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Analisi matematica. — Symmetry for solutions of semilinear elliptic equations in RN and
related conjectures. Nota di Alberto Farina, presentata (*) dal Socio E. Magenes.

Abstract. — In the first part of this Note we prove one-dimensional and radial symmetry results for
solutions of ∆u + f (u) = 0 in RN . These results are connected with two conjectures (De Giorgi, 1978
and Gibbons, 1994) about the classification of solutions of the equation ∆u + u(1 − u2) = 0 in RN : In
particular we prove a stronger version of Gibbons’ conjecture in any dimension N > 1, namely: if the set of
zeros of u is bounded with respect to one direction, say ν, then u is one-dimensional, i.e., u(x) = u0(ν · x).
In the second part we consider the reaction-convection-diffusion equations of type aij (x)@ij u + bi (x)@iu +

+ f (x; u) = 0 in RN and prove monotonicity and symmetry results which, when combined, lead to another
stronger version of Gibbons’s conjecture in any dimension.

Key words: Symmetry and monotonicity properties; Semilinear elliptic PDE; Moving planes method;
Maximum principles.

Riassunto. — Simmetria delle soluzioni di equazioni ellittiche semilineari in RN . Nella prima parte
di questa Nota si dimostrano dei risultati di simmetria unidimensionale e radiale per le soluzioni di ∆u +
+ f (u) = 0 in RN . Questi risultati sono legati a due congetture (De Giorgi, 1978 e Gibbons, 1994)
riguardanti la classificazione delle soluzioni dell’equazione ∆u + u(1 − u2) = 0 in RN : Si dimostra, in
particolare, la seguente generalizzazione della congettura di Gibbons: se N > 1 e se l’insieme degli zeri di
u è limitato nella direzione ν, allora u(x) = u0(ν · x), ovvero, u è unidimensionale. Nella seconda parte si
considerano le equazioni di reazione-convezione-diffusione del tipo aij (x)@ij u + bi (x)@iu + f (x; u) = 0 in

RN e si dimostrano dei risultati di monotonia e simmetria che, una volta combinati, conducono ad un’altra
generalizzazione della congettura di Gibbons.

1. Introduction

This Note deals with symmetry properties of the solutions of semilinear elliptic
equations in RN and is motivated by two questions concerning the scalar Ginzburg-
Landau equation:

(1.1) ∆u + u(1 − u2) = 0 on RN :

In 1978 E. De Giorgi formulated the following:

De Giorgi’s conjecture [8]. Assume N > 1 and consider a solution u ∈ C 2(RN ) of
(1:1), such that, for every x = (x1; :::; xN ) ∈ RN ,

(1.2) |u(x)| ≤ 1;
@u

@xN

(x) > 0;

(1.3) lim
xN →±∞

u(x1; :::; xN ) = ±1:

(*) Nella seduta del 16 giugno 1999.
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Then, is it true that the level sets are parallel hyperplanes ? Or, equivalently, do there exist
g ∈ C 2(R) and a = (a1; :::aN−1) ∈ RN−1, such that :

(1.4) u(x) = g (a1x1 + ::::: + aN−1xN−1 − xN )

whenever x ∈ RN ?

Later, (see [7]), G. W. Gibbons, proposed a weaker version of the above conjecture,
namely:

Gibbons’ conjecture [7]. Assume N > 1 and consider a bounded solution u of (1:1) in
C 2(RN ), such that, for every x ′ := (x1; :::; xN−1) ∈ RN−1,

(1:5) lim
xN →±∞

u(x ′; xN ) = ±1

the limits being uniform with respect to x ′.
Then, is it true that

(1:6) u(x) = tanh
(

xN − α√
2

)

for every x = (x1; :::; xN ) ∈ RN and some α ∈ R ?

De Giorgi’s conjecture was proved by L. Modica and Mortola [17] in the case N = 2
and if the level sets of u are the graphs of an equi-lipschitzian family of functions and
in any dimension N if there exists a point x ∈ RN such that |∇u(x)|2 = 1

2 (1 − u2(x))2

(see Caffarelli, Garofalo and Segala [6] and also L. Modica [16]).
In 1997, the author [11] gave a positive answer to De Giorgi’s conjecture in any

dimension provided there exists an infinite open connected cylinder Σ := ω × R, such

that u minimizes the energy
∫
Σ

[
|∇u|2

2 + (|u|2−1)2

4

]
dx in the class of functions satisfying

(1:7) lim
xN →±∞;

x′∈ω

u(x ′; xN ) = ±1:

Furthermore, this result also holds when the Laplacian operator is replaced by the
p-Laplacian operator.

Recently Ghoussoub and Gui [13] proved De Giorgi’s conjecture in dimension 2
without any additional assumption. They used some recent results about the spectrum
of linear Scroedinger operators in R2. Similar results are also obtained by Berestycki,
Caffarelli and Nirenberg in [4].

For N ≥ 3 De Giorgi’s conjecture is still open. Concerning this case, it has to be
remarked that the method used in [13] and [4] does not work for N ≥ 3 (see [1, 13]).

For N = 2; 3 Ghoussoub and Gui proved Gibbons’ conjecture in [13]. For N ≥ 4
this conjecture is still open.

In this Note, we propose an approach to the proof of these conjectures by investigat-
ing the more general problem of the symmetry properties of the solutions of semilinear
elliptic equations in RN . The point of view adopted here, in studying problem (1:1),
is the following: in RN symmetry properties are a consequence of the «shape» of the
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set of zeros of the solutions. Following this idea we are able to obtain various stronger
versions of Gibbons’ conjecture and several other symmetry and monotonicity results
for a wide class of semilinear problems. Our proofs are based on the moving planes
method, on various versions of the maximum principle and the translation invariance
of the structure of the considered equations.

The Note is organized as follows. The first part of Section 2 is devoted to the
model problem (1:1). In particular we prove a stronger version of Gibbons’ conjecture
in any dimension N > 1, namely: if the set of zeros of u is bounded with respect to
one direction, say ν, then u is one-dimensional, i.e., u(x) = u0(ν · x). In the second
part of Section 2 we consider a class of semilinear equations relevant in many different
physical contexts. More precisely we study the qualitative properties of the solutions
of the problem ∆u + f (u) = 0, where f is a locally Lipschitz continuous function of
«bistable» type. We prove a stronger version of Gibbons’ conjecture, i.e., if the level
set of u corresponding to the value of the nonstable equilibrium point is bounded with
respect to one direction, then «u depends only on that direction». Section 3 deals with
radial symmetry of the solutions of semilinear problems. We prove that a solution whose
level set corresponding to the value of the nonstable equilibrium point is bounded, must
be radial. The fourth section is concerned with reaction-convection-diffusion equations
of the type aij (x)@iju + bi(x)@iu + f (x; u) = 0: We prove monotonicity and symmetry
results which, when combined, lead to another generalized Gibbons’s conjecture. The
proofs of these results are detailed in [12].

After we announced these results we were informed by R. Monneau (private com-
munication) that he had obtained some results similar to those proved in Section 4
of this Note. These results are included in a forthcoming paper [5] jointly with H.
Berestycki and F. Hamel. We also learned that similar questions were investigated by
M.T. Barlow, R. Bass and C. Gui [2] by probabilistic methods.

2. One-dimensional symmetry

We start this section with the study of the classical Ginzburg-Landau equation (1:1).
To state our results we need to define the sets

Γ := {x ∈ RN : u(x) = 0};

Ω+ := {x ∈ RN : u(x) > 0}; Ω− := {x ∈ RN : u(x) < 0}:

Our first result is the following

Theorem 2.1. Assume N > 1 and let u be a solution of (1:1) in C 2(RN ) (without any
assumption about boundedness or monotonicity). Suppose that the set Γ of zeros of u is bounded
with respect to some direction ν ∈ SN−1 (the unit sphere in RN ), and both Ω+ and Ω− are
unbounded with respect to ν then,

(2:1) u(x) = ± tanh
(
ν · x − α√

2

)

for every x ∈ RN and some α ∈ R.
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Remark 2.2. The assumptions of Theorem 2.1 are exactly equivalent to the existence
of an infinite cylinder Σ ( = RN−1 × I , up to rotation, where I is an open and bounded
interval) containing Γ and such that its complement intersects both Ω+ and Ω−.

It is immediate to see that Gibbons’ conjecture follows from Theorem 2.1. Actually
Theorem 2.1 implies a somewhat stronger version of that conjecture since we do not
assume anything about boundedness of the solution u. More precisely we have

Corollary 2.3. Assume N > 1, ν ∈ SN−1 and let u be a solution of (1:1) in C 2(RN ).
The following are equivalent

i) u satisfies : lim(ν·x)→±∞ u(x) = ±1; the limits being uniform in the ν-direction.

ii) The set Γ of zeros of u is bounded with respect to direction ν ∈ SN−1 and both Ω+ and
Ω− are unbounded with respect to direction ν.

Proof of Theorem 2.1. We divide the proof into several steps.

Step 1. Boundedness of solutions. Any L3
loc solution u, in the sense of distribution,

of (1:1) is smooth and satisfies u2 ≤ 1 on RN (see [10]). Moreover, by the strong
maximum principle, |u(x)| < 1 for all x ∈ RN , if and only if, u is not identically equals
to 1 (or −1).

Step 2. Asymptotic behaviour. It is clear that, up to a translation and a rotation, we
may suppose u(0) = 0 and ν = eN := (0; :::; 1), i.e., the set Γ of zeros of u is bounded
with respect to direction xN . Up to a reflection with respect to the (N-1)-dimensional
hyperplane H := { x = (x ′; xN ) ∈ RN : xN = 0 }, we see that there exists a positive
number M + such that Γ ⊂ {x ∈ RN : |xn| < M +} and

’ x = (x ′; xN ) : xN > M +; u(x) > 0;

’ x = (x ′; xN ) : xN < −M +; u(x) < 0:

Now, we apply the following Lemma 2.4 to obtain

(2:2) lim
xN →±∞

u(x ′; xN ) = ±1

the limits being uniform with respect to x ′.

Lemma 2.4. Assume µ > 0 and let f be a positive Lipschitz continuous function on (0;µ),
vanishing on µ and satisfying f (t ) ≥ δ0t on (0; t0] for some δ0 > 0 and t0 > 0:

Let u be a C 2 function on an affine half-space ΣM := {x ∈ RN : xN > M } satisfying
{

∆u + f (u) ≤ 0 on ΣM ;

0 < u ≤ µ on ΣM :

Then

lim
xN →+∞

u(x ′; xN ) = µ:

the limit being uniform with respect to x ′.
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The above Lemma is a consequence of Lemma 3.2 and 3.3 of [3] (notice that the
result does not explicitely appear in this form in [3]).

Step 3. u is strictly increasing with respect to xN , more precisely, @u
@xN

> 0 in RN .
From the previous step we know that u(x ′; xN ) converges to ±1 uniformly as xN

tends to ±∞, hence we may apply Lemma 3.2 of [13] to prove the above claim.
From now on, the statement u is strictly increasing with respect to the direction ν, will

be used to mean @u
@ν > 0 in RN .

Step 4. For every γ > 0 there exists ε = ε(γ) > 0 such @u
@xN

(x) ≥ ε for every

x ∈ Sγ := RN−1 × (−γ; γ).
Suppose the claim does not hold, then there is a sequence of points xn ∈ Sγ such

that limn→+∞
@u

@xN
(xn) = 0: Set un(x) = u(x + xn). By standard regularity theory for

elliptic equations, up to extraction of a subsequence, the functions un converge to u∞
in C 2

loc(R
N ). Then the function u∞;N := @u∞

@xN
satisfies

(2:3) −∆(u∞;N ) + (3u2 − 1)(u∞;N ) = 0 on RN ;

(2:4)
@u∞
@xN

(0) = 0;
@u∞
@xN

(x) ≥ 0; ’ x ∈ RN ;

furthermore, from (2:2), we have

(2:5) lim
xN →±∞

u∞(x ′; xN ) = ±1

the limits being uniform with respect to x ′.
From (2.3)-(2.4) and the strong maximum principle, applied to −u∞;N , we know

that

(2:6) ’ x ∈ RN ;
@u∞
@xN

(x) = 0;

but the latter contradicts (2:5). Hence the claim holds true.

Step 5. The map ν → @u
@ν belongs to C 0;1

(
SN−1; C 0(RN )

)
.

Since u is bounded, by standard elliptic estimates, we know that also ∇u ∈
∈ L∞(RN ;RN ). Thus,

(2:7)
∣∣∣∣
@u
@ν

(x) − @u
@τ

(x)
∣∣∣∣ = |∇u(x) · (ν − τ )| ≤ ‖∇u‖∞|ν − τ |:

The claim follows immediately from (2:7).

Step 6. u is strictly increasing with respect to all unit vectors of an a open subset of SN−1.
Since (2:2) holds true, there is a positive constant M ≥ M + such that u(x) > 1√

3

for all x ∈ RN satisfying xN > M and u(x) < − 1√
3 for all x ∈ RN satisfying xN < −M .

Fix a γ > M . By making use of Steps 4 and 5 we obtain the existence of an open
neighbourhood OeN

of eN in SN−1 such that

(2:8) ’ν ∈ OeN
; ’x ∈ Sγ;

@u
@ν

(x) > 0:
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Now, for ν ∈ OeN
, functions u

ν
:= @u

@ν are smooth and bounded and satisfy:

−∆uν + (3u2 − 1)uν = 0 on RN \ SM ;

with the boundary conditions uν
> 0. Notice also that 3u2 − 1 ≥ 0 in RN \ SM .

By invoking a standard version of the maximum principle for unbounded domains
(see for example [3]), applied separately to the affine half-spaces H +

M := {x ∈ RN :
: xN > M } and H −

M := {x ∈ RN : xN < −M }, and the strong maximum principle
we obtain that

’ν ∈ OeN
; ’x ∈ RN \ SM ;

@u
@ν

(x) > 0:

The latter combined with (2:8) completes the proof of Step 6.

Step 7. u is strictly increasing with respect to all directions of the upper hemisphere (SN−1)+.
We consider the upper hemisphere

(SN−1)+ := {ν ∈ SN−1 : νn > 0 };

and we denote by ω the set of ν ∈ (SN−1)+ such that there exists an open neighbourhood
Oν ⊂ (SN−1)+ of ν; satisfying ’ n ∈ Oν; ’ x ∈ RN ; @u

@n (x) > 0:
The set ω is open by definition and contains eN .
We claim that ω is also closed in (SN−1)+ so that, it is equal to (SN−1)+.
Consider a cluster point ν of ω ; then there exists a sequence {νn}n∈N in ω and

converging to ν in ω, satisfying @u
@νn

(x) > 0; ’n ∈ N and ’x ∈ RN : Hence

’x ∈ RN ;
@u
@ν

(x) ≥ 0:

From the strong maximum principle we have that either @u
@ν (x) > 0 on RN or u

is constant in the ν-direction. The second case is clearly impossible, since ν is not
orthogonal to eN and Γ is bounded in the xN -direction. Hence

’x ∈ RN ;
@u
@ν

(x) > 0:

To complete the proof of this step we have to show the existence of an open neigh-
bourhood Oν of ν on the upper hemisphere (SN−1)+ such that ’ n ∈ Oν; ’ x ∈
∈ RN ; @u

@n (x) > 0.

To do so, we apply the same proofs as in steps 4, 5 and 6 with eN replaced by ν,
to obtain an open neighbourhood Oν of ν such that

’ n ∈ Oν; ’ x ∈ RN ;
@u
@n

(x) > 0:

The latter implies that the direction ν ∈ ω, so that ω is also closed in (SN−1)+.
This concludes Step 7.

Step 8. End of proof. Since ω = (SN−1)+ we have that @u
@τ ≥ 0 for any direction

τ orthogonal to eN , but also −τ is orthogonal to eN thus, @u
@τ = 0, i.e., u is one-

dimensional. It is well-known that, in the one-dimensional case, all the solutions of
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(1:1) satisfying limt→±∞ u(t ) = ±1 are given by u(t ) = tanh
(

t−α√
2

)
, for some α ∈ R.

This ends the proof of Theorem 2.1.

Theorem 2.1 and Corollary 2.3 extend to bounded solutions of the following general
semilinear elliptic equation

(2:9) ∆u + f (u) = 0 on RN ;

where f is a locally Lipschitz continuous function of bistable type on R, i.e., fulfilling
the following properties. There exist numbers µ− < µ0 < µ+ such that

’ t ∈ (−∞;µ−) f (t ) ≥ 0;(2.10)

’ t ∈ (µ−;µ0) f (t ) < 0;(2.11)

’ t ∈ (µ0;µ+) f (t ) > 0;(2.12)

’ t ∈ (µ+; + ∞) f (t ) ≤ 0;(2.13)

there exist numbers t−1 ; t−0 ; t+

0 ; t+

1 ; δ−0 ; δ+

0 satisfying µ− < t−1 < t−0 < µ0 < t+

0 <
t+
1 < µ+ and δ−0 > 0; δ+

0 > 0 such that

(2:14) ’ t ∈ [t−0 ;µ0] f (t ) ≤ δ−0 (t − µ0);

(2:15) ’ t ∈ [µ0; t+
0 ] f (t ) ≥ δ+

0 (t − µ0);

(2:16) f (t ) is nonincreasing on (µ−; t−1 ) and on (t+

1 ;µ+):

We define, for λ ∈ R, the sets

Γλ := {x ∈ RN : u(x) = λ};

Ω+

λ := {x ∈ RN : u(x) > λ}; Ω−
λ

:= {x ∈ RN : u(x) < λ}:

Under the above conditions we have

Theorem 2.5. Assume N > 1 and let u be a bounded solution of (2:9) in C 2(RN ).
Suppose that the level set Γµ0

of u is bounded with respect to some direction ν ∈ SN−1, and both
Ω+

µ0
and Ω−

µ0
are unbounded with respect to ν, then u is one-dimensional, i.e., u(x) = g (x · ν)

for all x ∈ RN , where

g ′′(t ) + f (g (t )) = 0 ’ t ∈ R;

and 



either lim
t→±∞

g (t ) = µ± and g ′(t ) > 0 ’ t ∈ R;

or lim
t→±∞

g (t ) = µ∓ and g ′(t ) < 0 ’ t ∈ R:

Proof of Theorem 2.5. The proof follows the same lines of that of Theorem 2.1
(only some modifications are needed to handle the weakened assumptions) and we refer
to [12] for all details.
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3. Radial symmetry

The following result, together with theorems 2.1 and 2.5, corroborates our point of
view in studying semilinear elliptic problems of the considered type.

Theorem 3.1. Assume N > 1 and let u be a bounded non-constant C 2(RN ) solution
of (2:9), where f satisfies properties (2:10)-(2:16). Suppose that the level set Γµ0

of u is

bounded. Then u must be radially symmetric about some point x0 ∈ RN , moreover u is strictly
monotone with respect to the radial variable r = |x − x0| > 0.

Proof. As above we have

µ− < u(x) < µ+:

The boundedness of Γµ0
yields that u is > µ0 (or < µ0) near infinity, say u > µ0.

Hence by Lemma 2.4 we have

lim
|x|→+∞

u(x) = µ+:

Now, the function v = µ+ − u > 0 solves




∆v + g (v) = 0 on RN

lim
|x|→+∞

v(x) = 0;

where g (s) = −f (µ+ − s). Since g is non-increasing in a right-neighbourhood of 0, we
may apply Theorem 1 in [15] to find that v is radially symmetric about some point
x0 ∈ RN and vr < 0 for r = |x − x0| > 0: (Theorem 1 of [15] actually is stated for
g which are differentiable in a right neighbourhood of 0 and satisfying g ′ ≤ 0 in this
neighbourhood. It is easy to see that this is true also for locally Lipschitz continuous
function g which are only non-increasing in a right neighbourhood of 0). Thus, the
claim follows immediately.

4. A stronger version of Gibbons’ conjecture

This section is concerned with a further generalization of Gibbons’ conjecture.
We are interested in monotonicity and symmetry properties of solutions of reaction-
convection-diffusion equations naturally arising in many differents physical contexts such
as biology (population dynamics, epidemiology, gene developements) and combustion
theory (flame propagation). We consider the linear operator L := aij (x)@ij + bi(x)@i ,
where the summation convention is used, and the following semilinear problem

(4:1) L(u) + f (x; u) = aij (x)@iju + bi(x)@iu + f (x; u) = 0 on RN ;

where functions f and u satisfy some suitable properties coming directly from phys-
ical assumptions. The typical (and simplest) examples are given by the well-known
N-dimensional Fisher equation or N-dimensional Kolmogorov-Petrovskii-Piskunov type
equation (KPP equation): ∆u + b @u

@xN
+ f (u) = 0 in RN , where b is a constant and f

is a Lipschitz continuous function.
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The assumptions about functions aij , bi and f are as follows, aij and bi are bounded
and Holder continuous functions (with Holder exponent 0 < α ≤ 1), in addition the
matrix aij is always supposed to be symmetric and uniformly positive definite over RN .
The function f ∈ C 0(RN +1) satisfies the following assumptions

’ K ⊂⊂ R; ∃ LK > 0 : ’ (x; y) ∈ RN ×RN ; ’ (s; t ) ∈ K2;

(4:2) |f (x; s) − f (y; t )| ≤ LK[|x − y|α + |s − t |];

(4:3) ∃ θ; µ+ : θ ≤ f (x;µ+) ≤ 0; ’ x ∈ RN :

There exist constants M + > 0, δ+ > 0 and C + > 0 such that ’ x ′ ∈ RN−1; ’ xN >
> M +, ’ (s; s ′) ∈ (µ+ − δ+;µ+]2, with s �= s ′, we have

(4:4)
f (x ′; xN ; s) − f (x ′; xN ; s ′)

s − s ′
≤ −C + ;

and ’ x ′ ∈ RN−1; ’ s ∈ R;

(4:5) functions xN −→ f (x ′; xN ; s) are non-decreasing:

Remark 4.1. In case f is independent of x , assumption (4:5) is automatically satisfied
while (4:4) is always satisfied when f is differentiable at the point µ+ and f ′(µ+) < 0.
These assumptions are exactly those required by the classical Fisher or KPP equations
(see for example [14]).

Under these assumptions we are able to prove monotonicity and symmetry results
for the problem (4:1). The proofs are based on the moving planes method, on various
versions of the maximum principle, on the translation invariance of the structure of the
considered equations and are detailed in [12].

We start with the following monotonicity result.

Theorem 4.2. Assume N > 1 and let u be a bounded C 2(RN ) solution of (4:1), where
f satisfies assumptions (4:2)-(4:5). Suppose that
i) functions aij and bi are independent on xN , i.e., aij (x) = aij (x ′) and bi(x) = bi(x ′)

for every x ∈ RN ,

ii) u(x) ≤ µ+ for every x ∈ RN ,

iii) limxN →+∞ u(x ′; xN ) = µ+,

the limit being uniform with respect to x ′.

iv) There are constants µ < µ+ and M1 > 0 such that

u(x) ≤ µ ’ x ∈ RN with xN < −M1:

Then, @u
@xN

(x) > 0 for every x ∈ RN :
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Making use of Theorem 4.2, we prove Gibbons’ conjecture in the wider context of
the reaction-convection-diffusion equations. In particular our result applies to various
types of Fisher or KPP equations.

Theorem 4.3. Assume N > 1. Suppose f satisfies assumptions (4:2)-(4:5) and u is a
C 2(RN ) solution of

(4:6)





aij@iju + bi@iu + f (xN ; u) = 0 on RN ;

µ− ≤ u ≤ µ+;

lim
xN →±∞

u(x ′; xN ) = µ±;

where aij; bi are constants and µ− ∈ (−∞;µ+). Suppose furthermore that there exist constants
M − > 0, δ− > 0, C − > 0 such that ’ xN < −M −, ’(s; s ′) ∈ [µ−;µ− + δ−)2, with
s �= s ′, we have

(4:7)
f (xN ; s) − f (xN ; s ′)

s − s ′
≤ −C − :

Then, u is one-dimensional, i.e., u(x) = g (xN ), where g is a function satisfying

(4:8)

{
aNN g ′′(t ) + bN g ′(t ) + f (t; g (t )) = 0 on R;

limt→±∞ g (t ) = µ± and g ′(t ) > 0 ’ t ∈ R:

Remark 4.4. In view of Theorem 4.2 and assumption (4:7), it is easy to see that the
above symmetry result also holds, if we replace the assumption limxN →−∞ u(x ′; xN ) =

= µ− by the weaker one: there are constants µ ∈ [µ−; min{µ− + δ−;µ+}) and
M3 > 0 such that u(x) ≤ µ for all x ∈ RN with xN < −M3. In this case the limit, as
t → −∞, appearing in (4:8) has to be replaced by limt→−∞ g (t ) = l − ≤ µ:

In the two-dimensional case we can prove the above Theorem 4.3 even letting b1

depend on x1-variable, more precisely we have

Theorem 4.5. Assume N = 2. Suppose that f is differentiable and satisfies (4:2)-(4:5)
and (4:7). Let u be a C 2(R2) solution of (4:6), where aij , b2 and µ− fulfill the assumptions
of Theorem 4:3, while b1 is a differentiable function satisfying b1(x) = b1(x1) and @b1

@x1
≤ 0

everywhere. Then, the conclusion of Theorem 4:3 also holds.

Remark 4.6. In case f is independent on x2, the above Theorem 4.5 holds true
even without the assumption about the differentiability of f .
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