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Topologia. — Cohomology rings of Artin groups. Nota di Claudia Landi, presentata (*)
dal Socio C. De Concini.

Abstract. — In this paper integer cohomology rings of Artin groups associated with exceptional groups
are determined. Computations have been carried out by using an effective method for calculation of cup
product in cellular cohomology which we introduce here. Actually, our method works in general for any
finite regular complex with identifications, the regular complex being geometrically realized by a compact
orientable manifold, possibly with boundary.

Key words: Artin group; Cup product; Regular complex; Identification; Dual block decomposition.

Riassunto. — Anelli di coomologia dei gruppi di Artin. In questo lavoro vengono determinati gli anelli di
coomologia intera dei gruppi di Artin associati ai gruppi di Coxeter eccezionali. Una presentazione per tali
anelli è ottenuta utilizzando un metodo effettivo, che introduciamo qui, per il calcolo del prodotto cup in
coomologia cellulare. In generale mostriamo che tale metodo è applicabile ad ogni complesso cellulare finito
e regolare, realizzato geometricamente da una varietà compatta e orientabile, eventualmente con bordo, su
cui agisca una famiglia di identificazioni.

1. Introduction

In this paper we determine the integer cohomology rings of Artin groups associated
with all the exceptional groups.

The study of the cohomology of Artin groups has been initiated in the seventies and
pursued further by a number of authors who have computed the integer cohomology
of braid groups for the infinite series A, C and D (see [1, 10, 11, 19]). The method
used in these works is that of constructing a triangulation of the classifying space
Y=W =

(
Cn \

⋃
H∈A H

)
=W , where W is the considered reflection group and A is the

arrangement of the complexification of mirrors.
A cell complex with identifications having the same homotopy type as Y=W has

been introduced in [16], allowing to produce an algebraic complex for the computation
of the additive structure of cohomology of Artin groups with coefficients in rank-1
local systems (hence in particular integer cohomology groups associated with all the
exceptional groups). Generalizations to any local system have been presented in [6].
For more recent developments in the investigation of cohomology of Artin groups we
refer the reader to [7, 8].

Our aim is that of computing the multiplicative structure of the integer cohomol-
ogy for the exceptional groups by using the classifying space suggested in [16]. To
this end, since the additive structure is given in terms of cellular cohomology, it would
be desirable to perform also cup products in cellular cohomology. We recall (see, e.g.,

(*) Nella seduta del 25 febbraio 2000.
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[15]) that in cellular cohomology the cup product is defined as the composition of
the cross product with the homomorphism induced by a cellular approximation to the
diagonal map. To our knowledge, in the case of arbitrary cell complexes no general
formulas are given for the calculation of a diagonal approximation (whereas for sim-
plicial complexes one can use the well known Alexander-Whitney approximation map).
Besides, also the construction of a diagonal approximation in each specific case may be
not easy. Thus a method to calculate in practice cup product in cellular cohomology is
needed.

Here we propose an effective method of computation of cup product for a particular
class of finite regular cell complexes with identifications. More precisely, let X be
a finite regular cell complex geometrically realized by a compact orientable manifold
possibly with boundary. Let F be a family of identifications acting on the cells of X .
The complex X=F is not necessarily realized by a manifold. Hence the classical method
used for manifolds, based on the intersection of dual complexes, does not apply to X=F .
However, by generalizing the standard method used for manifolds we have obtained a
technique for the computation of cup product in the cellular cohomology of X=F which
is still based on the intersection of complexes in general position. Our method leads to
a combinatorial formula for the cup product in the cellular cohomology of X=F . This
will be the subject of Section 4.

The classifying spaces of Artin groups introduced in [16] belong to the class of cell
complexes to which our formula for cup product applies. Hence in particular we are
able to compute the cohomology rings of Artin groups for all the exceptional groups.
Calculations have been carried out partly by hand, partly by the use of a computer.
The results of such computations are reported in Section 5.

We begin by recalling in Section 2 some basic facts about Artin groups and the
main results from [16] and, in Section 3, the main properties of regular cell complexes
with identifications.

2. Cohomology of Artin groups: definitions and basic results

In this section we shall introduce the spaces object of our work. For more details
about reflection groups we refer the reader to [2] and [13]. As a reference about Artin
groups, see [20].

Let (W; S ) be a Coxeter system. It is well known that it is possible to realize W
as a group generated by reflections in Rn. W acts also on the complement Y ⊆ Cn

of the complexification of the reflection hyperplanes of W . The orbit space Y=W is a
space K (π; 1) (see [9]). The fundamental group GW of Y=W is called Artin group of
type W (see, e.g., [3]).

A simple realization of a space having the same homotopy type as Y=W has been
introduced in [16]. One starts from the cell complex Q ⊆ Rn dual to the stratification
S into facets associated to the reflection hyperplanes of W . Q can be constructed by
choosing a point v(F j ) inside each j-codimensional facet F j of S and considering the
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simplexes

σ(F i0; : : : ; F ij ) def
=

{
j∑

k=0

λkv(F ik ) :
j∑

k=0

λk = 1;λk ∈ [0; 1]

}

where F ik > F ik+1 for k =0; : : :; j − 1. The j-dimensional cell ej (F̃
j ) which is dual to

F̃ j is defined as the union
⋃
σ(F 0; : : :; F j−1; F̃ j ) over all chains F 0 >: : :>F j−1 > F̃ j .

Now let us fix a chamber C0 and call v0 the vertex of Q contained in C0. Let also F0

be the system of facets contained in the closure of C0 and let Q0 be the set of cells in
Q dual to a facet of F0. It turns out that for every facet F in S there is exactly one
facet F0 ∈ F0 in the same W - orbit as F . Dually for every cell e in Q there is exactly
one cell e0 ∈ Q0 in the same W -orbit as e. The elements γ ∈ W such that γ(e0) = e
describe a left-coset of the stabilizer WF0

of the facet F0 dual to e0. There exists one
and only one γ(e) of minimal length (in the Coxeter system associated to C0) such that
γ−1

(e) (e) ∩ C0 �= ∅. Then [16, Theorem 1.4] Y=W has the same homotopy type of the
cell complex XW obtained from Q by identifying two cells e; e ′ of Q if and only if
they are in the same W -orbit, by using the homeomorphism induced by γ(e′)(γ(e))

−1.
The natural projection Q → XW will be denoted by πW .

It can be shown that when W is finite the cell complex XW is a space of type
K (GW ; 1). Thus the cohomologies of XW are by definition the cohomologies of GW .
Therefore, assuming that W is finite and essential and by using the above construction
it is possible to compute the cohomology groups of Artin groups as follows. Each cell
of XW corresponds to a cell of Q0, therefore to a facet in F0. Let H1; : : : ; Hn be
the hyperplanes of C0. Let also vi with i = 1; : : : ; n be chosen points in Hi ∩ C0.
Each facet F ∈ F0 corresponds to a unique intersection Hi1

; : : : ; Hik
, k = codim(F ),

where the Hij
are the hyperplanes containing F and i1 < i2 < · · · < ik . Therefore,

each facet F ∈ F0 corresponds to a unique subset Γ = Γ(F ) ⊆ {1; : : : ; n} = In and
card(Γ) = dim e(F ). Hence in the following e(F ) with F ∈ F0 will be also denoted by
e(Γ) with Γ = Γ(F ), while its class in XW will be denoted by e(Γ).

Let us give to the dual cell e(F ) ∈ Q0 the orientation induced by the ordering
v0; vi1

; : : : ; vik
. Next, let us give an orientation to each cell e ∈ Q by requiring that

γ(e) is orientation preserving.
Finally, let us denote the parabolic subgroup of W generated by Γ ⊆ In

∼= S by WΓ

and, given two subsets Γ and Γ′ of S such that Γ ⊆ Γ′, let us consider the subset of
W

W Γ′

Γ
def
=
{

w ∈ WΓ′ : l (sw) > l (w) ’s ∈ Γ
}

;

where l is the length function. In other words W Γ′

Γ is the set of representatives of
minimal length in the left-coset of the parabolic subgroup WΓ in WΓ′ .

Then, by identifying Γ ⊆ In with the homomorphism dual to e(Γ), one has [16]:

Theorem 1. Let (C ∗; δ∗) be the algebraic complex defined by setting

C k def
=

{∑
νΓΓ : Γ ⊆ In; card(Γ) = k; νΓ ∈ Z

}
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and

δk(Γ) def
=

∑

j∈In\Γ

(−1)σ(j;Γ)+1
∑

h∈W
Γ∪{j}
Γ

(−1)l (h)(Γ ∪ {j})

where σ(j; Γ) def
= card{i ∈ Γ : i < j}. Then H ∗(XW ;Z) ∼= H ∗(C ∗).

By using this theorem in [16] the group structure of the integer cohomology of
Artin groups for all the exceptional groups has been deduced. We report these results
in table I for later use. The first column of table I contains the considered Coxeter
group, the second column contains the integer cohomology groups for the corresponding
Artin groups and the third column contains a list of representatives for the generators of
these cohomologies. The elements of S , and hence the associated hyperplanes, are given
the ordering corresponding to the standard one used in Coxeter diagrams (see [2]).
For sake of simplicity we denote the element Γ = {i1; : : : ; ik} ⊆ In

∼= S by the
symbol i1 : : : ik .

3. Regular cell complexes: preliminaries

In this section we shall recall some standard facts about cell complexes. For more
details we refer the reader to [5, 12, 14, 17].

If a cell complex X is geometrically realized by a space |X | with skeletons |Xn|, for
n ≥ −1, then the n-cells of X , n ≥ 0, will be the components of |Xn| \ |Xn−1|.

A cell complex X with finitely many cells is said to be finite. X is called regular if
the closure of each n-cell is homeomorphic with the closed ball in Euclidean n-space.
In what follows X will always denote a finite regular cell complex.

X will be said to be oriented if all its cells have been given an orientation. If e ′ ⊆ e
are oriented cells of X , we shall denote as usual their incidence number by [e : e ′].

3.1. Dual block decomposition.

The cells of every finite regular complex X can be partially ordered according to the
relation ⊆ where e ⊆ e ′ if e is a face of e ′. Thus it is possible to construct a simplicial
complex ∆(X ) called barycentric subdivision of X , defined as follows: the vertices of
∆(X ) are the cells of X and its simplices are the finite collections of cells of X such
that the cells of each collection can be ordered by the relation ⊆. In the following we
shall denote the vertex of ∆(X ) associated with a cell ep ∈ X by bp.

It is well known that ∆(X ) can be actually realized in |X |. Therefore it makes sense
to say that a simplex of ∆(X ) is included in a cell of X .

Let us now partially order the vertices of ∆(X ) by decreasing dimension of the
associated cells of X ; this ordering produces an ordering on the vertices of each simplex
of ∆(X ).

Definition 1. For every cell e ∈ X the union of all open simplices of ∆(X ) such
that the final vertex is associated to e is called dual block to e and is denoted by De.
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Table I. – Cohomologies of Artin groups associated with exceptional groups (integer coefficients) and representatives
for their generators.

I2(2s) H1 = Z2 α1 = 1, β1 = 2
H2 = Z α2 = 12

I2(2s + 1) H1 = Z α1 = 1 + 2
H2 = 0
H1 = Z α1 = 1 + 2 + 3

H3 H2 = Z α2 = 13
H3 = Z α3 = 123
H1 = Z α1 = 1 + 2 + 3 + 4

H4 H2 = 0
H3 = Z × Z2 α3 = 123, β3 = 234
H4 = Z α4 = 1234
H1 = Z2 α1 = 1 + 2, β1 = 3 + 4

F4 H2 = Z2 α2 = 13 + 14 + 24, β2 = 23
H3 = Z2 α3 = 123, β3 = 234
H4 = Z α4 = 1234
H1 = Z α1 = 1 + 2 + 3 + 4 + 5 + 6
H2 = 0
H3 = Z2 α3 = 134 + 234 + 345 + 456 − 245

E6 H4 = Z2 α4 = 1346 + 2346 − 1456 + 1245
H5 = Z2 × Z3 α5 = 13456, β5 = 12345 + 23456
H6 = Z3 α6 = 123456
H1 = Z α1 = 1 + 2 + 3 + 4 + 5 + 6 + 7
H2 = 0
H3 = Z2 α3 = 134 + 234 + 345 + 456 − 245 + 567

E7 H4 = Z2
2 α4 = 1346 + 2346 − 1456 + 1245 + 2347 +

1347+3457−3567−1567, β4 = 2567+2457
H5 = Z2

2 × Z2
3 α5 = 12345 + 23456, β5 = 12457 + 12567 +

23567, γ5 = 23567, δ5 = 13456 + 34567
H6 = Z2 × Z2

3 × Z α6 = 123457, β6 = 123456, γ6 =
124567, δ6 = 234567

H7 = Z α7 = 1234567
H1 = Z α1 = 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8
H2 = 0
H3 = Z2 α3 = 134+234+345+256−245+567+678
H4 = Z2 α4 = 1346 + 2346 − 1456 + 1245 + 2347 +

1347 + 3457− 3567− 1567 + 1348 + 2348 +
3458 + 4568− 4678− 2678− 2567− 3678−
2458 − 2457 − 1678

E8 H5 = Z2
2 × Z3 α5 = 12345 + 23456, β5 = 12457 + 12567 +

23567 + 12458 − 14568 + 14678 + 13468 +
12678+23678+23468, γ5 = 45678−24567+
13456 + 34567

H6 = Z2 × Z2
3 α6 = 123457 + 123458 + 234568, β6 =

123456, γ6 = 134568 − 145678 + 124567
H7 = Z2

2 × Z3 × Z α7 = 2345678, β7 = 1345678, γ7 =
1234568, δ7 = 1234567

H8 = Z α8 = 12345678
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The collection of all dual blocks De with e varying in X is called block decomposition
dual to X and we shall denote it by D(X ).

Let us now assume that |X | is an orientable n-dimensional compact and connected
manifold, possibly with boundary. Let us assume that an orientation has been chosen
on |X |. The cells of X are oriented in arbitrary fashion. Then it is possible to define
an orientation on the dual blocks of X by the following rule: let ej be a j-dimensional
cell of X and Dej the dual block associated with it. Let bj; bj−1; : : : ; b0 be the
vertices of a simplicial cell σj of ∆(X ), where bj is the vertex associated to ej . Thus
σj ⊆ ej . Let bn; bn−1; : : : ; bj be the vertices of a simplicial cell τn−j in Dej . The
vertices bn; bn−1; : : : ; bj; bj−1; : : : ; b0 are those of an n-simplex ρn of ∆(X ). Thus we
can orient σj by means of the orientation of ej and ρn by means of the orientation of
|X |:σj =ξ(bj; bj−1; : : :; b0) and ρn =ζ(bn; bn−1; : : :; bj; : : :; b0) with ξ; ζ∈{+ 1;−1}.
We define the orientation of the simplex τn−j = η(bn; bn−1; : : : ; bj ) by choosing η

satisfying the relation ξη = ζ. It can be seen (see, e.g., [17]) that since |X | is a
manifold, this definition does not depend on the choice of σj and τn−j . Hence this
gives an orientation of Dej .

We recall (see, e.g.,[14]) that if the n-cells of X are given the orientation of |X | and
ej , 0 ≤ j ≤ n, is in the interior of |X |, then Dej , is oriented by the above rule so that

Dej =
∑

[en : en−1] · · · [ej+1 : ej ](bn; : : : ; bj )

where the sum is running over all the chains of the kind en ⊇ : : : ⊇ ej and bj denotes
the vertex of ∆(X ) associated with ej .

3.2. Regular complexes with identifications.

From a finite regular complex X one can realize a new cell complex with a different
underlying space by identifying the faces of X (see, e.g., [5]).

Definition 2. A family F of identifications on X is a collection of homeomorphisms
between the closed cells of X satisfying the following properties:

i) For every f : ej → e ′
j ∈ F , if ei is a face of ej , then f|ei

carries ei onto a closed face
of e ′

j of the same dimension.
ii) For each e ∈ X the identity homeomorphism e → e lies in F .

iii) For each f ∈ F , f −1 is in F .
iv) If f : ei → e ′

i and g : e ′
i → e ′′

i are in F then g ◦ f is in F .
v) If f : e → e is in F , f is the identity homeomorphism.

vi) If f : ei → e ′
i is in F and ej ⊆ ei then f|ej

is in F .

The family F determines an equivalence relation for points of |X |: x ∼ y if a map
in F carries x to y. We shall denote by |X=F | the space |X | quotiented by the relation
∼ and by p : |X | −→ |X=F | the natural projection. The space |X=F | with the skeletons
p(|Xn|), n ≥ 0 form a complex, in general not regular, that we shall denote by X=F .
For every e ∈ X we shall denote by e the cell p(e) ∈ X=F .

If the cells of X have been oriented then it is possible to define incidence relations
for the cells of X=F in such a way that, denoting by p# the natural homomorphism
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C∗(X;Z) → C∗(X=F;Z), p#@ = @p#. Indeed, it is sufficient to set for every e; e ′ ∈ X=F ,
[e : e ′] =

∑
e′∈e′ [e : e ′], where e is any cell in e.

Therefore, in the sequel we shall always assume that if a cell complex is obtained
by means of identifications, p# commutes with @.

3.3. Subdivision of a regular cell complex.

The barycentric subdivision is not the only way in which the space underlying a
regular cell complex can be triangulated coherently with its cellular structure. Let us
give a more general definition of subdivision.

Definition 3. We shall say that a simplicial complex T̃ (X ) is a subdivision of a finite
regular cell complex X if for every sub-complex Y of X there exists a sub-complex T̃ (Y )
of T̃ (X ) that can be realized in |Y |.

In particular, T̃ (X ) can be realized in |X |.
If X is oriented then, for every oriented cell e ∈ X , we can give the simplices of

T̃ (e) of maximal dimension the orientation induced from that of e. This way it remains
defined a homomorphism T̃ : C∗(X;Z) → C∗(T̃ (X );Z) which, for every p ≥ 0, takes
a p-cell ep ∈ X into the formal sum of all the p-simplices of T̃ (X ) contained in ep.

Definition 4. Let T̃ (X ) be a subdivision of X and let F be a family of identifications
on X . We shall say that T̃ (X ) is F -equivariant if for every e ∈ X and every f : e → f (e)
in F it holds that whenever σ ∈ T̃ (X ) and σ ⊆ e, f|σ(σ) ∈ T̃ (X ).

Given a family F of identification on a complex X and an F -equivariant subdivision
T̃ (X ), F induces a family of identifications on T̃ (X ), still denoted by F , given by the
restrictions of every f : e → e ′ ∈ F to the closure of each simplex of T̃ (e). Therefore,
from an F -equivariant subdivision of X , one obtains a new complex with identifications
T̃ (X )=F realized in |X=F |. Actually, T̃ (X )=F is a pseudo-triangulation of |X=F |. We
shall denote it by T (X=F ).

Let now T : C∗(X=F;Z) → C∗(T (X=F );Z) be the homomorphism obtained by
setting T (p#(e)) = p#(T̃ (e)) for every oriented e ∈ X . If T̃ commutes with the boundary
operator, since also p# does, T will pass to cohomology. It is well known that T
induces an isomorphism between the cellular cohomology rings of X=F and T (X=F )
(see, e.g., [21]).

4. Effective computation of cup product in cellular cohomology

Let X be a finite oriented regular cell complex and let F be a family of identifications
on X . Let us consider an F -equivariant subdivision of X , T̃ (X ) such that T̃ commutes
with the boundary operator. Thus we can construct the complex T (X=F ) as explained
in Section 3.3.

Let us recall that H ∗(T (X=F );Z) ∼= H ∗(X=F;Z) as rings. Nevertheless in general it
is not obvious how to construct a set of representatives of generators of the cohomology
groups of T (X=F ) from the knowledge of those of X=F . In other words it is not obvious
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how to explicitly give a chain map φT : C ∗(X=F;Z) −→ C ∗(T (X=F );Z) inducing an
isomorphism in cohomology. In the first part of this section we present a method to
construct the map φT in the particular case when X is realized by an orientable compact
manifold, possibly with boundary.

We point out that this is a major step in the direction of the computation of cup
product, which is our motivation. Indeed, if such a map φT is given, then we can
transform the generators of H ∗(X=F;Z) into those of H ∗(T (X=F );Z) so that we can
apply the well known Alexander-Whitney formula for cup product on simplicial cells.
This will be the subject of the second part of this section.

4.1. Construction of φT .

Let us now assume that X is realized by a compact n-dimensional orientable manifold
possibly with boundary. We assume that |X | has been oriented and we orient the n-cells
of X accordingly with the orientation of |X |, while all the other cells can be oriented
arbitrarily.

Definition 5. Let T̃ (X ) be a subdivision of X . We shall say that T̃ (X ) is transverse
to D(X ) if for every p-dimensional simplex σp ∈ T̃ (X ) and for every (n−q)-dimensional
cell en−q ∈ X , with 0 ≤ p; q ≤ n, the following conditions hold:

i) if Den−q ∩ σp �= ∅ then p + q ≥ n;
ii) when p + q = n, Den−q ∩ σp consists at most of a finite set of points;

iii) when p + q = n, for each x ∈ Den−q ∩ σp if x is in the interior of |X |, there
exists a neighbourhood U of x in |X | and a homeomorphism h : U → Rq × Rp

such that h(x) = 0, h(U ∩ σp) ⊆ {0} × Rp and h(U ∩ Den−q) ⊆ Rq × {0}. If
x belongs to the boundary of |X |, there exists a neighbourhood U of x in |X |
and a homeomorphism h : U → Rq

≥0 × Rp, where Rq
≥0 denotes the half-space

{(x1; : : : ; xq) ∈ Rq : xq ≥ 0}, such that h(x) = 0, h(U ∩ σp) ⊆ {0} × Rp and
h(U ∩ Den−q) ⊆ Rq

≥0 × {0}.

Remark 1. In the case when x ∈ @|X | and x ∈ σp ∩Dep, it must hold that ep ⊆ @|X |
and, by condition i), also σp ⊆ @|X |. Therefore, in such a case, transversality at x holds
if and only if we have transversality in the closed manifold @|X | between the same
simplex σp and the dual block to ep relative to the manifold @|X |.

Remark 2. It must be noticed that condition i) implies that if a q-simplex of T̃ (X )
intersects a dual block at a point, the intersection point belongs to the interior of the
considered simplex of T̃ (X ) and to no other dual block.

From now on we shall assume that T̃ (X ) is transverse to D(X ). As we have already
seen in Section 3.1, the orientation on the cells of X induces an orientation on the
blocks of D(X ). Therefore it makes sense to give a notion of intersection index between
cells of T̃ (X ) and blocks of D(X ).

Definition 6. Let σq = ξ(si0; si1; : : : ; siq ) be an oriented q-simplex in T̃ (X ) and eq

be an oriented q-cell in X such that there exists a point x ∈ Deq ∩σq . Then there exists
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a simplex τn−q = η(bn; bn−1; : : : ; bq) of Deq of dimension n − q containing x . Let
us consider the simplex ρn = ζ(bn; bn−1; : : : ; bq+1; si0; : : : ; siq ) with the orientation
induced by that of |X |. We shall define the intersection index between Deq and σq at
x , denoted (Deq · σq)x to be equal to ξηζ ∈ {+ 1;−1}.

Finally, we define the intersection index between Deq and σq , denoted (Deq · σq), by
setting (Deq · σq) =

∑
x∈Deq∩σq

(Deq · σq)x if any such x exists, (Deq · σq) = 0 otherwise.

Remark 3. Because of the transversality between T̃ and ∆, the simplex with vertices
at bn; : : : ; bq+1; si1; : : : ; siq is a non-degenerate n-dimensional simplex.

Moreover, this definition does not depend on the choice of the particular (n − q)-
simplex of Deq containing x . Indeed, let τn−q = η(bn; bn−1; : : : ; bq) be the chosen
simplex and let us consider another simplex containing x , say τ ′

n−q , which has all the
vertices in common with τn−q except for one vertex, let us say bn which is replaced by
b′

n. Then τ ′
n−q = −η(b′

n; bn−1; : : : ; bq) because τn−q and τ ′
n−q must induce the same

orientation in Deq . By choosing τn−q we obtain ρn = ζ(bn; bn−1; : : : ; bq+1; si0; : : : ; siq )
while by choosing τ ′

n−q we obtain ρ′
n = −ζ(b′

n; bn−1; : : : ; bq+1; si0; : : : ; siq ) whose sign
is also given correctly because ρn and ρ′

n induce opposite orientations in the common
(n − 1)-face. As a consequence, the choice of τ ′

n−q yields as intersection number at x
the number ξ(−η)(−ζ) = ξηζ which is the intersection number yielded by τn−q . By
repeating this procedure of replacing a simplex by a neighbourhood one still containing
x , we can get to any desired simplex containing x . In fact, given any two simplices τ ′

n−q

and τ ′′
n−q containing x , there exists a chain of neighbourhood simplices also containing

x and joining τ ′
n−q and τ ′′

n−q .
Finally, the definition does not depend on the ordering chosen for the vertices of σq .

In fact, if we swap two vertices of σq , both ξ and ζ change sign so that the intersection
index remains unchanged.

Let now F be a family of identifications on X and assume that T̃ (X ) and ∆(X )
are F -equivariant. Moreover let us assume that T̃ (X ) is transverse to D(X ) and that T̃
is a chain map.

Lemma 1. Let eq be a q-cell of X . Let σq be a simplicial q-cell of T̃ (X ). Then, for every
f ∈ F whose domain contains σq , it holds that

(
Deq · σq

)
=

(
Df (eq) · f (σq)

)
:

Proof. We observe that if Deq ∩ σq �= ∅, then Deq intersects the domain of f . This
implies that eq is contained in the domain of f . Thus the claim follows easily from the

F -equivariance of ∆ and T̃ .

Lemma 2. Let us assume that, for every q ≥ 0, each q-simplex of T̃ (X ) intersects ∪eq∈X Deq

at most in one point. Let eq; eq+1 ∈ X , with eq ⊆ eq+1. If there exist σq;σq+1 ∈ T̃ (X ),
with σq ⊆ σq+1, such that (Deq+1 · σq+1) �= 0 and (Deq · σq) �= 0, then

[σq+1 : σq]
(

Deq · σq

)
= [eq+1 : eq]

(
Deq+1 · σq+1

)
:
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Proof. Let us denote by x the intersection point between Deq+1 and σq+1 and by x ′

the intersection point between Deq and σq . Let η(bn; : : :; bq+1) be the (n−q−1)-simplex
of Deq+1 containing x , where the orientation is the one induced from that of Deq+1.
Let us first assume that the (n−q)-simplex of Deq containing x ′ is η′(bn; : : : ; bq+1; bq),
where the orientation is the one induced by that of Deq . It must hold η′ = [eq+1 : eq]η.

On the other hand, since σq ⊆ σq+1, if σq+1 = ξ(si0; : : : ; siq+1
), then σq =

= ξ′(si0; : : : ; ŝ ij
; : : : ; siq+1

), where the hat as usual means the omission of the cor-

responding vertex, for some j ∈ {0; : : : ; q + 1}. It holds ξ′ = (−1)j [σq+1 : σq]ξ.
Let us consider the n-simplices

ρn = ζ(bn; : : : ; bq+2; si0; : : : ; sij ; : : : ; siq+1
)

and

ρ′
n = ζ ′(bn; : : : ; bq+1; si0; : : : ; ŝ ij

; : : : ; siq+1
)

with the orientations induced by that of |X |. It is easy to see that ρn is oriented as
ζ(bn; : : : ; bq+2; bq+1; si1; : : : ; siq+1

). Hence,

ζ(−1)n−(q+1)+1 = ζ ′(−1)n−(q+1)+j+1

which yields ζ = (−1)jζ ′.

Therefore,
(

Deq+1 · σq+1

)
=

(
Deq+1 · σq+1

)
x
= ηξζ, while

(
Deq · σq

)
=

(
Deq · σq

)
x′

= η′ξ′ζ ′ = [eq+1 : eq]η(−1)j [σq+1 : σq]ξζ ′ =

= [eq+1 : eq][σq+1 : σq]ηξζ:

In general, however, x ′ does not need to belong to the simplex η′(bn; : : : ; bq+1; bq),
but it can belong to another simplex of Deq . Nevertheless, we can always subdivide
σq+1 into two smaller simplices τq+1 and τ ′

q+1 with x ∈ τq+1 and so that a proper face
of τq+1, say τq , intersects η′(bn; : : : ; bq+1; bq) ⊆ Deq at just one point x ′′ (see fig. 1).

Fig. 1.
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Let us give τq+1 and τ ′
q+1 the orientation of σq+1. Since x ′ and x ′′ belong to

different faces of τ ′
q+1, its boundary intersects Deq at x ′ and at x ′′ with opposite signs.

Hence [σq+1 : σq](Deq · σq)x′ = [τq+1 : τq](Deq · τq)x′′ . Now we can apply the above
arguments to τq+1 and obtain [τq+1 : τq](Deq · τq)x′′ = [eq+1 : eq](Deq+1 · τq+1)x =

= [eq+1 : eq](Deq+1 · σq+1).

Definition 7. Given a regular cell complex X and a family F of identifications on
X , for every cell e in X=F let us fix an element e0 ∈ e and an orientation for e0. For
every other cell e ∈ e there exists a unique f : e0 → e ∈ F . Let us equip e with the
orientation induced by that of e0 by imposing that F preserves orientations. Then we
shall say that the cells of X are oriented coherently with F .

We are now ready to define the homomorphism φT that will induce the desired
isomorphism between the cohomology groups of X=F and those of T (X=F ). It will be
sufficient to define φT on the set of homomorphisms e∗ dual to cells e ∈ X=F .

Theorem 2. Let X be a finite regular cell complex realized by an orientable compact
connected n-manifold (possibly with boundary). We assume that an orientation for |X | has
been chosen. Let F be a family of identifications defined on X and let X be oriented coherently
with F . Moreover let T̃ (X )be a simplicial subdivision of X transverse to the block decomposition
dual to X . Finally, let us assume that both ∆(X ) and T̃ (X ) are F -equivariant. For every
q = 0; : : : ; n let

φT : C q(X=F;Z) −→ C q(T (X=F );Z)

be the homomorphism defined by linearly extending the equality

〈φT (e∗
q );σq〉

def
=

∑

eq∈eq

(Deq · σq);

where eq is any q-cell in X=F , σq is any q-cell in T (X=F ) and σq is any element in σq .
Then φT is well defined and commutes with the coboundary operator.

Proof. That φT is independent of the choice of σq ∈ eq follows from Lemma 1.
So let us show that for every q-cell eq in X=F and for every (q + 1)-simplex σq+1 in
T (X=F ) it holds

〈(φT ◦ δ)(e∗
q );σq+1〉 = 〈(δ ◦ φT )(e∗

q );σq+1〉:

We have

〈(φT ◦ δ)(e∗
q );σq+1〉 =

〈
φT


 ∑

eq+1∈X=F

[eq+1 : eq]e∗
q+1


;σq+1

〉
=

=
∑

eq+1∈X=F

[eq+1 : eq]〈φT (e∗
q+1);σq+1〉 =

=
∑

eq+1∈X=F

[eq+1 : eq]
∑

eq+1∈eq+1

(Deq+1 · σq+1);
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where σq+1 is any element in σq+1. On the other hand

〈(δ ◦ φT )(e∗
q );σq+1〉 = 〈(φT (e∗

q ); @σq+1〉 =
∑

eq∈eq

(Deq · @σq+1):

Hence we must show that

(1)
∑

eq+1∈X=F

[eq+1 : eq]
∑

eq+1∈eq+1

(Deq+1 · σq+1) =
∑

eq∈eq

(Deq · @σq+1):

We can assume that T̃ (X ) satisfies the following properties:
(a) For every q ≥ 0, each σq ∈ T̃ (X ) intersects ∪eq∈X Deq at most in a point.

(b) For every q ≥ 0 and for every σq ∈ T̃ (X ), if there exists eq ∈ X such that
Deq ∩ σq �= ∅, then for every eq−1 ∈ X , with eq−1 ⊆ eq , Deq−1 ∩ @σq �= ∅.

In fact, if T̃ (X ) does not satisfy these conditions we can further subdivide it to
obtain a new simplicial complex T̃ (X )′ on |X | with the same properties as T̃ (X ) and
these new ones. If equation (1) holds for T̃ (X )′, then it holds for T̃ (X ).

Let us now consider separately two cases that exhaust the list of possibilities.
Let us first assume that σq+1 does not intersect ∪eq+1∈X Deq+1. Then the left-hand

side of equation (1) vanishes. As for its right-hand side, if (∪eq∈eq
Deq) ∩ @σq+1 = ∅,

then equation (1) is trivially verified. Otherwise, let us consider the case when @σq+1 ∩
∩ ∪eq∈eq

Deq �= ∅. It follows that there exists a cell eq ∈ eq such that @σq+1 ∩ Deq �= ∅.

Let us recall that we are assuming that σq+1 does not intersect any Deq+1 with eq+1 ∈ X .
Hence σq+1∩Deq is a 1-cell and @σq+1∩Deq is its boundary. Therefore (Deq ·@σq+1) = 0.

Let us now assume that there exists a (q + 1)-dimensional cell eq+1 ∈ X=F such
that σq+1 intersects ∪eq+1∈X Deq+1. Because of condition (a), there must exist only one

cell eq+1 ∈ X such that Deq+1 ∩ σq+1 �= ∅. Therefore equation (1) becomes

(2) [eq+1 : eq](Deq+1 · σq+1) =
∑

eq∈eq

(Deq · @σq+1):

Since Deq+1∩σq+1 �=∅ then by condition (b) for every eq ⊆ eq+1 we have Deq∩@jσq+1 �=∅,
for some j ∈ {0; 1; : : : ; q + 1}. By transversality, such a j must be unique. Hence,
by applying Lemma 2, for every eq ⊆ eq+1 it holds

(Deq · @σq+1) = [eq+1 : eq](Deq+1 · σq+1):

On the other hand, if eq �⊆ eq+1, then [eq+1 : eq] = 0. Hence,
∑

eq∈eq

(Deq · @σq+1) =
∑

eq∈eq

[eq+1 : eq](Deq+1 · σq+1) = [eq+1 : eq](Deq+1 · σq+1);

thus proving equality (2).

As a consequence of the above proposition we get that φT induces a homomorphism
H ∗(φT ) from H ∗(X=F;Z) to H ∗(T (X=F );Z).
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Lemma 3. For every e; e ′ ∈ X=F it holds that

〈φT (e∗); T e ′〉 = 〈e∗; e ′〉:

Proof. By definition of φT it holds that 〈φT (e∗); T e ′〉 =
∑

e∈e(De · T̃ e ′) for any
e ′ ∈ e ′. But since

(De · T̃ e ′) =

{
1 if e = e ′

0 otherwise

we obtain that 〈φT (e∗); T e ′〉 is equal to 1 if e = e ′ and 0 otherwise.

Proposition 1. H ∗(φT ) is the inverse of H ∗(T ) and in particular it is a ring isomorphism.

Proof. It is well known that T : C∗(X=F;Z) → C∗(T (X=F );Z) induces a ring
isomorphism H ∗(T ) which takes [α] ∈ H ∗(T (X=F );Z) to [α ◦T ] ∈ H ∗(X=F;Z) (see,
e.g., [21]). It is then sufficient to prove that H ∗(T ) ◦ H ∗(φT ) = IdH∗(X=F;Z). To this

aim, let us consider any element [
∑

k αkek∗
q ] ∈ H q(X=F;Z). Then

H q(T ) ◦ H q(φT )

([∑

k

αkek∗
q

])
=

[
φT

(∑

k

αkek∗
q

)
◦ T

]
:

We must show that
[
φT

(∑

k

αkek∗
q

)
◦ T

]
=

[∑

k

αkek∗
q

]
:

This turns out to be true because by Lemma 3 for any q-cell eq ∈ X=F we have
〈
φT

(∑

k

αkek∗
q

)
◦ T; eq

〉
=

∑

k

αk〈φT (ek∗
q ); T (eq)〉 =

∑

k

αk〈e
k∗
q ; eq〉:

4.2. Calculation of cup products.

In this section we address the problem of computing a representative for [a] ∪
∪[b] ∈ H p+q(X=F;Z), with [a] ∈ H p(X=F;Z) and [b] ∈ H q(X=F;Z), given a set of
representatives for the generators of H ∗(X=F;Z).

Since the definition of cup product in cellular cohomology is purely abstract, we
shall use the results of Section 4 to compute cup products in practice.

Let T̃ a subdivision of the cells of X into simplices which is F -equivariant and
transverse to the dual block decomposition of X . Since by Proposition 1 the map
H ∗(φT ) is the ring isomorphism inverse to H ∗(T ), it holds that

[(φT (a) ∪ φT (b)) ◦ T ] = H p+q(T )([φT (a) ∪ φT (b)]) =

= H p+q(T )
(
H p(φT )([a]) ∪ H q(φT )([b])

)
=

= H p+q(T ) ◦ H p+q(φT )([a] ∪ [b]) = [a] ∪ [b]:
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Hence (φT (a) ∪ φT (b)) ◦ T is a representative for [a] ∪ [b]. Therefore, if we are able
to compute the value of φT (a) ∪ φT (b) at T e for any (p + q)-cell e ∈ X=F , then we
actually know a representative of [a] ∪ [b].

The computation of the value of φT (a)∪φT (b) at T e will depend on the particular
subdivision T̃ chosen, and of course the choice of the most suitable T̃ will depend
on the complex X=F under study. However, in general it may be useful to take the
subdivision T̃ to be a perturbation of the barycentric subdivision of X .

When we consider a perturbed barycentric subdivision we obtain correspondingly a
perturbed dual block D̃e for every cell e of X .

Definition 8. For every pair of cells eq; er ∈ X with eq ⊆ er we shall define D|er
eq

(resp. D̃|er
eq) to be the (r − q)-chain

∑
[er : er−1] · · · [eq+1 : eq](br ; : : : ; bq)

where the sum is running over all the chains er ⊇ er−1 ⊇ · · · ⊇ eq and bj denotes the

vertex of ∆(X ) (resp. ∆̃(X )) associated with the cell ej .

We point out that D|er
(eq) is the classical intersection chain between ∆(er ) and

∆(Deq) (see, e.g., [4]). In other words it is the dual block Deq relative to the manifold
|er |.

Proposition 2. Let T̃ (X ) be a perturbation of the barycentric subdivision ∆(X ). Let us
assume that T̃ (X ) is transverse to the dual block decomposition induced by ∆(X ) and that both
T̃ (X ) and ∆(X ) are F -equivariant. Then for every ep; eq; er ∈ X=F with p + q = r , it
holds that

〈φT (e∗
p ) ∪ φT (e∗

q ); T er 〉 =
∑

ep∈ep

∑

eq∈eq

(
D|er

ep · D̃|er
eq

)

for any er ∈ er .

Proof. Let us denote the vertex of T̃ (X ) associated with a cell eq ∈ X by b̃ q . Then

T̃ (er ) =
∑

[er : er−1] · · · [e1 : e0](b̃ r ; : : : ; b̃ 0) where the sum is running over all the
chains of the kind er ⊇ : : : ⊇ e0. Hence if er ∈ er ,

〈φT (e∗
p ) ∪ φT (e∗

q ); T er 〉 = 〈φT (e∗
p ) ∪ φT (e∗

q ); p# ◦ T̃ (er )〉 =

=
∑

[er : er−1] · · · [e1 : e0]〈φT (e∗
p ) ∪ φT (e∗

q ); p#(b̃ r ; : : : ; b̃ 0)〉 =

=
∑

[er : er−1] · · · [e1 : e0]〈φT (e∗
p ); p#(b̃ r ; : : : ; b̃ q)〉·

· 〈φT (e∗
q ); p#(b̃ q; : : : ; b̃ 0)〉 =

=
〈
φT (e∗

p );
∑

[er : er−1] · · · [eq+1 : eq]p#(b̃ r ; : : : ; b̃ q)
〉
·

· 〈φT (e∗
q );

∑
[eq : eq−1] · · · [e1 : e0]p#(b̃ q; : : : ; b̃ 0)〉 =

=
〈
φT (e∗

p );
∑

[er : er−1] · · · [eq+1 : eq]p#(b̃ r ; : : : ; b̃ q)
〉
·

· 〈φT (e∗
q ); p# ◦ T̃ (eq)〉:
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But by Lemma 3 we have that 〈φT (e∗
q ); p# ◦ T̃ (eq)〉 = 0 when eq �∈ eq and it is equal to

1 otherwise. Therefore

〈φT (e∗
p ) ∪ φT (e∗

q ); er 〉 =
〈
φT (e∗

p );
∑

eq∈eq

[er : er−1] · · · [eq+1 : eq]p#(b̃ r ; : : : ; b̃ q)
〉

=

=
〈
φT (e∗

p ); p#

( ∑

eq∈eq

D̃|er
eq

)〉
=

∑

ep∈ep

∑

eq∈eq

(Dep · D̃|er
eq) =

=
∑

ep∈ep

∑

eq∈eq

(D|er
ep · D̃|er

eq):

5. Ring structure in H ∗(XW ;Z)

Our aim is now that of calculating the cohomology ring of Artin groups for all the
exceptional groups by applying the results of Section 4.

We shall assume that a finite group W generated by a set of reflections S has been
given. We shall take the regular complex X of Section 4 to be equal to the polyhedron
Q described in Section 2. Here it is useful to construct Q as the convex hull of the
orbit of v0 ∈ C0 and to choose the point v(F ), F ∈ F0, as the orthogonal projection
of v0 onto F . In this way all cells of Q become convex polyhedra in Rn. We remark
that ∆(Q ) is exactly the complex obtained by barycentric subdivision of the facets.

The family of identifications F on X will be taken to be equal to the family of
homeomorphisms {γ(e)}e∈Q described in Section 2. Therefore X=F = XW and p = πW .
It is easy to see that ∆(Q ) is F -equivariant. Moreover, for every cell e(Γ) in XW , with
Γ ⊆ In, the set ∪e∈e(Γ)De is the union of all the facets of type Γ.

In Section 5.1 we shall deal with the problem of computing cup products of the
kind ∪ : H 1(XW ;Z) ⊗ H k(XW ;Z) → H k+1(XW ;Z), for any k ≥ 0. The general case
will be treated later in Section 5.2. The reason for this dichotomy is that when the
first cohomology group is involved it is not necessary to construct the homomorphism
φT but it is sufficient to use Lemma 3 and cup products can be computed by hand.
In the general case we shall need to explicitly construct φT and therefore it will be
a more labourious task. Nevertheless, in both the cases, if [a] ∈ H p(XW ;Z) and
[b] ∈ H q(XW ;Z) we shall compute the value of (φT (a) ∪ φT (b)) ◦ T , where T is
induced by a suitable subdivision T̃ (Q ), at every (p + q)-cell of XW in order to obtain
a representative for [a]∪ [b] as explained in Section 4.2. Let us recall that by using the
results in [16] we know a list of representatives of the generators of H ∗(XW ;Z) and
the coboundary matrices δ∗ (see Section 2). Thus it is sufficient to compare (modulo
coboundaries) the representative of [a]∪[b] we have found with those contained in such
a list to obtain the expression of [a] ∪ [b] in terms of the generators of H p+q(XW ;Z).

5.1. ∪ : H 1(XW ;Z) ⊗ H k(XW ;Z) → H k+1(XW ;Z).

In order to compute cup products of the kind ∪ : H 1(XW ;Z) ⊗ H k(XW ;Z) →
→ H k+1(XW ;Z), k ≥ 0, we shall consider the following subdivision of Q , T̃ (Q ).
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We proceed by induction on the dimension of the cells of Q . The 0-cells of Q are
left unchanged. Let us assume we have already subdivided every (k − 1)-cell e(F k−1),
with F k−1 ∈ F , into simplices to form a chain T̃ e(F k−1). Then we subdivide every
k-cell of Q0, say e(Γ) with Γ = Γ(F k), F k ∈ F0, into the following sum of simplices:

T̃ e(Γ) =
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)v0hT̃ e(Γ \ {j});

where v0hT̃ e(Γ\{j}) denotes the cone from v0 onto hT̃ e(Γ\{j}). Moreover, we endow
every other k-cell e ∈ Q in the same W -orbit as e(Γ), with the subdivision induced by
γ(e). Of course T̃ can be extended by linearity on C∗(Q;Z).

T̃ (Q ) is F -equivariant by construction. Hence it induces a pseudo-triangulation
T (XW ) of XW . As an example, in fig. 2 we show T (XW ) in the case W = I2(4).

Fig. 2.

Moreover, it is always possible to slightly perturb T̃ in order to make it transverse
to D(Q ).

Let us now see that it is a chain map.

Lemma 4. For every e(Γ) ∈ Q0,

@e(Γ) =
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}

(−1)l (h)he(Γ \ {j}):

Proof. Analogous to the proof of Theorem 1 in [16].

Proposition 3. For every F k ∈ F ,

@T̃ e(F k) = T̃ @e(F k):

Proof. Because of the definition of T̃ e(F k), it will be sufficient to demonstrate the
claim for the cells in Q0, i.e. for the cells dual to facets in F0.

We shall proceed by induction on the dimension of the cells e(Γ) of Q0. The claim
is certainly true when card(Γ) = 0. Let us assume it to be true for card(Γ) = k − 1,
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with k > 0. It holds that

@T̃ e(Γ) =
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)@v0hT̃ e(Γ \ {j}) =

=
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)
(

hT̃ e(Γ \ {j})− v0@hT̃ e(Γ \ {j})
)

:

Since the inductive hypothesis applies and by recalling the formula for the boundary of
a cell of Q0 given in Lemma 4, this is equal to

∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)

(
hT̃ e(Γ \ {j})−

− v0h
∑

i∈Γ\{j}

(−1)σ(i;Γ\{j})+1
∑

g∈W
Γ\{j}
Γ\{j;i}

(−1)l (g )g T̃ e(Γ \ {j; i})

)
=

=
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)hT̃ e(Γ \ {j})−

−
∑

j∈Γ
i∈Γ\{j}

∑

h∈W Γ
Γ\{j}\{Id}

g∈W
Γ\{j}
Γ\{j;i}

(−1)σ(j;Γ)+σ(i;Γ\{j})+l (h)+l (g )v0hg T̃ e(Γ \ {j; i}):

It is easy to see that the last term is equal to

(3)

∑

j∈Γ
i∈Γ\{j}

(−1)σ(j;Γ)+σ(i;Γ\{j})
∑

h∈W Γ
Γ\{j}

g∈W
Γ\{j}
Γ\{j;i}

(−1)l (h)+l (g )v0hg T̃ e(Γ \ {j; i})−

−
∑

j∈Γ

∑

i∈Γ\{j}

(−1)σ(j;Γ)+σ(i;Γ\{j})
∑

g∈W
Γ\{j}
Γ\{j;i}

(−1)l (g )v0g T̃ e(Γ \ {j; i}):

Now, the first term of (3) is equal to 0. In fact, we observe that for every i; j ∈ Γ

with i �= j ,

(4) (−1)σ(j;Γ)+σ(i;Γ\{j}) = −(−1)σ(i;Γ)+σ(j;Γ\{i}):

Moreover

W Γ
Γ\{j} · W Γ\{j}

Γ\{j;i} = W Γ
Γ\{i} · W Γ\{i}

Γ\{j;i};

where W Γ
Γ\{j} · W Γ\{j}

Γ\{j;i} denotes the set whose elements are all the possible products

hg with h ∈ W Γ
Γ\{j} and g ∈ W Γ\{j}

Γ\{j;i}. On the other hand, the second term of (3) is
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equal to
∑

j∈Γ
i∈Γ\{j}

(−1)σ(j;Γ)+σ(i;Γ\{j})
∑

g∈W
Γ\{j}
Γ\{j;i}

(−1)l (g )v0g T̃ e(Γ \ {j; i}) =

=
∑

j∈Γ

(−1)σ(j;Γ)+1T̃ e(Γ \ {j}) +
∑

j∈Γ
i∈Γ\{j}

(−1)σ(j;Γ)+σ(i;Γ\{j})v0T̃ e(Γ \ {i; j}) =

=
∑

j∈Γ

(−1)σ(j;Γ)+1T̃ e(Γ \ {j}):

The last equality holds because of equation (4). Hence,

@T̃ e(Γ) =
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)hT̃ e(Γ \ {j}) +
∑

j∈Γ

(−1)σ(j;Γ)+1T̃ e(Γ \ {j}) =

=
∑

j∈Γ

h∈W Γ
Γ\{j}

(−1)σ(j;Γ)+1+l (h)hT̃ (e(Γ \ {j})) = T̃ (@e(Γ)):

To sum up, all the conditions to apply the results of Section 4 are satisfied.

Lemma 5. Let h = si1 · · · sir ∈ W , where sij is the element of S corresponding to the

reflection hyperplane Hij
of C0. Then the homology class of πW (v0; hv0) coincides with the

homology class of T e(i1) + · · · + T e(ir ).

Proof. Let σ =
∑r−1

j=1 πW (v0; si1 · · · sij v0; si1 · · · sij+1
v0). We obtain

@σ =
r−1∑

j=1

πW

(
(si1 · · · sij v0; si1 · · · sij+1

v0) − (v0; si1 · · · sij+1
v0) + (v0; si1 · · · sij v0)

)
=

= −πW (v0; si1 · · · sir v0) + πW (v0; si1v0) +
r−1∑

j=1

πW (si1 · · · sij v0; si1 · · · sij+1
v0) =

= −πW (v0; hv0) + πW T̃ e(i1) +
r−1∑

j=1

πW si1 · · · sij T̃ e(ij+1) =

= −πW (v0; hv0) + T e(i1) +
r−1∑

j=1

T e(ij+1):

Therefore, πW (v0; hv0) and T e(i1) + · · · + T e(ir ) differ for a boundary, which yields
the claim.

Proposition 4. Let [a] ∈ H 1(XW ;Z) and [b] ∈ H k(XW ;Z), k ≥ 0. Let Γ ⊆ In with
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card(Γ) = k + 1. Then 〈φT (a) ∪ φT (b); T e(Γ)〉 is equal to
∑

j∈Γ

(−1)σ(j;Γ)+1
∑

h∈W Γ
Γ\{j}\{Id}

(−1)l (h)
∑

i1;::: ;il (h) :

h=si1
···sil (h)

〈a; e(ir )〉〈b; e(Γ \ {j})〉:

Proof. Let ã = φT (a) and b̃ = φT (b). If we denote (−1)σ(j;Γ)+l (h)+1 by εj;Γ;h , we
have that

〈ã∪b̃ ; T e(Γ)〉 = 〈ã ∪ b̃ ;πW T̃ e(Γ)〉 =

= 〈ã ∪ b̃ ;
∑

j∈Γ

∑

h∈W Γ
Γ\{j}\{Id}

εj;Γ;hπW v0hT̃ e(Γ \ {j})〉 =

=
∑

j∈Γ
h∈W Γ

Γ\{j}\{Id}

εj;Γ;h〈ã ∪ b̃ ;πW v0h
∑

i∈Γ\{j}
g∈W

Γ\{j}
Γ\{j;i}\{Id}

εi;Γ\{j};g v0g T̃ e(Γ \ {j; i})〉 =

=
∑

j∈Γ
h∈W Γ

Γ\{j}\{Id}

∑

i∈Γ\{j}
g∈W

Γ\{j}
Γ\{j;i}\{Id}

εj;Γ;h εi;Γ\{j};g 〈ã ∪ b̃ ;πW

(
v0hv0g T̃ e(Γ \ {j; i})

)
〉 =

=
∑

j∈Γ;i∈Γ\{j}
h∈W Γ

Γ\{j}\{Id}

g∈W
Γ\{j}
Γ\{j;i}\{Id}

εj;Γ;h εi;Γ\{j};g 〈ã ;πW (v0; hv0)〉〈b̃ ;πW hv0g T̃ e(Γ \ {j; i})〉 =

=
∑

j∈Γ
h∈W Γ

Γ\{j}\{Id}

εj;Γ;h〈ã ;πW (v0; hv0)〉〈b̃ ;πW hT̃ e(Γ \ {j})〉 =

=
∑

j∈Γ
h∈W Γ

Γ\{j}\{Id}

εj;Γ;h〈ã ;πW (v0; hv0)〉〈b̃ ; T e(Γ \ {j})〉:

Let us now observe that by Lemma 3,

〈b̃ ; T e(Γ \ {j}〉 = 〈b; e(Γ \ {j})〉:

Moreover, by Lemma 5, if h = si1 · · · sil (h)
then πW (v0; hv0) is homologous to

T e(i1) + · · · + T e(il (h)). Now, since ã is a cocycle, it takes the same value at ho-
mologous chains. Therefore,

〈ã ;πW (v0; hv0)〉 = 〈ã ; T e(i1) + · · · + T e(il (h))〉:

Again, since ã =φT (a) and by Lemma 3, 〈ã ;πW (v0; hv0)〉=〈a; e(i1) + · · · + e(il (h))〉.

By means of this proposition we can compute all cup products between H 1 and H k

for any k ≥ 0 and for any reflection group.
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Example 1. We shall present such computation for the case ∪ : H 1(XH3
;Z) ⊗

⊗H 2(XH3
;Z) → H 3(XH3

;Z).
As it can be seen in table I,

H 1(XH3
;Z) ∼= Z = 〈[1 + 2 + 3]〉

and

H 2(XH3
;Z) ∼= Z = 〈[13]〉:

Since the only 3-cell is e(123) it will be sufficient to compute 〈φT (1 + 2 + 3) ∪
∪φT (13); T e(123)〉 in order to obtain a representative of [1 + 2 + 3]∪ [13]. We have
that

〈φT (1 + 2 + 3) ∪ φT (13); T e(123)〉 = (−1)σ(2;{1;2;3})+1
∑

h∈W {1;2;3}
{1;3} \{Id}

(−1)l (h)·

· 〈φT (1 + 2 + 3);πW (v0; hv0)〉 · 〈φT (13);πW hTe(1; 3)〉 =

=
∑

h∈W {1;2;3}
{1;3} \{Id}

(−1)l (h)〈φT (1 + 2 + 3);πW ((v0; hv0))〉:

Now we observe that the cocycle 1 + 2 + 3 takes value 1 at any properly oriented
1-cell of XW . Therefore,

∑

h∈W {1;2;3}
{1;3} \{Id}

(−1)l (h)〈φT (1 + 2 + 3);πW ((v0; hv0))〉 =
∑

h∈W {1;2;3}
{1;3} \{Id}

(−1)l (h)l (h):

In general, if for any part H of W we denote as usual H (q) =
∑

h∈H ql (h), it holds
that

d
dq

H (q) =
∑

h∈H

l (h)ql (h)−1 =
∑

h∈H\{Id}

l (h)ql (h)−1:

In particular, by setting q = −1, we have
∑

h∈H\{Id}

l (h)(−1)l (h) = − d
dq

H (q)|q=−1:

Let us introduce the symbol [n] to denote the q-analog qn−1
q−1 . Since H3(q) =

= [2][6][10] and A1(q) = [2] (see, e.g., [13]), we obtain

〈φT (1+2+3)∪φT (13); T e(123)〉=− d
dq

W{1;2;3}(q)

W{1;3}(q)
|q=−1

=− d
dq

[2][6][10]
[2][2] |q=−1

=−15:

We have carried out similar computations for all the exceptional groups and the
results are shown in table II together with all the products that can be easily deduced
because of bilinearity.

Unfortunately, the method we have used up to now does not allow us to compute
cup products between H p and H q with p; q > 1, for in general we are not able to
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find a suitable representative for the first p-face of T e(Γ) in terms of cells of XW .
Thus ∪ : H 2(XF4

;Z) ⊗ H 2(XF4
;Z) → H 4(XF4

;Z), ∪ : H 3(XE7
;Z) ⊗ H 3(XE7

;Z) →
→ H 6(XE7

Z) and ∪ : H 3(XE8
;Z) ⊗ H 3(XE8

;Z) → H 6(XE8
;Z) still remain to be

computed. In these cases we must explicitly compute φT (a) for a ∈ C ∗(XW ;Z).

5.2. ∪ : H p(XW ;Z) ⊗ H q(XW ;Z) → H p+q(XW ;Z).

In order to deal with the general case, let us effectively construct φT by taking as
T̃ (Q ) a perturbation of the barycentric subdivision of Q . More precisely, let us assume
that all the reflection hyperplanes have been translated by a vector v ∈ C0. This new
system of hyperplanes still realizes W as a reflection group. Let us denote it by W̃. Let
S̃ be its stratification into facets. Let us observe that, by choosing v sufficiently small,
the intersection between F̃ j ∈ S̃ and e(F j ) consists of one and only one point so that
Q is a realization of the cell complex dual to S̃ as well.

In general, not every choice of v yields transversality between T̃ (Q ) and D(Q ).
However, the following proposition is useful to locate wrong choices for v.

Proposition 5. Let F p and F q be facets in S of dimension p and q, respectively, with
p; q < n. Let F̃ q be the facet of S̃ obtained by translating F q by a vector v ∈ C0. Let
V(F p; F q) be the smallest vector space containing both F p and F q .

If dimV(F p; F q) < p + q then F p ∩ F̃ q = ∅.
If dimV(F p; F q) = p + q then F p ∩ F̃ q = ∅ if and only if v �∈ V(F p; F q).

Proof. If dimV(F p; F q) < p + q then there exists a hyperplane H containing both
F p and F q . Therefore F̃ q is contained in a hyperplane parallel to H . This hyperplane
must be different from H because v is certainly different from 0. Hence F p ∩ F̃ q = ∅.

Let us now assume that dimV(F p; F q) = p + q. Let {e1; : : : ; ep} be a basis of
the smallest vector space containing F p and let {f1; : : : ; fq} be a basis of the smallest
vector space containing F q . Then {e1; : : : ; ep; f1; : : : ; fq} is a basis of V(F p; F q).
Let {g1; : : : ; gn−p−q} be the completion of the above set to a basis of Rn.

If v ∈ V(F p; F q) then v =
∑p

i=1 hiei +
∑q

i=1 ki fi for some hi and ki . Then∑p
i=1 hiei ∈ F p ∩ F̃ q and F p ∩ F̃ q �= ∅.
Viceversa, if there exists a ∈ F p ∩ F̃ q then a =

∑p
i=1 si ei for some si ’s in R and

a = a′ + v for some a′ =
∑q

i=1 mifi ∈ F q . Hence, if v =
∑p

i=1 hiei +
∑q

i=1 ki fi +

+
∑n−p−q

i=1 li gi it must hold that mi + ki = 0 for i = 1; : : : ; q, hi = si for i = 1; : : : ; p
and li = 0 for i = 1; : : : ; n − p − q. Thus v = −

∑p
i=1 miei +

∑q
i=1 si fi that is to say

that v ∈ V(F p; F q).

In the following we shall assume that v has been chosen so as to achieve transversality
between T̃ (Q ) and D(Q ) and that it is sufficiently close to 0 so that Q realizes also
the cell complex dual to S̃ . It is easy to see that T̃ (Q ) can be continuously deformed
to make it F -equivariant while maintaining transversality.

Let now Γ1 = {i1; i2; : : : ; ip}, Γ2 = {j1; j2; : : : ; jq} and card(Γ) = p + q. We

want to compute 〈φT (Γ1) ∪ φT (Γ2); T e(Γ)〉.
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By Proposition 2 we have that

〈φT (Γ1) ∪ φT (Γ2); T e(Γ)〉 =
∑

ep∈e(Γ1)

∑

eq∈e(Γ2)

(D|e(Γ)ep · D̃|e(Γ)eq):

Thus, if either of Γ1 and Γ2 is not included in Γ, it must hold

〈φT (Γ1) ∪ φT (Γ2); T e(Γ)〉 = 0 :

So let us consider the case when Γ1; Γ2 ⊆ Γ. We observe that, by construction,⋃
ep∈e(Γ1) D|e(Γ)ep is the union of all the facets in S of type Γ1 intersected with e(Γ):

⋃

ep∈e(Γ1)

D|e(Γ)ep =
⋃

w∈W Γ
Γ1

w (F ∩ e(Γ)) ;

where F is the only facet in F0 of type Γ1. On the other hand, F is determined by
the following conditions: it belongs to the intersection of hyperplanes Hi1

∩ · · · ∩ Hip

and for every i ∈ In \ Γ1 it is on the same side of Hi as C0.
We recall that if C0 is a fixed chamber for W and if H1; : : : ; Hn are the hyperplanes

of C0, for every i = 1; : : : ; n, there exists one and only one root αi associated with Hi

and such that αi is on the same side of Hi as C0. The set {α1; : : : ;αn} is called the
simple system of roots associated with the chamber C0 (see, e.g., [2, 13]).

Therefore, if {α1; : : : ;αn} is the simple system of roots associated with the chamber
C0, where αi is associated with Hi , then F is determined by the p equalities (αj; x) = 0,

j ∈ Γ1, and by the n − p inequalities (αi; x) > 0, i ∈ In \Γ1. Moreover, its intersection
with e(Γ) is determined by adding the equations of the affine p + q-subspace of Rn

containing e(Γ). Analogous observations hold for Γ2.
All these facts lead to the following algorithm to compute φT (Γ1)∪φT (Γ2) at T e(Γ).

1. Choose a simple system of roots for W associated with C0. Let it be A =

= {α1;α2; : : : ;αn};
2. Order the roots in A according to the ordering fixed for the corresponding hyper-

planes in Salvetti’s construction;
3. Fix a vector v in the chamber corresponding to the simple system of roots such that

T̃ (Q ) is transverse to D(Q ).
4. Find a basis f1; : : : ; fn−(p+q) for the subspace

⋂
i∈Γ Hi ;

5. Form the list of the elements of W Γ
Γ1 and the list of the elements of W Γ

Γ2 (for
example, by using the results in [18]);

6. Set 〈φT (Γ1) ∪ φT (Γ2); T e(Γ)〉 = 0;
7. Pick an element w in W Γ

Γ1 and for every il ∈ Γ1, with l = 1; : : : ; p, compute
w(αil

);

8. Pick an element w′ in W Γ
Γ2 and for every jk ∈ Γ2, with k = 1; : : : ; q, compute

w′(αjk
);
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9. Consider the linear system with n equations and n unknowns

(w(αi1
); x) = 0

...

(w(αip
); x) = 0

(w′(αj1
); x) = (w′(αj1

); v)

...

(w′(αjq
); x) = (w′(αjq

); v)

(f1; x) = (f1; v0)
...

(fn−(p+q); x) = (fn−(p+q); v0)

where v0 is the vertex of Q contained in C0.
10. If the linear system in 9. has solution, say the point x0, and for every i∈Γ \Γ1 it

holds that (w(αi);x0) > 0 and for every j ∈Γ\Γ2 it holds that (w′(αj );x0−v) > 0,
then: if the determinant of the matrix associated with the linear system in 9. has
the same sign as the determinant of the matrix associated with the ordered set of
simple roots A, increase 〈φT (Γ1)∪φT (Γ2); T e(Γ)〉 by 1; otherwise decrease 〈φT (Γ1)∪
φT (Γ2); T e(Γ)〉 by 1;

11. If in W Γ
Γ2 there is another element, go to 8; else, if in W Γ

Γ1 there is another element,
go to 7; else, exit.

As an example, in fig. 3 we show, in the case W = I2(4), how to compute the cup
product 1∪2 on the cell e(12). The intersection points A; B; C; D give a contribution
equal to 1; 1; 1;−1 respectively. Therefore we obtain that this product is equal to 2,
agreeing with what we have already shown in Section 5.1.

Fig. 3.

We have implemented the above algorithm on a computer to study the cases ∪ :
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H 2(XF4
;Z) ⊗ H 2(XF4

;Z) → H 4(XF4
;Z), ∪ : H 3(XE7

;Z) ⊗ H 3(XE7
;Z) → H 6(XE7

;Z)

and ∪ : H 3(XE8
;Z) ⊗ H 3(XE8

;Z) → H 6(XE8
;Z).

In the case of F4 it turns out that β2 ∪β2 = 6α4, α2 ∪α2 = −24α4 and α2 ∪β2 = 0.
Finally, both in the case of E7 and in the case of E8 we have obtained α3 ∪ α3 = 0.

This results are reported in table II together with those already obtained in Sec-
tion 5.1.

Table II. – Cup products in the cohomologies of Artin groups for the exceptional groups (integer coefficients).

I2(2s) α1 ∪ α1 = β1 ∪ β1 = 0, α1 ∪ β1 = sα2

I2(2s + 1) α1 ∪ α1 = 0

H3 α1 ∪ α1 = 0
α1 ∪ α2 = −15α3

H4 α1 ∪ α1 = 0
α1 ∪ α3 = −45α4, α1 ∪ β3 = 0
α1 ∪ α1 = 0, β1 ∪ β1 = 0, α1 ∪ β1 = α2 + 2β2

α1 ∪ α2 = −4α3 − 2β3, α1 ∪ β2 = 2α3 + β3

F4 β1 ∪ α2 = −2α3 − 4β3, β1 ∪ β2 = α3 + 2β3

α1 ∪ α3 = −4α4, α1 ∪ β3 = 8α4, β1 ∪ α3 = −8α4, β1 ∪ β3 = 4α4

β2 ∪ β2 = 6α4, α2 ∪ α2 = −24α4, α2 ∪ β2 = 0
α1 ∪ α1 = 0
α1 ∪ α3 = α4

E6 α1 ∪ α4 = 0
α1 ∪ α5 = 0, α1 ∪ β5 = 0
α3 ∪ α3 = 0
α1 ∪ α1 = 0
α1 ∪ α3 = α4 + β4

α1 ∪ α4 = β5, α1 ∪ β4 = β5

E7 α1 ∪ α5 = α6, α1 ∪ β5 = 0, α1 ∪ γ5 = γ6, α1 ∪ δ5 = 0
α1 ∪ α6 = 0, α1 ∪ β6 = 0, α1 ∪ γ6 = 0, α1 ∪ δ6 = 63α7

α3 ∪ α3 = 0
α3 ∪ α4 = 0, α3 ∪ β4 = 0
α1 ∪ α1 = 0
α1 ∪ α3 = α4

α1 ∪ α4 = 0
E8 α1 ∪ α5 = α6, α1 ∪ β5 = 0, α1 ∪ γ5 = γ6

α1 ∪ α6 = 0, α1 ∪ β6 = γ7, α1 ∪ γ6 = 0
α1 ∪ δ7 = −120α8

α3 ∪ α3 = 0
α3 ∪ α4 = 0
α3 ∪ α5 = 0, α3 ∪ β5 = 0, α3 ∪ γ5 = 0
α4 ∪ α4 = 0
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