriz


