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Equazioni differenziali ordinarie. — Commutators and linearizations of isochronous
centers. Nota (*) di Luisa Mazzi e Marco Sabatini, presentata dal Socio R. Conti.

Abstract. — We study isochronous centers of some classes of plane differential systems. We consider
systems with constant angular speed, both with homogeneous and nonhomogenous nonlinearities. We show
how to construct linearizations and first integrals of such systems, if a commutator is known. Commutators
are found for some classes of systems. The results obtained are used to prove the isochronicity of some
classes of centers, and to find first integrals for a class of Liénard equations with isochronous centers.

Key words: Polynomial systems; Isochronous centers; Commuting vector fields; Linearizations; First
integrals; Liénard systems.

Riassunto. — Commutatori e linearizzazioni di centri isocroni. Si studiano centri isocroni di alcune
classi di sistemi differenziali piani. Si considerano sistemi con velocità angolare costante, sia con nonlinearità
omogenee, sia con nonlinearità non omogenee. Si mostra come, a partire da un commutatore, sia possibile
costruire una linearizzazione ed un integrale primo. Si trovano commutatori per alcune classi di sistemi. I
risultati ottenuti vengono applicati per dimostrare l’isocronia di alcune classi di centri, e per trovare integrali
primi per una classe di equazioni di Liénard con centri isocroni.

Introduction

Let us consider an autonomous differential system in the plane:

(S)
{

ẋ = f (x; y)

ẏ = g (x; y);

with (x; y) ∈ U , open connected subset of R2 containing the origin O, and f; g ∈
∈ C 2(U;R). We assume that O is a critical point of (S ). O is said to be a center if
every orbit in a punctured neighbourhood of O is a nontrivial cycle. It is said to be
an isochronous center if every cycle in a punctured neighbourhood of O has the same
period. Several papers were devoted to study conditions under which the origin is a
center, or an isochronous center (see [1, 6, 12, and references therein]).

Aside from its interest in physical applications, isochronicity is strictly related to the
existence and uniqueness of solutions of some boundary value, bifurcation or perturba-
tion problems. Moreover, isochronicity has a strong relationship to stability: a periodic
solution of the central region is Liapunov stable if and only if the neighbouring periodic
solutions have the same period.

Several methods have been used in attacking the isochronicity problem. One of the
most effective consists in looking for a linearization Φ, that is a local diffeomorphism
Φ transforming (S ) into a linear center. By a classical result, every analytic system with
an isochronous center admits a linearization [8, Theorem 5.2.8]. Recently, this result

(*) Pervenuta in forma definitiva all’Accademia il 19 ottobre 1999.
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has been extended to systems of class C k having an isochronous center [18]. Looking
for a linearization requires to cope with nontrivial computational problems, but has
significant advantages, since this approach usually leads to find a first integral, that
allows to give a description of the phase portrait of (S ). Recently, Mardešić et al. [12]
found linearizations for several classes of polynomial systems.

Another method that proved to be useful in dealing with isochronous centers makes
use of commutators. Let

(S∗)
{

ẋ = r(x; y)

ẏ = s(x; y);

be a second differential system defined on U . We say that (S ) and (S∗) are transversal
at (x; y) if f (x; y)s(x; y) − g (x; y)r(x; y) �= 0. Assume that (S ) and (S∗) are transversal
at noncritical points of (S ). Let us call α(t; x; y) (resp. β(s; x; y)) the solution of (S )
(resp. S∗) such that α(0; x; y) = (x; y) (resp. β(0; x; y) = (x; y)). Consider a set
U ⊂ U , positively invariant both for α and for β. Then (S ) and (S∗) are said to
commute on U if and only if, for all s ≥ 0, t ≥ 0:

α(t;β(s; x; y)) = β(s;α(t; x; y)):

Since a system has an isochronous center if and only if it has a nontrivial commutator
[14], an approach to the isochronicity problem, alternative to linearization, consists
in looking for nontrivial commutators. Finding commutators is sometimes easier than
finding linearizations. For instance, every system of the type:

(Si) ż = iP (z)

commutes with its orthogonal system [17, §4], while its linearization is not elementary
[12, §6].

There exists a natural relationship between linearizations and commutators. If a
linearization Φ is known, then a nontrivial commutator can be easily found. In fact, Φ

takes the system (S ) into a linear system (Lc ), that has a linear commutator (Ln). The
system obtained from (Ln) by the inverse transformation Φ−1 is a commutator of (S ).
A general converse procedure does not yet exist. In fact, it is not known how to obtain
a linearization, if a nontrivial commutator is known. In this paper, we give such a
procedure for a special class of systems. We consider systems with radial nonlinearities:

(SH )
{

ẋ = −y + xH (x; y)

ẏ = x + yH (x; y);
H (0; 0) = 0;

that is, systems with constant angular speed. In fact, using polar coordinates ρ, θ, (S )
becomes: {

ρ̇ = ρH (ρ cos θ; ρ sin θ)

θ̇ = 1:

Due to such a property, for such systems it is equivalent to prove that O is a center,
and to prove that O is an isochronous center. In other words, the isochronicity problem
is equivalent to the integrability problem.
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Systems of the type (SH ) have already been considered in previous papers [3, 5, 10,
12]. Moreover, they appear in the study of the isochronicity of Liénard equation [16].
In fact, if H (x; y) does not depend on y, hence H (x; y) ≡ h(x), then (SH ) is equivalent
to the second order differential equation:

x ′′ + f (x)x ′ + g (x) = 0;

where f (x) = −2h(x) − xh′(x), g (x) = x + xh(x)2.
This paper is organized as follows.
In Section 1, we first collect some general results about couples of commuting sys-

tems. Some of them can be easily obtained from the results in [14, 15]. Theorem 1.4,
dealing with linearizations of couples of commuting systems, is new. It has been in-
dependently proved in [18]. Then we show that a system of type (SH ) having an
isochronous center always admits a commutator of type:

(SH̃)
{

ẋ = xH̃(x; y)

ẏ = yH̃(x; y):

In Section 2 we consider systems of type (SH ), where H is a nonhomogeneous
function. We show that if (SH ) commutes with a system of type:

(SK )
{

ẋ = x(1 + K (x; y))

ẏ = y(1 + K (x; y));
K (0; 0) = 0;

then the origin is an isochronous center for (SH ). Applying the results of Section 1, we
find a radial linearization, that is a linearization of the form:

(ΦE )
{

u = xE (x; y)

v = yE (x; y);

where E is a suitable scalar function. Using (ΦE ), we can give a first integral of (SH ).
In Section 2 we also find commutators, linearizations and first integrals for two

classes of systems:

- systems of the form (SH ), for which H is harmonic and subject to a supplementary
condition (see Section 2);

- systems of the form (SH ), for which H (x; y) = xσ(y), where σ(y) is an arbitrary
function of class C2. As special cases, we have:

for σ(y) ≡ const:, a class of quadratic systems considered in [10, Theorem 4];
for σ(y) = ay, a class of cubic systems studied in [13, 4, 12];
for σ(y) = ay + b, a class of cubic systems studied in [12, 3].

In Section 3 we consider systems of type (SH ), where H is a homogeneous function.
We find conditions under which a commutator of type (SK ), with K homogeneous of
the same degree of H , exists. In particular, this occurs if H is a homogeneous harmonic
function. We also give a commutator-based proof of some results obtained in [5]. For
systems with H homogeneous and polynomial, we are able to give a rational first
integral of (SH ). This allows to give a rational first integral for a system equivalent to
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the Liénard equation

x ′′ − (n + 1)x ′xn−1 + x + x2n−1 = 0:

1. Commuting vector fields

In Section 1 we recall some of the results obtained in [14, 15] concerning couples
of commuting vector fields, and we prove some new results about them. We denote by
V (x; y); W (x; y) two vector fields defined on an open subset U of the real plane, by
(SV ), (SW ) the associated systems of ordinary differential equations, and by α(t ; x;y),
β(s; x;y) their local flows. Throughout this paper we deal with vector fields and systems
of class C2, except when otherwise specified.

First of all, we recall that if α(t ; x;y) and β(s; x;y) commute, then the Lie brackets
[V; W ] of V and W vanish identically:

(1.1)





[V; W ]1 =
(
v1 @xw1 − w1 @xv1

)
+

(
v2 @yw1 − w2 @yv1

)
≡ 0

[V; W ]2 =
(
v1 @xw2 − w1 @xv2

)
+

(
v2 @yw2 − w2 @yv2

)
≡ 0 :

Conversely, if [V; W ] ≡ 0 on an open set U , then the local flows α, β commute
on every subset U of U that is invariant for both local flows. We say that W is a
commutator for V if [V; W ] ≡ 0. A commutator for V on U is nontrivial if V , W
are transversal at their noncritical points. For sake of brevity, in general we shall not
specify the set where V and W commute.

If O is a center for V , we denote by NO the largest open connected region covered
by cycles of V surrounding O. When all the cycles have the same minimal period, the
center is said to be isochronous.

Theorem 1.1. Let V have a center O. Then, V has a non trivial commutator in a
neighbourhood of O if and only if O is an isochronous center.

For a proof, see [14].
For a definition of families of rotated vector fields, quoted in next theorem, see [7].

Theorem 1.2. Let V have a critical point O and W be a nontrivial commutator of V .
Let us consider the family of rotated vector fields :

{V cos θ + W sin θ; θ ∈ [0; 2π)}:

Then there exists a unique θ∗ ∈ [0;π) such that O is a center for (SV ).

For a proof, see [15]. As a consequence, such a family has exactly two centers, one
for θ∗ ∈ [0;π), and the other one for θ∗ + π.

As a consequence of this theorem, we have the following theorem (see also [15,
Theorem 1.4 and Remark 1.4]).

Theorem 1.3. If the system

(Sv)
{

ẋ = −y + p(x; y)

ẏ = x + q(x; y)
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commutes with the system

(Sw)
{

ẋ = x + r(x; y)

ẏ = y + s(x; y);

where p; q; r; s and their first partial derivatives vanish at the origin, then V has an isochronous
center at the origin.

Proof. Let us consider the complete family of rotated vector fields of Theorem 1.2.
The corresponding differential systems are:

(S
θ)

{
ẋ = (sin θ)x − (cos θ)y + l (x; y)

ẏ = (cos θ)x + (sin θ)y + m(x; y)

where l (x; y) = p(x; y)(cos θ) + r(x; y)(sin θ), m(x; y) = q(x; y)(cos θ) + s(x; y)(sin θ)
and their first partial derivatives vanish at the origin. When θ �= 0;π, the eigenvalues
of the linear part of (S

θ) at O have real parts different from zero. Therefore the family
has its two centers at θ = 0;π.

Definition 1.1. We say that a plane differential system (S ) is Ck-linearizable
(k = 1; :::;ω) at a point z if there exists a neighbourhood Uz of z and a C k-
diffeomorphism φz : Uz → R2 that transforms (S ) into a linear system. We say that a
critical point O of (S ) is Ck-linearizable if (S ) is Ck-linearizable at O. When the order
of differentiability of φz is not specified, we consider C1-diffeomorphisms.

Theorem 1.4. Let the system:

(Sv)
{

ẋ = −y + p(x; y)

ẏ = x + q(x; y)

commute with the system:

(Sw)
{

ẋ = x + r(x; y)

ẏ = y + s(x; y);

on the open connected set U , where p; q; r; s and their first partial derivatives vanish at the
origin O ∈ U . If the map φ ∈ C1(U;R2) ∩ C2(U \ {O};R2) linearizes (Sw) at O, then φ

linearizes (Sv) at O as well.

Proof. Without loss of generality, we can assume that φ(O) = O, and that φ

transforms (Sw) into the system:

(S∗
w)

{
Ẋ = X

Ẏ = Y:

Let us denote by

(S∗
v )

{
Ẋ = aX + bY + P∗(X; Y )

Ẏ = cX + dY + Q ∗(X; Y )

the system obtained from (Sv) by applying φ. P∗; Q ∗ and their first partial derivatives
vanish at the origin. Moreover, (S∗

V ) and (S∗
W ) commute. Since (S∗

v ) and (S∗
w) are of
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class C2 but possibly at O, their Lie brackets have to vanish, but possibly at O:
{

X @X P∗ + Y @Y P∗ = P∗

X @X Q ∗ + Y @Y Q ∗ = Q ∗:

By continuity, such equalities hold also at the origin. By Euler’s theorem, P∗ and Q ∗

are homogeneous of degree 1. Their derivatives are homogeneous of degree zero, hence
they are constant along the lines through the origin, where they vanish. Hence P∗ and
Q ∗ are identically zero. This shows that the transformation considered linearizes (Sv)
as well.

In Sections 2 and 3 we shall be concerned with systems of constant angular speed.
Such systems have some special properties that make easier to find commutators and
linearizations. Next theorem shows that there exist commutators of a simple form.

Theorem 1.5. The system (SH ), of class C k , k = 2; :::;∞, has an isochronous center at
O if and only if it has a commutator of the form :

(SH̃)
{

ẋ = xH̃(x; y)

ẏ = yH̃(x; y);

of class C k , k = 2; :::;∞.

Proof. This proof is modelled on the proof of Theorem 1 in [14]. That proof
consists of two parts. A geometric one, developped in Lemma 1 of [14], where a
commutator of class C k(U ∗ \{O}; R2)∩C 0(U ∗; R2) is constructed in a neighbourhood
U ∗ of O. An analytic one, where a commutator of class C k(U ∗; R2) is constructed.
The latter has the same orbits as the former. In the proof of Lemma 1 of [14], a line
segment Σ1 is used as a section of the vector field, in order to construct the orbits of
the first commutator. The system (SH ) in polar coordinates (ρ; θ) has the form:

(Sp)
{

ρ̇ = ρH (ρ cos θ; ρ sin θ) ≡ γ(ρ; θ)

θ̇ = 1:

Hence we can take a ray contained in the x-axis, {(x; y) : x > 0; y = 0}, as a section
of the corresponding vector field. The local flow of (S ) transforms rays into rays, so
that the orbits of the first commutator are rays. Hence the first commutator has the
form: {

ρ̇ = δ(ρ cos θ; ρ sin θ)

θ̇ = 0;

for some function δ. The procedure of Theorem 1 in [14] does not change the orbits
of the commutator, hence the second commutator, of class C k in a neighbourhood of
O, has the form:

(Sc
p )

{
ρ̇ = δ̃ (ρ cos θ; ρ sin θ)

θ̇ = 0;

for some function δ̃ . This is the form of the system (SH̃) in polar coordinates.
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2. Systems with nonhomogeneous nonlinearities

We consider systems of the following type:

(SH )
{

ẋ = −y + xH (x; y) = v1

ẏ = x + yH (x; y) = v2;

with H ∈ C2(U;R), O ∈ U open connected subset of R2, containing the origin.
We assume that H (O) = 0. (SH ) has a unique critical point at O. We shall look
for sufficient conditions for O to be a center of (SH ). Since (SH ) has angular speed
identically equal to one, if O is a center, it is isochronous.

In order to apply the results of Section 1, we look for a commuting system of the
type

(SK )
{

ẋ = x + xK (x; y) = w1

ẏ = y + yK (x; y) = w2;

with K ∈ C2(U;R), K (O) = 0. By Theorem 1.3, if such a system exists, then O is
a center for (SH ). In next lemma we show that checking the commutativity condition
for such systems requires to examine only one equation.

Lemma 2.1. (SH ) and (SK ) commute if and only if :

(2.1) x
(

@yK − @xH + H @xK − K @xH
)

+y
(
−@xK − @yH + H @yK − K @yH

)
=0:

In this case, O is an isochronous center of (SH ).

Proof. The Lie brackets of (SH ) and (SK ) vanish identically if and only if:

x2
(

@yK − @xH + H @xK − K @xH
)

+ xy
(
−@xK − @yH + H @yK − K @yH

)
= 0

xy
(

@yK − @xH + H @xK − K @xH
)

+ y2
(
−@xK − @yH + H @yK − K @yH

)
= 0:

Since H and K are of class C2 , the Lie brackets vanish identically on U if and only
if (2.1) holds identically on U .

A first consequence is an existence theorem for general systems, not necessarily
polynomial. We recall that two real harmonic functions H and K are said to be
conjugate if H + iK is holomorphic and H (0; 0) = K (0; 0) = 0.

Theorem 2.1. Let H and K be conjugate harmonic functions. Then (SH ) and (SK )
commute if and only if there exists a scalar function χ such that :

(2.2) H 2(x; y) + K 2(x; y) = χ(x2 + y2):

Proof. Let (SH ) and(SK ) commute. By Cauchy-Riemann equations, formula (2.1)
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can be written as follows,

0 = x
(

@yK − @xH + H @xK − K @xH
)

+ y
(
−@xK − @yH + H @yK − K @yH

)
=

= x
(
H @xK − K @xH

)
+ y

(
H @yK − K @yH

)
=

= x
(
−H @yH − K @yK

)
+ y

(
H @xH + K @xK

)
=

=
1
2
∇(H 2 + K 2) · (y;−x):

Here, · denotes the scalar product. Since ∇(H 2 + K 2) is orthogonal to the circum-
ferences centred at the origin, the level sets of H 2 + K 2 are circumferences, and there
exists χ such that H 2(x; y) + K 2(x; y) = χ(x2 + y2).

Viceversa, if H and K are conjugate harmonic functions, and there exists a scalar
function χ such that H 2(x; y) + K 2(x; y) = χ(x2 + y2), we have,

∇(H 2 + K 2) · (y;−x) = 0

and we can read backwards the proof of the previous point, up to the commutativity
formula.

In order to find a linearization, and then a first integral of (SH ), we look for a map
that linearizes both systems. By Theorem 1.4, every map linearizing (SK ) linearizes (SH )
as well. Let us consider the linear systems:

(Lc )
{

u̇ = −v

v̇ = u;
(Ln)

{
u̇ = u

v̇ = v;

and the following couple of functions:

A(x; y) =





0 (x; y) = (0; 0)
yH − xK

(x2 + y2)(1 + K )
(x; y) �= (0; 0);

B(x; y) =





0 (x; y) = (0; 0)
−xH − yK

(x2 + y2)(1 + K )
(x; y) �= (0; 0):

Since H and K and their first partial derivatives vanish at O, A and B are continuous
in a neighbourhood V0 of O and C2 on V0\{O}. In next theorem we show that if (SH )
and (SK ) commute, then both systems admit a radial linearization. We shall use the
following elementary lemma. We denote by D(O; ε) an open disc of radius ε centerd
at O.

Lemma 2.2. Let A; B ∈ C0(D(O; ε);R) ∩ C1(D(O; ε) \ {O};R). If the differential
form Adx + Bdy is closed in D(O; ε) \ {O}, then it is exact.



commutators and linearizations of isochronous centers 89

Theorem 2.2. Let H and K be as above. If (SH ) and (SK ) commute, then there exists
an open neighbourhood V0 of O, V0 ⊂ U , and a map φE of class C1 on V0 of the form :

{
u = xE (x; y)

v = yE (x; y);

with E (x; y) > 0, such that :
(1) φE is a local diffeomorphism at the origin,
(2) φE transforms (SH ) into (Lc ) and (SK ) into (Ln).

Proof. First we show that formula (2.1) is equivalent to the existence of a map φE

satisfying (2), and we give a costructive formula to get E . Then we show that φE is a
local diffeomorphism at the origin.

A map φE transforms (SH ) into the following system:




u̇ = ẋE + x @xE ẋ + x @yE ẏ =

= (−y + xH )E + x @xE (−y + xH ) + x @yE (x + yH ) =

= −yE + xHE + x(−y @xE + x @yE ) + xH (x @xE + y @yE );

v̇ = ẏ E + y @xE ẋ + y @yE ẏ =

= (x + yH )E + y @xE (−y + xH ) + y @yE (x + yH ) =

= xE + yHE + y(−y @xE + x @yE ) + yH (x @xE + y @yE ):

Since u = xE , v = yE , the new system coincides with (Lc ) if and only if:
{

u̇ = −yE = −yE + xHE + x(−y @xE + x @yE ) + xH (x @xE + y @yE )

v̇ = xE = xE + yHE + y(−y @xE + x @yE ) + yH (x @xE + y @yE ):

For a continuous E , these equalities hold if and only if:

(2.3) HE + H (x @xE + y @yE ) − y @xE + x @yE = 0:

On the other hand, φE transforms (SK ) into the following system:




u̇ = ẋE + x @xE ẋ + x @yE ẏ =

= (x + xK )E + x @xE (x + xK ) + x @yE (y + yK ) =

= xE + xKE + x(x @xE + y @yE )(1 + K );

v̇ = ẏ E + y @xE ẋ + y @yE ẏ =

= (y + yK )E + y @xE (x + xK ) + y @yE (y + yK ) =

= yE + yKE + y(x @xE + y @yE )(1 + K ):

The new system coincides with (Ln) if and only if:
{

u̇ = xE = xE + xKE + x(x @xE + y @yE )(1 + K )

v̇ = yE = yE + yKE + y(x @xE + y @yE )(1 + K ):

As above, for a continuous E , these equalities hold if and only if:

(2.4) KE + (x @xE + y @yE )(1 + K ) = 0:
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(2.3) and (2.4) yield the system:

(2.5)
{

(−y + xH ) @xE + (x + yH ) @yE = −HE

x(1 + K ) @xE + y(1 + K ) @yE = −KE:

We can solve (2.5) as a linear system in the unknowns @xE and @yE :

(2.6)





@xE = E
yH − xK

(x2 + y2)(1 + K )
= EA

@yE = E
−xH − yK

(x2 + y2)(1 + K )
= EB:

Since we are looking for a positive E , we can set L(x; y) := log E (x; y), so that equations
(2.6) become:

(2.7)
{

@xL = A

@yL = B:

Hence, E exists if and only if the differential form Adx + Bdy is exact. By Lemma 2.2,
it is sufficient to show that Adx + Bdy is closed in a punctured neighbourhood of
the origin. It is easy to check that the closedness condition @yA = @xB holds if and
only if formula (2.1) holds. Since (SH ) and (SK ) commute, it holds and there exists L
such that dL = Adx + Bdy. The regularity properties of A and B ensure that L and
E (x; y) = exp L(x; y) are of class C2(V0 \ {O};R) ∩ C1(V0;R).

Since E is an exponential function, E (0; 0) �= 0. The jacobian matrix of φE is
invertible at the origin, since its determinant is equal to E 2(0; 0). Hence φE is a local
diffeomorphism at the origin.

We denote by (ρ; θ) the polar coordinates of the point (x; y): x = ρ cos θ, y =

= ρ sin θ. For sake of simplicity, in next corollary the function E (x; y) will be expressed
in polar coordinates, rather than in rectangular ones.

Corollary 2.1. Under the hypotheses of Theorem 2:2, the function E is given by :

E (x; y) = E (ρ cos θ; ρ sin θ) = exp
(
−
∫ ρ

0

K (r cos θ; r sin θ)
r(1 + K (r cos θ; r sin θ))

dr

)

and a first integral of (SH ) is given by :

I (x; y) = (x2 + y2)E (x; y)2 :

Proof. By Theorem 2.2, E exists, and (2.4) holds. Equation (2.4) in polar coordi-
nates becomes:

(2.8) ρ@ρE = −E
K

1 + K
:

For every θ, this linear equation can be integrated with respect to ρ:

E (ρ cos θ; ρ sin θ) = E (O) exp
(
−
∫ ρ

0

K (r cos θ; r sin θ)
r(1 + K (r cos θ; r sin θ))

dr

)
:

Choosing E (O) = 1, we get the function of the statement.
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Since u2 + v2 is a first integral of (Lc ), the function (x2 + y2)E (x; y)2 is a first
integral of (SH ).

In next corollary we consider a special class of systems, whose orbits are symmetric
with respect to the y-axis.

Corollary 2.2. Let σ ∈ C2(R;R). Then the systems :

(Σx )
{

ẋ = −y + x2σ(y)

ẏ = x + xyσ(y)
(Σy)

{
ẋ = x + xyσ(y)

ẏ = y + y2σ(y)

commute. Moreover, there exists a neighbourhood of the origin where the transformation :

(φσ)





u = x exp
(
−
∫ y

0

σ(r)
1 + rσ(r)

dr

)

v = y exp
(
−
∫ y

0

σ(r)
1 + rσ(r)

dr

)

linearizes both (Σx ) and (Σy). Moreover, the function :

I (x; y) = (x2 + y2) exp
(
−
∫ y

0

2σ(r)
1 + rσ(r)

dr

)

is a first integral of (Σx ).

Proof. (Σx ) and (Σy) are of the form (SH ) and (SK ), with H (x; y) = xσ(y),
K (x; y) = yσ(y). Elementary computations show that in this case formula (2.1) holds.
The differential form ω = Adx + Bdy of Theorem 2.2 is:

ω = Adx + Bdy = − σ(y)
1 + yσ(y)

dy:

Ω is of class C2 and closed on R2 \ {(x; y) : yσ(y) = −1}. Hence ω is exact on the
connected component of R2 \ {(x; y) : yσ(y) = −1} containing the origin, and we can
apply Theorem 2.2. Integrating (2.8) we can choose E (O) = 1, so that:

E (x; y) = exp
(
−
∫ y

0

σ(r)
1 + rσ(r)

dr

)
:

In order to find a first integral of (SH ), we take a first integral of (Lc ), u2 + v2, and
we write it as a function of x and y, obtaining the function I of the statement.

Corollary 2.2 extends previous results about cubic systems contained in [3, 12] to
systems of arbitrary degree.

In [3] systems for which H (x; y) = αx + βy + Ax2 + Bxy + Cy2 are studied. The
origin is proved to be an isochronous center if and only if:

{
A + C = 0

Aα2 + Bαβ + Cβ2 = 0:

Elementary algebraic computations show that in this case we have:

H (x; y) = (αx + βy)
[
l + m(βx − αy)

]
;
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where l and m are real numbers. Rotating the axes, the system can be taken into a
system for which H (x; y) = xσ(y) = x(l + my), so that in this case σ(y) is a polynomial
of degree 1.

In [12, §5], the same class of systems considered in [3] is studied and linearizations
are given.

3. Systems with homogeneous nonlinearities

In this section, we consider again systems of type (SH ), assuming H to be homoge-
neous. As in Section 2, we look for a commuting system of type (SK ), trying to find
conditions under which K can be taken homogeneous. In this case, the commutativity
condition becomes even simpler than (2.1).

Lemma 3.1. Let H and K be homogeneous functions of degree d . Then (SH ) and (SK )
commute if and only if

(3.1) x @yK − y @xK = dH:

Proof. By Euler’s theorem, we have:

H
(

x @xK + y @yK
)
− K

(
x @xH + y @yH

)
= HdK − KdH = 0:

Hence equation (2.1) becomes:
(

x @yK − y @xK
)
−
(

x @xH + y @yH
)

= 0:

Applying again Euler’s theorem, we obtain formula (3.1).

Theorem 3.1. Let H be a harmonic function, homogeneous of degree d . Then O is an
isochronous center of (SH ).

Proof. Let K be the conjugate harmonic function of H . By Cauchy-Riemann
equations, K is a homogeneous function of degree d . From Lemma 3.1, (SH ) and (SK )
commute if and only if

x @yK − y @xK = dH;

that is (
x @yK − y @xK

)
−
(

x @xH + y @yH
)

= 0;

or

x
(

@yK − @xH
)
− y

(
@xK + @yH

)
= 0;

that holds, by Cauchy-Riemann equations.

When H and K are homogeneous, it is not necessary for H and K to be conjugate
harmonic functions for (SH ) and (SK ) to commute. An example is given by the following
couple of systems, where H (x; y) = 2xy is harmonic, and K (x; y) = 2y2 is not:

(SH )
{

ẋ = −y + 2x2y

ẏ = x + 2xy2;
(SK )

{
ẋ = x + 2xy2

ẏ = y + 2y3:
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If H and K are homogeneous polynomials, the analysis of the commutativity con-
dition can be reduced to a problem in linear algebra.

Let us consider again system (SH ), where H is a polynomial of degree n − 1. At
first, we do not assume H to be homogeneous. We look for a polynomial commutator
(SK ), where K has degree n − 1 as well.

If we write H and K as the sum of their homogeneous polynomials Hi and Ki ,
i = 1; : : : ; n, equation (2.1) becomes:

(3.2)
(

x @yK − y @yK
)
−
(

n−1∑

i=1

iHi

)
+ H

(
n−1∑

i=1

iKi

)
− K

(
n−1∑

i=1

iHi

)
= 0:

The first two parentheses contain only terms up to degree n − 1, while the second two
contain terms from degree 2 to degree 2(n − 1). If we write:

H
n−1∑

i=1

iKi =
n−1∑

j=1

n−1∑

i=1

iHjKi;

K
n−1∑

j=1

jHj =
n−1∑

i=1

n−1∑

j=1

jHjKi;

then equation (3.2) becomes:

(3.3)
(

x @yK − y @yK
)
−
(

n−1∑

i=1

iHi

)
+

n−1∑

i;j=1

(i − j)HjKi = 0;

which is an equation of degree 2n−3, since the only term of degree 2n−2 is (n−1−n +

+ 1) Hn−1Kn−1 = 0.

If we decompose equation (3.3) into its homogeneous parts, we get 2n−3 equations:





x @yK1 − y @xK1 − H1 = 0

x @yK2 − y @xK2 − 2H2 = 0

x @yK3 − y @xK3 − 3H3 +
(
H1K2 − H2K1

)
= 0

: : : : : :

x @yKn−1 − y @xKn−1 − (n − 1)Hn−1 +
∑

i+j=n−1
i;j �=0;n−1

(j − i)HjKi = 0
∑

i+j=d
i;j �=0

(j − i)HjKi = 0; n ≤ d ≤ 2n − 3:

When H is homogeneous, such a system is much simpler. We have the following
lemma:

Lemma 3.2. If H is a homogeneous polynomial, then any polynomial K of the same degree
such that (SH ) and (SK ) commute is homogeneous as well.
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Proof. By assumption, we have H1 = H2 = · · · = Hn−2 ≡ 0, hence




x @yK1 − y @xK1 = 0

x @yK2 − y @xK2 = 0

: : : : : :

x @yKn−1 − y @xKn−1 − (n − 1)Hn−1 = 0

(2n − 2 − d )Hn−1Kd−n+1 = 0; n ≤ d ≤ 2n − 3:

The equations in the last row imply that K1 = K2 = · · · = Kn−2 ≡ 0. Hence K has to
be homogeneous of the same degree as H .

Lemma 3.2 allows us to apply Lemma 3.1, so that in order to find a commutator
of degree n for (SH ), it is sufficient to find a polynomial K solving the equation

(3.4) x @yKn−1 − y @xKn−1 − (n − 1)Hn−1 = 0:

If we set

H (x; y) = Hn−1(x; y) = an−1xn−1 + an−2xn−2y + · · · + a1xyn−2 + a0yn−1;

K (x; y) = Kn−1(x; y) = bn−1xn−1 + bn−2xn−2y + · · · + b1xyn−2 + b0yn−1;

and we write (3.4) explicitely, we get a linear system of n equations in the n unknowns
bn−1; : : : ; b0, which can be written in matrix form as:



0 −1 0 : : : 0

n − 1 0 −2 0
... 0

0 n − 2 0 −3 0
... 0

... : : :
. . .

. . .
. . .

...
... : : :

. . .
. . .

. . .
...

... : : :
. . .

. . .
. . .

...
0 : : : 2 0 −n + 1
0 : : : 0 1 0







bn−1

bn−2

bn−3
...
...
...

b1

b0




= (1 − n)




an−1

an−2

an−3
...
...
...

a1

a0




:

For sake of brevity, we write this matrix equation as:

(3.5) Ab = (1 − n)a:

It is easy to prove:

Lemma 3.3.

(i) If n is even, A has rank n.
(ii) If n is odd, A has rank n − 1.

Theorem 3.2. Let H be a homogeneous polynomial of degree n − 1. We have :
(i) if n is even, then there exists a unique homogeneous polynomial commutator of degree n.

(ii) if n is odd, and rank A = rank (A; a), then (SH ) has ∞1 homogeneous polynomial
commutators of degree n. Otherwise, (SH ) has no polynomial commutators of degree n.



commutators and linearizations of isochronous centers 95

Proof. If n is odd, A is invertible and the linear system has a unique solution.
If n is even, by Rouché-Capelli theorem the linear system has solutions if and only if

rank A = rank (A; a) = n − 1. When this is the case, the system has ∞1 solutions.

Remark 3.1. In [2, Corollary 4.2; 5, Theorem 2.1], the authors prove that, if H is
polynomial and homogeneous, then the isochronicity of the center is equivalent to:

(3.6)
∫ 2π

0
H (cos t; sin t )dt = 0:

When n is even, (3.6) always holds. When n is odd, formula (3:6) gives a linear
condition L1 on the coefficients of H . Also, when n is odd, Theorem 3.2 (ii) gives
a linear condition L2 on the coefficients of H for the existence of a homogeneous
polynomial commutator. Since the existence of a commutator is equivalent to the
isochronicity of the center, one has L1 ≡ L2. As a consequence, if H is polynomial and
homogeneous, and O is a center (hence an isochronous center) of (SH ), then Theorem
3.2 ensures the existence of a commutator (SK ) with K polynomial and homogeneous.

Remark 3.2. The coefficients of K can be found by solving the linear system (3.5).
When n is even, it is possible to determine the coefficients {bj; j = 0; :::; n − 1} by
means of a recursive procedure. In fact, (3.5) holds if and only if

(3.7)





−b1 = (n − 1)a0

(n − j)bj−1 − (j + 1)bj+1 = (n − 1)aj; j = 1; :::; n − 2

bn−2 = (n − 1)an−1:

The coefficients bj , j odd, can be computed by recurrence, by making j increase from
1 to n − 1. We obtain the following:

(3.8)





b1 = −(n − 1)a0

bj+2 =
(n − 1 − j)bj − (n − 1)aj+1

j + 2
; j odd, j = 1; :::; n − 1.

Similarly for the coefficients bj , j even, by making j decrease from n − 2 to 0. We
obtain:

(3.9)





bn−2 = (n − 1)an−1

bj−2 =
jbj + (n − 1)aj−1

n − j + 1
; j even, j = n − 2; :::; 0.

Remark 3.3. J. Devlin (personal communication) communicated us a way to find
the homogeneous polynomial K by means of an integration. The expression of equation
(3.1) in polar coordinates is:

@
θK = (n − 1)H

so that one has:

K (ρ cos θ; ρ sin θ) =

∫ θ

0
(n − 1)H (ρ cos r; ρ sin r)dr = (n − 1)ρn−1

∫ θ

0
H (cos r; sin r)dr:
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The same holds for a nonpolynomial homogeneous H , if we assume the existence of a
homogeneous K such that (SH ) and (SK ) commute.

When H and K are homogeneous and (SH ) and (SK ) commute, we can find a
simple linearization of (SH ).

Theorem 3.3. Let H and K be homogeneous of degree d . If (SH ) and (SK ) commute,
then the transformation

(φK )
{

u = x[1 + K (x; y)]−1=d

v = y[1 + K (x; y)]−1=d

linearizes (SH ). A first integral is given by :

I (x; y) =
(x2 + y2)d

(1 + K (x; y))2 :

Proof. φK is a transformation of the type given in Theorem 2.2, with E (x; y) =

= [1 + K (x; y)]−1=d . Therefore, φK linearizes (SH ) and (SK ) if [1 + K (x; y)]−1=d

satisfies equations (2.5). This follows easily from the homogeneity of H and K and from
formula (3.1). A first integral can be obtained from u2 + v2, as in the previous cases.
The first integral of the statement is (u2 + v2)d , expressed as a function of x and y.

Remark 3.4. Our technique and the one given in [12] do not necessarily lead to
the same linearization. As special cases of systems considered in Theorem 3.3, we
have systems (S2) in [12, p. 82], where H (x; y) = x , and (S∗

2 ) in [12, p. 85], where
H (x; y) = xy (in (S∗

2 ) a misprint changed the correct form of the system: ẏ should be
x(1 + y2)).

The commutator of (S2) we find by using the conjugate function of H is (SK ), with
K = y, so that the linearization provided by Theorem 2.3 coincides with the one given
in [12].

On the other hand, the commutator of system (S∗
2 ) we find in the same way is (SK ),

with K = (−x2 + y2)=2, so that we find a linearization that does not coincide with
the one given in [12]. Anyway, (S∗

2 ) commutes also with any system we get choosing
K = −µx2 + (1 − µ)y2, µ ∈ R, so that we find infinitely many distinct linearizations.
Choosing µ = 1 we get the one given in [12].

Theorem 3.3 shows that, if H is a homogeneous polynomial of degree n − 1, then
(SH ) has a rational first integral. As a consequence, the integral curves of (SH ) are
contained in algebraic curves of degree 2n − 2.

Theorem 3.3 allows also to give a rational first integral for a special class of Liénard
differential equations. Let us consider the equation

(En) x ′′ − (n + 1)x ′xn−1 + x + x2n−1 = 0:

As in [16], we can study the behaviour of its solutions by means of an equivalent
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differential system of a special form:

(Sn)
{

ẋ = −y + xn

ẏ = x + yxn−1:

This is a special case of system (SH ), with H (x; y) = xn−1. If n is an even positive inte-
ger, by Lemma 3.3, Theorem 3.2 and Remark 3.1, there exists a unique homogeneous
polynomial Kn−1(x; y) of degree n − 1 such that the system

{
ẋ = x + xKn−1(x; y)

ẏ = y + yKn−1(x; y)

commutes with (Sn). In order to determine the coefficients of Kn−1, we can apply the
procedure described in Remark 3.2. We get a homogeneous polynomial where only
even powers of x appear:

Kn−1(x; y) = (n − 1)

n−2
2∑

l=0

(n − 2)!!
(n − 2 − 2l )!!(2l + 1)!!

xn−2−2l y2l+2:

Applying Theorem 3.3 one obtains the first integral of (Sn):

In(x; y) =
(x2 + y2)(n−1)

(
1 + (n − 1)

∑ n−2
2

l=0
(n−2)!!

(n−2−2l )!!(2l+1)!! x
n−2−2l y2l+2

)2 :

Systems with homogeneous nonlinearities have been considered also in [9]. In [11],
cubic systems with rational first integrals have been studied.

Acknowledgements

This research has been performed under the auspices of the group «Equazioni differenziali ordinarie
ed applicazioni». Most of the results of this paper have been presented at the yearly meeting of the group
«Equazioni differenziali ed applicazioni», Napoli, 1996, and at the «Symposium on Planar Vector Fields»,
Lleida, 1996.

The authors would like to thank proff. R. Conti and M. Villarini for several useful conversations on
the subject of this paper, and dr. J. Devlin for a careful reading of a previous version of this paper.

References

[1] J. Chavarriga - M. Sabatini, A survey of isochronous centers. Qualitative Theory of Dynamical Systems,
1, 1999, 1-70.

[2] C. J. Christopher - J. Devlin, Isochronous centers in planar polynomial systems. SIAM Jour. Math. Anal.,
28, 1997, 162-177.

[3] C. B. Collins, Conditions for a center in a simple class of cubic systems. Diff. Int. Eq., 10, 1997, 333-356.
[4] R. Conti, On isochronous centers of cubic systems. Revue Roumaine de Mathématiques Pures et Ap-
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