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Equazioni a derivate parziali. — Positive solutions for some quasilinear elliptic equations
with natural growths. Nota di Lucio Boccardo, presentata (*) dal Socio S. Spagnolo.

Abstract. — We shall prove an existence result for a class of quasilinear elliptic equations with natural
growth. The model problem is

{
−div((1 + |u|r )∇u) + |u|m−2u|∇u|2 = f in Ω

u = 0 on @Ω:

Key words: Quasilinear elliptic equations; Natural growth coefficients; Euler-Lagrange equations.

Riassunto. — Soluzioni positive per alcune equazioni ellittiche con crescite naturali. È provato un teorema
di esistenza di soluzioni per una classe di equazioni ellittiche quasi-lineari, con coefficienti a crescite naturali
(come suggerito dal Calcolo delle variazioni). Il problema modello è il seguente

{
−div((1 + |u|r )∇u) + |u|m−2u|∇u|2 = f in Ω

u = 0 su @Ω:

1. Introduction

It is well known that the minimization in W 1;2
0 (Ω) (Ω is a bounded domain in RN )

of simple functionals like

I (v) =
1
2

∫

Ω

a(x; v)|∇v|2 −
∫

Ω

f (x)v(x);

where a is a bounded, smooth function and f ∈ L2(Ω), leads to the following Euler-
Lagrange equation

(1)

{
−div(a(x; u)∇u) +

1
2

a′(x; u)|∇u|2 = f in Ω

u = 0 on @Ω

(for a direct study of the existence of bounded solutions of boundary value problems
of type (1), if f ∈ Lq(Ω); q > N

2 , see [8]). Recall that the functional I is not Gateaux-
differentiable. It is only differentiable along directions of W 1;2

0 (Ω) ∩ L∞(Ω) (see [11]).
Moreover, if we consider

J (v) =
1
2

∫

Ω

(1 + |v|m)|∇v|2 −
∫

Ω

f (x)v(x); m > 1;

(*) Nella seduta del 12 novembre 1999.
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the Euler-Lagrange equation is
{

−div((1 + |u|m)∇u) +
m
2
|u|m−2u|∇u|2 = f in Ω

u = 0 on @Ω :

Remark that the direct study of Dirichlet problems similar to the previous one, like

u ∈ W 1;2
0 (Ω) : −div((1 + |u|m)∇u) + |u|r−2u|∇u|2 = f ∈ L2(Ω)

(m > 0; r > 1) gives some difficulties, due to the fact that now the boundary value
problems may not be the Euler-Lagrange equation of some functional and that, even if
m = 0, u may be unbounded. The first difficulty is due to the fact that the principal
part of the differential operator −div((1 + |v|m)∇v) is not well defined on the whole
W 1;2

0 (Ω). The second and main one is that the lower order term |v|r−2v|∇v|2 not
only is not well defined on the whole W 1;2

0 (Ω), but, even if v ∈ L∞(Ω) ∩ W 1;2
0 (Ω),

|v|r−2v|∇v|2 does not belong to W −1;2(Ω). However, the lower order term has the
nice property that v · (|v|r−2v|∇v|2) ≥ 0; a generalization of this fact will be assumption
(6), below.

In a more general setting, we will study here the Dirichlet problem

(2) u ∈ W 1;2
0 (Ω) : −div(a(x; u)∇u) + g (x; u;∇u) = f :

On the right hand side f we assume that

(3) f ∈ L2(Ω) ;

(4) f ≥ 0 :

Moreover a(x; s) : Ω × R × RN → R, g (x; s; ξ) : Ω × R → R are functions which are
measurable with respect to x and continuous with respect to (s; ξ), such that

(5) 0 < α ≤ a(x; s) ≤ β(s) ;

(6) g (x; s; ξ) s ≥ 0 ;

(7) |g (x; s; ξ)| ≤ γ(s)(h(x) + |ξ|2) ;

where β; γ are continuous, increasing (possibly unbounded) functions of a real variable
and h(x) is a given nonnegative function in L1(Ω).

Contributions to the existence and nonexistence of solutions of (2), if the dependence
on u of the principal part is bounded, can be found in [2, 7, 6, 9, 10, 12].

We refer to [5, 6, 15] for the existence of solutions of (2) if the right hand side
belongs to L1(Ω).

Other developments and general existence results are contained in [14].
The results of this paper have been presented in [3].
The results are quite easy to prove thanks to assumption (4), but the linearity with

respect to the gradient of the principal part of the differential operator is never used.
Moreover we want to underline that we cannot expect that the presence of the term
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β(u) can have a regularizing effect on the solution, because a(x; s) is controlled by β(s)
only from above (see (5)); observe that, conversely, the assumption

(8) 0 < αβ(s) ≤ a(x; s) ≤ β(s) ;

lies that β(u)∇u ∈ L2(Ω), while, under our assumption (5), we will not even be able to
prove that β(u)∇u ∈ L1(Ω). Indeed (formally) the use of B(u) as test function (where
B(s) =

∫ s

0 β(t ) dt ) in (2) implies

c0

(∫

Ω

|B(u)|2∗
) 2

2∗

≤ α

∫

Ω

β(u)2|∇u|2 ≤
∫

Ω

f B(u) ≤ ‖f ‖
L

2N
N +2 (Ω)

‖B(u)‖
L2∗ (Ω)

:

Observe also that the stronger assumption f ∈ Lq(Ω), q > N
2 , implies thanks to (6)

that u is bounded, so that the existence of bounded solutions follows from the general
results of [8].

2. Approximation

The existence of a solution of the Dirichlet problem (2) will be proved by approxi-
mation. Our techniques will follow those of [2, 4].

Define

gn(x; s; ξ) =
g (x; s; ξ)

1 + 1
n |g (x; s; ξ)| ;

and

an(x; s) = a(x; Tn(s)) ;

where

Tn(s) =

{
s if |s| ≤ n
s n
|s| if |s| > n :

Consider the approximate Dirichlet problems

(9) un ∈ W 1;2
0 (Ω) : −div(an(x; un)∇un) + gn(x; un;∇un) = f :

Thanks to the boundedness of an(x; s) and gn(x; s; ξ), the existence of a solution
un (which is positive thanks to (4) and (6)) of the boundary value problem (9) is a
classical result of nonlinear elliptic equations (see [13]).

The assumptions (5), (6) and the use of un as test function in (9) imply the following
lemma.

Lemma 2.1. There exists a positive constant c1 such that
∫

Ω

an(x; un)∇un∇un ≤ c1 ;(10)

‖un‖
W 1;2

0 (Ω)
≤ c1

α
;(11)

∫

Ω

un gn(x; un;∇un) ≤ c1 :(12)
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Thus there exist a positive function u ∈ W 1;2
0 (Ω) and a subsequence of {un} (still

denoted by {un}) such that un converges to u weakly in W 1;2
0 (Ω) and strongly in L2(Ω).

This section is devoted to the proof of the strong convergence of un to u in W 1;2
0 (Ω).

Define

Gk(v) = v − Tk(v) :

The use of Gk(un) as test functions in (9) imply, thanks to the fact that f ∈ L2(Ω),
the following lemma.

Lemma 2.2. There exists a positive constant c2 such that

(13)
∫

{x∈Ω:un(x)≥k}
|∇un|

2 ≤ c2

∫

{x∈Ω:un(x)≥k}
| f |2 :

Now we study the behaviour of the positive part of un − Th(u).

Lemma 2.3. For any ε > 0, there exists hε such that

lim sup
n→∞

‖[un − Thε
(u)]+‖

W 1;2
0 (Ω)

≤ 2 ε;

and

‖u − Thε
(u)‖

W 1;2
0 (Ω)

≤ ε:

Proof. Since u is positive, on the subset {x ∈ Ω : k ≤ un(x) − Th(u(x))}, it is
un(x) ≥ k. Therefore
∫

Ω

|∇Gk[un − Th(u)]+|2 =

∫

{x∈Ω:k≤un(x)−Th (u(x))}
|∇[un − Th(u)]|2 ≤

≤ 2
∫

{x∈Ω:k≤un(x)}
|∇un|

2 + 2
∫

{x∈Ω:k≤un(x)}
|∇u|2 :

Thus, thanks to Lemma 2.2, we get the following inequality

(14)
∫

Ω

|∇Gk[un − Th(u)]+|2 ≤
∫

{x∈Ω:k≤un(x)}
{c2|f |

2 + |∇u|2} :

The previous inequality implies, since the measure of the set {un(x) ≥ k} tends to
zero as k tends to infinity, uniformly in n, that, if we fix ε > 0, there exists kε > 0
such that, for every n in N, and for every h > 0,

(15)
∫

Ω

|∇Gkε
[un − Th(u)]+|2 ≤ ε :

The use of Tkε
[un −Th(u)]+ (for any h > 0) as test function in (9) and the assump-

tion (6) imply that

(16)
∫

Ω

|∇Tkε
[un − Th(u)]+|2 ≤ c3

∫

Ω

f Tkε
(Gh(u)) + εn ;

for some positive constant c3, where εn → 0.
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Now we choose h
ε

such that (for n > n
ε
)

∫

Ω

|∇Tkε
[un − Thε

(u)]+|2; ‖u − Thε
(u)‖

W 1;2
0 (Ω)

≤ ε :

The fact that ‖u−Thε
(u)‖

W 1;2
0 (Ω)

≤ ε follows from the fact that u belongs to W 1;2
0 (Ω).

Now we study the behaviour of the negative part of un − Thε
(u).

Define

ϕλ(s) = seλs2; λ = λ(hε) =
γ(hε)

2

α2 :

Even if the principal part of the differential operator is unbounded with respect to
u the following lemma, proved in [2], still holds. Remark that, since u is positive,
{x ∈ Ω : un(x) − Th(u(x)) ≤ 0} = {x ∈ Ω : 0 ≤ un(x) ≤ Th(u(x))}.

Lemma 2.4. The use of ϕλ([un − Th(u)]−) as test function in (9) implies that

(17) lim
n→∞

∫

Ω

|∇[un − Th(u)]−|2 = 0 ;

for any h > 0.

Thus we have the following result.

Proposition 2.5. The use of Proposition 2:3 and Lemma 2:4 implies that the sequence
{un} converges strongly to u in W 1;2

0 (Ω).

Proof. We have

‖un − u‖
W 1;2

0 (Ω)
≤

≤ ‖[un − Th(u)]+‖
W 1;2

0 (Ω)
+ ‖[un − Th(u)]−‖

W 1;2
0 (Ω)

+ ‖Th(u) − u‖
W 1;2

0 (Ω)
:

3. Existence

We have proved that

un → u strongly in W 1;2
0 (Ω) :

Thus (again for some subsequence) we have that

(18) ∇un(x) → ∇u(x); almost everywhere in Ω.

In order to pass to the limit in (9) we need the L1 compactness of the sequence
gn(x; un;∇un) proved (see again [2]) in the following lemma, by means of Proposition
2.5 and (12).

Lemma 3.1. The sequence gn(x; un;∇un) converges in L1(Ω) to g (x; u;∇u).
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Observe that, even if we have both (11) and the fact that un converges strongly to u
in W 1;2

0 (Ω), we are not able to say that the sequence an(x; un)∇un converges in L1(Ω)
to a(x; u)∇u. So, in order to pass to limit in (9), we will use the approach of [1].

We use in (9) Tk[un − ϕ] as test function, where ϕ ∈ W 1;2
0 (Ω) ∩ L∞(Ω). We can

then pass to the limit, thanks to Proposition 2.5 and Lemma 3.1, and we obtain our
main result.

Theorem 3.2. There exists a solution u of (2) in the following sense

(19)





u ∈ W 1;2
0 (Ω); g (x; u;∇u) ∈ L1(Ω);∫

Ω

a(x; u)∇u∇Tk[u − ϕ] +

∫

Ω

g (x; u;∇u) Tk[u − ϕ] =

∫

Ω

f Tk[u − ϕ]

’ϕ ∈ W 1;2
0 (Ω) ∩ L∞(Ω); ’k > 0 :

Remark 3.3. We point out that, in the previous equality, any term is well defined:
in the second and the third integral g (x; u;∇u); f ∈ L1(Ω) and Tk[u − ϕ] ∈ L∞(Ω);
in the first ∇Tk[u−ϕ] is not zero on the subset {x ∈ Ω : ϕ(x)− k ≤ u(x) ≤ ϕ(x) + k},
that is in a subset where u (and also a(x; u)) is bounded.

We repeat (see Introduction) that under our assumption (5), we are not able to
prove that a(x; u)∇u ∈ L1(Ω), so that the usual definition of weak solution

∫

Ω

a(x; u)∇u∇ϕ +

∫

Ω

g (x; u;∇u)ϕ =

∫

Ω

f ϕ; ’ϕ ∈ W 1;2
0 (Ω) ∩ L∞(Ω) ;

does not make sense and thus the previous definition of solution is useful.

Corollary 3.4. Choosing ϕ = 0 in (19), letting k tend to infinity, and using Fatou
Lemma implies that

a(x; u)∇u∇u ∈ L1(Ω);(20)

ug (x; u;∇u) ∈ L1(Ω) :(21)

Remark 3.5. If a(x; u)∇u ∈ L2(Ω) (see Introduction and (8)), we take in (19)
ϕ = Gh(u) − ψ; ψ ∈ W 1;2

0 (Ω) ∩ L∞(Ω); and we pass to limit (for h → ∞), thanks to
Lebesgue Theorem and (20). Thus if a(x; u)∇u ∈ L2(Ω) we deduce the existence of
usual weak solutions∫

Ω

a(x; u)∇u∇ψ +

∫

Ω

g (x; u;∇u)ψ =

∫

Ω

f ψ; ’ψ ∈ W 1;2
0 (Ω) ∩ L∞(Ω) :

4. L1(Ω) right hand side

Our approach can also be adapted to the case of L1 right hand side, using some
techniques of [5], but we need a slightly stronger assumption on g (x; s; ξ).

In this section, we assume again (4), (5), (7) and the following (22), (23).
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There exist σ ≥ 0, λ > 0 such that

(22) |g (x; s; ξ)| ≥ λ|ξ|2

when |s| ≥ σ, and

(23) 0 ≤ f ∈ L1(Ω) :

Consider now the approximate Dirichlet problems

(24) un ∈ W 1;2
0 (Ω) : −div(an(x; un)∇un) + gn(x; un;∇un) = fn ;

where an(x; s); gn(x; s; ξ) are defined in Section 2 and fn is a sequence of smooth
functions converging to f in L1(Ω).

The use in (24) of the test function Tk(un) yields for any k > 0 (see [5], if necessary),
∫

Ω

|∇Tk(un)|2 ≤
∫

Ω

fn Tk(un) ≤ c4k;

k

∫

{x∈Ω:un(x)>k}
gn(x; un;∇un) ≤

∫

Ω

fn Tk(un) ≤ c4k :

In particular, the choice k = σ implies that
∫

{x∈Ω:un(x)>σ}
|∇un|

2 +

∫

{x∈Ω:un(x)>σ}
|∇un|

2 ≤ c5 :

Thus again there exist a positive function u ∈ W 1;2
0 (Ω) and a subsequence of {un}

(still denoted by {un}) such that un converges to u weakly in W 1;2
0 (Ω) and strongly in

L2(Ω).
The use of T1(Gk(un)) as test function in (24) implies that, for any k > 0,

∫

{x∈Ω:k+1≤un(x)}
gn(x; un;∇un) ≤

∫

{x∈Ω:k≤un(x)}
|f |;

so that the choice k ≥ σ gives the following lemma.

Lemma 4.1.

(25)
∫

{x∈Ω:k+1≤un(x)}
|∇un|

2 ≤
∫

{x∈Ω:k≤un(x)}
|f | :

Thanks to the use of Lemma 4.1 instead of Lemma 2.2, Lemma 2.3 still holds.
Lemma 2.4 holds even if the right hand side belongs to L1(Ω). Remark that the test
function of Lemma 2.4 is uniformly bounded in L∞(Ω) by ϕ

λ
(2h). Thus, also in

this case, the sequence {un} strongly converges to u in W 1;2
0 (Ω) and (again for some

subsequence) we have (18).
In order to pass to the limit in (24), we also need the following lemma.

Lemma 4.2. The sequence gn(x; un;∇un) converges in L1(Ω) to g (x; u;∇u).
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Proof. We prove that gn(x; un;∇un) is uniformly equiintegrable. For any measurable
subset E of Ω and for any m ∈ R+ we have
∫

E

gn(x; un;∇un) =

∫

{x∈E :0≤un(x)<m}
gn(x; un;∇un) +

∫

{x∈Ω:m≤un(x)}
gn(x; un;∇un) ≤

≤
∫

E

γ(m)[h(x) + |∇un|
2] +

∫

{x∈Ω:m≤un(x)}
|f |;

which proves the uniform equiintegrability of gn(x; un;∇un). In view of (18) we thus
have gn(x; un;∇un) → g (x; u;∇u) strongly in L1(Ω).

So it is now easy to pass to the limit in (24) to obtain that u is a solution. We
use again Tk[un − ϕ] as test function in (24), where ϕ ∈ W 1;2

0 (Ω) ∩ L∞(Ω). So it is
now easy to pass to the limit in (24) to obtain that u is a solution and we obtain the
following result.

Theorem 4.3. Assume (4), (5), (7), (22), (23). There exists a solution u of (2) in the
following sense

(26)





u ∈ W 1;2
0 (Ω); g (x; u;∇u) ∈ L1(Ω);∫

Ω

a(x; u)∇u∇Tk[u − ϕ] +

∫

Ω

g (x; u;∇u) Tk[u − ϕ] =

∫

Ω

f Tk[u − ϕ]

’ϕ ∈ W 1;2
0 (Ω) ∩ L∞(Ω); ’k > 0 :

Remark 4.4. With respect to Theorem 3.2 we cannot say that in this case
a(x; u)∇u∇u ∈ L1(Ω); nor that ug (x; u;∇u) ∈ L1(Ω):

Acknowledgements

The author would like to thank Luigi Orsina, Andrea Dall’Aglio and the students of the PhD course
of Calcolo delle Variazioni (Roma 1 University, 1996) for several useful discussions on the subject of this
paper.

This paper was presented at the Workshop «Models of Continuum Mechanics in Analysis and Engi-
neering», Technische Universität Darmstadt, October 2, 1998.

References
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