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Funzioni di variabile complessa. — Existence and regularity of solutions of the @-system
on wedges of CN . Nota di Giuseppe Zampieri, presentata (*) dal Corrisp. C. De Concini.

Abstract. — For a wedge W of CN , we introduce two conditions of weak q-pseudoconvexity, and
prove that they entail solvability of the @-system for forms of degree ≥ q + 1 with coefficients in C∞(W )
and C∞(W ) respectively. Existence and regularity for @ in W is treated by Hörmander [5, 6] (and also by
Zampieri [9, 11] in case of piecewise smooth boundaries). Regularity in W is treated by Henkin [4] (strong
q-pseudoconvexity by the method of the integral representation), Dufresnoy [3] (full pseudoconvexity),
Michel [8] (constant number of negative eigenvalues), and Zampieri [10] (more general q-pseudoconvexity
and wedge type domains). This is an announcement of our papers [10, 11]; it contains refinements both
in statements and proofs and, mainly, a parallel treatement of regularity in W and W . All our techniques
strongly rely on the method of L2 estimates by Hörmander [5, 6].

Key words: L2 estimates; Cauchy-Riemann system; C.R. structures.

Riassunto. — Esistenza e regolarità delle soluzioni del sistema @ in «wedges» di CN . Si introducono due
condizioni di q-pseudoconvessità debole per un «wedge» di CN , e si dimostra che esse sono sufficienti per
la risolubilità del sistema @ per forme di grado ≥ q + 1 a coefficienti in C∞(W ) e C∞(W ) rispettivamente.
Esistenza e regolarità in W per il @ sono trattate da Hörmander [5, 6] (e anche da Zampieri [9, 11] per
bordi C 2 a tratti). Regolarità in W è trattata da Henkin [4] (q-pseudoconvessità forte con il metodo della
rappresentazione integrale), Dufresnoy [3] (pseudoconvessità «completa»), Michel [8] (costanza del numero
di autovalori negativi) e Zampieri [10] (q-pseudoconvessità più generale e domini di tipo «wedge»). Questa
è una nota preliminare agli articoli [10, 11]; contiene miglioramenti negli enunciati e nelle dimostrazioni e,
soprattutto, una trattazione parallela della regolarità in W e W . Tutte le tecniche qui impiegate si basano
profondamente sul metodo delle stime L2 introdotto da Hörmander in [5, 6].

Let W be a wedge of CN defined, in a neighborhood of a point zo ∈ @W by
rj < 0; j = 1; : : : ; l with @r1 ∧ · · · ∧ @rl �= 0. We shall use the following notations:

Mj will denote the hypersurfaces {rj} = 0, M̂j the «faces» Mj ∩ @W , R the union

of the «wedges» {rj = 0; ri = 0 for i �= j}. @@rj (resp. @@rj |@r⊥j
) will denote the

Levi form of the function rj (resp. of the hypersurface Mj ) where @r⊥
j denotes the

plane orthogonal to @rj i.e. the complex tangent plane to Mj . We shall formulate
two different conditions of weak q-pseudoconvexity. For an orthonormal system of
(1; 0)-forms ω′ = {ω1 : : :ωq} on @W at zo whose dual tangent derivations @ω′ verify

Span{@ω′}|M̂i
⊂ T 1;0Mi ’i, which are C 0(@W ) ∩ C 2(@W \ R) with bounded first and

second derivatives, and for an orthonormal completion ω′′ (possibly different on each

(*) Nella seduta del 14 maggio 1999.



272 g. zampieri

Mi), we have

(1)
@@ri(z)(v ′′; v′) = 0; @@ri(z)(v ′′; v′) ≥ 0;

’v = (v′; v′′) ∈ @r⊥
j (= CN−1) ’ z ∈ M̂i ∩ U:

(Here {U } denotes a system of neighborhoods of zo). We shall also deal with a slight
improvement of (1):

(2) We have (1) and @@ri(z)(v′′; v′′) ≥ @@ri(z)(v′; v′) ’ z ∈ M̂i ’ |v′|=1; |v′′|=1:

Note that (1) means that Span{@ω′} is engendred by a system of eigenvectors (the first
q in case of (2)) which contains all negative ones.

Remark 1. It shall be clear from our proofs that we can allow a «thin» set R ′ of
C 0-discontinuity for the coefficients of the forms {ω′

i} i.e. a set verifying codimen-
sion@W R ′ ≥ 2:

Let us discuss our conditions (1) and (2) by means of some examples. We as-
sume that W is a half-space {r < 0} with C 4-boundary M = {r = 0}, denote by
µ1(z) ≤ µ2(z) : : : the ordered eigenvalues of the Levi form LM (z) := @@r(z)|@r(z)⊥ and
let s+(z); s−(z); s0(z) be the numbers of its positive, negative and null eigenvalues
respectively. With these notations it is clear that a sufficient condition for (2) is

(3) µq(z) < µq+1(z) and µq+1(z) ≥ 0 ’ z ∈ M:

As for (3) three many cases are given.
(a ) q = N − 1 − s+(zo) (strong q-pseudoconvexity). In this case (3) clearly holds.
(b ) q = s−(zo). The first of (3) holds but the second generally fails.
(c ) q ≡ s−(z) ’ z . Then (3) clearly holds.

We can also easily exhibit an example, in C4 in which (1) holds (for q = 2) but (2)
fails:

W = {z ∈ C4 : x1 > −|z2|
2 + x2|z3|

2}
Span{@ω′} = the projection of Span{@z2

; @z3
} on T 1;0M:

We come back to the general case of a wedge W and aim to rephrase (1) and
(2) into properties for an exhaustion function of W . We choose complex coordinates
z = x +

√
−1y in CN and represent @W as a graph x1 = h(y1; z2; z2; : : : ), W as x1 > h

and each Mi as x1 = hi . We put r = −x1 + h; δ = −r and define φ = −log δ + λ|z |2
(λ a large constant to be fixed in the following). Let S := R + Rx1

= {z ∈ W : hi =

hj for i �= j}. S is a manifold with boundary whose conormal nS at generic points
verifies

nS =
@(hi − hj )

|@(hi − hj )|

(
= J (

@r
|@r | )

)
the «jump» of

@r
|@r | between the «i and j sides of S»:

We shall deal with vectors (wJ )J ( J = (j1 : : : jk)) with alternate complex coefficients.
We also extend the forms {ω′} of (1), (2) from @W to W in a neighborhood of zo by
prescribing a constant value on the fibers of the projection W → @W z �→ z∗ along the
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x1-axis and complete to a full system of forms ω′;ω′′ in T 1;0X |W . (Here the forms
ω′′ have rank N − q and not N − 1 − q as was the case of (1), (2)). We shall denote
by φji the matrix of @@φ in the basis ω′;ω′′.

Theorem 2. (i) Let (1) hold. Then for k ≥ q + 1, we have (in a neighborhood of zo on
W ):

(4)
∑′

|K |=k−1

∑

i or j≥q+1

φjiwjK wiK ≥ λ|w|2 ’ z ∈ W \ S; ’(wJ ):

(ii) Let (2) hold. Then for k ≥ q + 1, we have :

(5)
∑′

|K |=k−1

∑

ij=1;:::N

φjiwjK wiK −
∑′

|J |=k

∑

j≤q

φjj |wJ |
2 ≥ λ|w|2 ’ z ∈ W \ S; ’(wJ ):

Proof. We begin by the proof of (ii) which is more involved. We first observe that

(6) @@r(z)|@r(z)⊥ = @@r(z∗)|@r(z∗)⊥ ’ z ∈ W;

where z �→ z∗ is the projection along Rx1
. Let λ1 ≤ λ2 ≤ : : : and µ1 ≤ µ2 ≤ : : : denote

the eigenvalues of @@φ and @@r |@r⊥ respectively. Note that

(7) @@φ = δ−1@@r + δ−2@r ∧ @r + λ d z ∧ dz :

In particular by (6), (7) the eigenvalues of @@φ(z)|@r(z)⊥ are δ−1µj (z
∗) + λ. Also, by

(7) if @τ and @ν denote the derivatives of type (1; 0) normal to (resp. parallel to) @r
on W \ S , then we have for a suitable c :

(8) @@φ ≥ δ−1@
τ
@τ r − c d zτ ∧ dzτ + λ d z ∧ dz :

It follows

(9)
∑

j=1;:::;k

λj (z) ≥ δ−1
∑

j=1;:::;k

µj (z
∗) + (λ− c)k ;

and

(10)
∑

j=1;:::;q

φjj (z) = δ−1
∑

j=1;:::;q

µj (z
∗) + λq :

In conclusion the left hand side (I) of (5) verifies (for |w| = 1)

(I ) ≥


 ∑

j=1;:::;k

λj (z) −
∑

j=1;:::;q

φjj (z)


 ≥ δ−1

∑

j=q+1;:::;k

µj (z
∗) + λ(k − q) − ck ≥

≥ λ′ (for suitable λ and for a new λ′):

(i): Let us put w′
K = (wjK )j≤q; w′′

K = (wjK )j≥q+1. Then (8) implies, on account of (6)
and (1)

(11)
∑

i or j≥q+1

φjiwjK wiK ≥ −c(|w′
K |

2 + |w′′
K |

2) + λ|w′′
K |

2:
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Observe now that any J with J = k ≥ q + 1 can be written as J = jK for some
j ≥ q + 1; hence

∑′

|K |=k−1
|w′′

K |
2 ≥ c ′|w|2. It follows that if we take summation of (11)

over K we get (4) for a new λ.

Theorem 3. (i) Let W be a wedge of CN at zo which satisfies (1). Then for any @-closed
form f of degree k ≥ q + 1 with C ∞(W ∩U )-coefficients, there is a solution u of degree k − 1
with C ∞(W ∩ U )-coefficients to the equation @u = f .

(ii) Let W satisfy (2) at zo. Then the same statement as above holds for forms with
C ∞(W ∩ U )-coefficients.

Proof of Theorem 3 (ii). We start by (ii) which is more difficult. We denote
by L2

φ(W ) (φ a real positive function) the space of square integrable functions on W

in the measure e−φ dV ( dV being the Euclidean element of volume). We denote by
|| · ||φ the norm in the above space. We denote by L2

φ(W )k the space of (0; k)-forms
f =

∑′

|J |=k

fJωJ with coefficients fJ in L2
φ(W ). (Here

∑′ denotes summation over ordered

indices, {ωj} denotes a basis of (1; 0) forms, and finally ωJ = ωj1
∧ · · · ∧ ωjk

. Also the
forms ωj ’s are supposed to fulfill all assumptions in Theorem 2 and in particular have

bounded first and second derivatives in W ∩U ). We denote by (φji) the matrix of the

Hermitian form @@φ in the chosen basis. If ψ is another real positive function, which
shall be fixed according to our future need, we shall deal with the complex of closed
densely defined operators

(12) L2
φ−2ψ(W )k−1 @→ L2

φ−ψ(W )k @→ L2
φ(W )k+1:

We denote by @
∗

the adjoint of @ and also define the operator δωj
(·) = eφ@ωj

(e−φ·).
We have

(13)

@
∗
f = −

∑′

|K |=k−1

∑

j=1;:::;N

e−ψδωj
(fjK )ωK −

∑′

|K |=k−1

∑

j=1;:::;N

e−ψfjK @ωj
ψωK + e−ψRf

@f =
∑′

|J |=k

∑

j=1;:::;N

@ωj
(fJ )ωj ∧ ωJ + Rf ;

where Rf are errors which involve products of the fJ ’s by derivatives of coefficients of
the ωj ’s. By means of (13) we then get the following estimate which generalizes [6,
(4.2.8)]

(14)

∑′

|K |=k−1

∑

ij=1;:::;N

∫

W

e−φ(δωi
(fiK )δωj

(fjK ) − @ωj
(fiK )@ωi

(fjK )) dV +
∑′

|J |=k

∑

j=1;:::;N

∫

W

e−φ

|@ωj
(fJ )|2 dV ≤ 3||@∗

f ||2φ−2ψ + 2||@f ||2φ + c ||f ||2φ + 3|||@ψ|f ||2φ;

where c depends on the sup-norm of the derivatives of the coefficients of the ωj ’s over

the support of f . Since these are bounded in W ∩U (maybe with a smaller U ′ ⊂⊂ U ),
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then there is an uniform c ’ f ∈ C ∞
c (W ∩ U )k . We have the commutation relations

(15) [δωi
; @ωj

] = @ωj
@ωi

φ +
∑

h

ch
ji @ωh

−
∑

h

ch
ij@ωh

= φji +
∑

h

ch
jiδωh

−
∑

h

ch
ij@ωh

;

for suitable functions ch
ji . We apply (15) to all terms in the first sum on the left of

(14) and to the terms with j ≤ q in the second. We obtain, if f belongs to C ∞
c (W )k :

(16)

∑′

|K |=k−1

∑

ij=1;:::;N

· +
∑′

|J |=k

∑

j=1;:::;N

· =

=


 ∑′

|K |=k−1

∑

ij=1;:::;N

∫

Ω

e−φφji fiK f jK dV −
∑′

|J |=k

∑

j≤q

∫

Ω

e−φφjj |fJ |
2 dV


 +

+


∑′

|J |=k

∑

j≤q

||δωj
fJ ||

2
φ +

∑′

|J |=k

∑

j≥q+1

||@ωj
fJ ||

2
φ


 +

+


 ∑′

|K |=k−1

∑

ij=1;:::;N

∫

S

e−φJ (@ωi
φ)nj fiK f jK dS −

∑′

|J |=k

∑

j≤q

∫

S

e−φJ (@ωj
φ)nj |fJ |

2 dS


+

+ Error ;

where the error term has the estimate

(17) |Error| ≤


∑′

|J |=k

∑

j≤q

||δωj
fJ ||

2 +
∑′

|J |=k

∑

j≥q+1

||@ωj
fJ ||

2


 + c ||f ||2φ ;

(where c depends now also on the second derivatives of the coefficients of the ωi ’s).
Note that n′ = 0 whence

∑′
|J |=k

∑
j≤q

∫
S
· dS = 0. Also, since n = J (@φ)

|J (@φ)| , then
∑

ij=1;:::;N J (@ωi
φ)nj fiK fjK is a square; hence the third term on the right of (16) is

positive (thus negligeable). Assume that φ satisfies (5) of Theorem 2 on the whole W .
Then by (16) we have the estimate:

(18)
∑′

|K |=k−1

∑

ij=1;:::;N

· +
∑′

|J |=k

∑

j=1;:::;N

· ≥ λ||f ||2φ − c ||f ||2φ :

By plugging together (14) and (18) we get with a new c

(19) λ||f ||2
φ
≤ 3||@∗

f ||2
φ−2ψ + 2||@f ||2

φ
+ c ||f ||2

φ
+ 3|||@ψ|f ||2

φ
’ f ∈ C ∞

c (W )k :

We fix now a compact subset K ⊂⊂ W , and choose ψ according to [6, Lemma 4.1.3];
(in particular we can choose ψ|K ≡ 0). This ensures density of C∞

c into L2-forms; hence
now (19) holds for L2 instead of C∞

c forms. We assume w.l.o.g. that K = {φ ≤ n};
we replace the above φ by

χ(φ) + (3 + c)|z |2;
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where χ is a positive convex function of a real argument t which satisfies:




χ(t ) ≡ 0; for t ≤ n

χ̇(t ) ≥ sup
{z :φ(z)≤t}

3(|@ψ|2 + eψ − 1)
λ

; for t ≥ n:

Under this choice of φ and ψ we conclude, for k ≥ q + 1,

(20) ||f ||2φ−ψ ≤ ||@∗
f ||2φ−2ψ + ||@f ||2φ ’ f ∈ Dk

@ ∩ Dk
@
∗;

where Dk
@ and Dk

@
∗ are the domains in L2

φ(W )k of @ and @
∗

respectively. Moreover for
any compact subset K ⊂⊂ Ω, we may choose ψ|K ≡ 0 and φ|K ≡ c |z |2 where we still
write c instead of 3 + c . Let us point out that the estimate (20), with the additional
condition φ|K ≡ c |z |2, will be the main ingredient of our proof. Let us recall that it
was obtained by assuming that φ satisfies (5) on the whole W \ S .

End of proof of Theorem 3 (ii). We come back to our wedge W which satisfies (2).
We suppose W be locally defined by −x1 + h < 0 and then set Wν = {−x1 + h < η2ν

2 }
for 0 < η < 1

2 . Let Uν (resp. U ) be the sphere with center zo and radius ρ + η2ν

2 (resp.
ρ) with ρ small. By an easy variant of Theorem 2 (ii), the functions φ := −log(−r +
η2ν

2 ) + λ|z |2 + log
(
− |z − zo|

2 + (ρ + η2ν

2 )2) will be exhaustion functions for the
domains W

ν ∩ Uν which satisfy (5) (globally). Thus (20) holds on each Wν ∩ Uν .
This easily implies that for k ≥ q + 1 and for any form f ∈ L2

c|z|2 (Wν ∩ Uν)k with

@f = 0, there exists u ∈ L2
c|z|2 (Wν ∩ Uν)k−1 such that

(21) (@u = f ; @
∗
u = 0) ||u||2c|z|2 ≤ ||f ||2c|z|2 :

We note now that

(22) {z ∈ CN : dist(z; W ) < η2ν+1} ⊂ W
ν
⊂

{
z ∈ CN : dist(z; W ) <

η2ν

2

}
;

(in a neighborhood of zo). According to [3] we can show that (21) implies, by the
aid of (22), that for k ≥ q + 1, for fν ∈ C ∞(Wν ∩ Uν)k with @fν = 0, there is
u
ν ∈ C ∞(Wν+1 ∩ Uν+1)k−1 such that

(23) (@uν = fν ; @
∗
uν = 0) ||uν ||(s+1) ≤

Ms

η2ν+1(s+1)
||fν ||(s);

(where ||uν ||(s+1) (resp. ||fν ||(s)) are the norms in the Sobolev spaces H s+1(Wν+1 ∩Uν+1)
(resp. H s(W

ν
∩ U

ν
)).

We are ready to conclude. Let f ∈ C ∞(W ∩ U1)k satisfy @f = 0. Extend f to f̃
such that

||@ f̃ ||(s) ≤ Mrsη
r2ν on W

ν
∩ U

ν
for any r; s and for suitable Mrs:

However f̃ is no more @-closed. To overcome this problem we take a solution hν on
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W
ν+1 ∩ U

ν+1 of {
@h

ν
= @f̃

||hν ||(s+1) ≤ Ms(η
2ν+1

)−s−1||@f̃ ||(s);

provided by (23). Now @( f̃ −h
ν
) = 0. We then solve on W2 the equation @g1 = f̃ −h1,

and, inductively on W
ν+2 ∩ U

ν+2:

@gν+1 = hν − hν+1;

with the estimates

||hν+1||(s+2) ≤ Ms+1(η2ν+2
)−(s+2)||hν − hν+1||(s+1) ≤ M ′

s (η2ν+2
)−2s−3Mrsη

r2ν ≤

≤ M ′
rs

1
2ν (r; ν large ):

Therefore
∑∞

ν=1 gν converges in C ∞(W ∩ U ) and solves on W ∩ U the equation:

@

(
∞∑

ν=1

gν

)
= f̃ − limνhν = f̃ :

Proof of Theorem 3 (i). We shall prove that if there is an exhaustion function φ

which satisfies (4) globally on W \ S , then an estimate of type (20) will still hold. But
in this case we shall have φ|K = c |z |2; c = cK ; i.e. c will be no more uniform on
compact subsets of W . However this suffices for C ∞(W ) regularity of @ [5, 6]. We
recall (14) and decompose the term in the left side as

∑′

K

∑

ij

· +
∑′

J

∑

j

· =
∑′

K

∑

i or j≥q+1

· + (1 − ε)


∑′

K

∑

i;j≤q

· +
∑′

J

∑

j≤q

·


 +

+ ε
∑′

K

∑

i;j≤q

· +


ε

∑′

J

∑

j≤q

· +
∑′

J

∑

j≥q+1

·


 :

We apply (15) to the first term in the right
∑′

K

∑

i or j≥q+1

· =
∑′

K

∑

i or j≥q+1

∫

W

e−φφji f jK fiK dV +

+
∑′

K

∑

i or j≥q+1

∫

S

e−φJ (@ωi
φ)nj fiK f jK dS + Error :

Note that the projection of n = J (@φ)
|J (@φ)| on the plane of Span{@ω′} is 0. Hence the

term which involves
∫

S
· is a square. On the other hand if φ satisfies (4) we have
∑′

K

∑

i or j≥q+1

∫

W

e−φφji f jK fiK dV ≥ λ||f ||2
φ

:

We remark now that (1 − ε)(·) equals ||@′∗
f ||2φ + ||@′

f ||2φ up to a term |||@ψ|f ||2φ +

Error. Also if ν is an upper bound for the |φji | for i; j ≤ q, then ε(·) ≥ −εν||f ||2φ +
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+ ε
∑′

J

∑
ij≤q

||@
ωj

fj ||
2
φ

+ Error. Collecting all together:

(λ− εν)||f ||2
φ
≤ 3||@∗

f ||2
φ−2ψ + 2||@f ||2

φ
+ ε−1c ||f ||2

φ
+ 4|||@ψ|f ||2

φ
:

We then choose ε = λ
2ν and replace φ by χ(φ) + 6|z |2 where

χ̇(t ) ≥ sup
{z :φ(z)≤t}

2
λ

(
2νc
λ

+ 4|@ψ| + 3eψ − 3
)

:

This gives the same estimate as (20) (but with no uniform control for φ). With this
estimate in hands we get existence in L2 and then gain of one derivative for solutions
of the system (@; @

∗
), in the same way as in Theorem 3 (ii). This entails existence in

C ∞.
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