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Analisi matematica. — On analyticity of Ornstein-Uhlenbeck semigroups. Nota di
Beniamin Goldys, presentata (*) dal Corrisp. G. Da Prato.

Abstract. — Let
(
Rt

)
be a transition semigroup of the Hilbert space-valued nonsymmetric Ornstein-

Uhlenbeck process and let µ denote its Gaussian invariant measure. We show that the semigroup
(
Rt

)
is analytic in L2(µ) if and only if its generator is variational. In particular, we show that the transition
semigroup of a finite dimensional Ornstein-Uhlenbeck process is analytic if and only if the Wiener process
is nondegenerate.

Key words: Ornstein-Uhlenbeck semigroup; Bilinear form; Variational generator; Polynomial chaos;
Second quantization.

Riassunto. — Sull’analiticità del semigruppo di Ornstein-Uhlenbeck. Sia
(
Rt

)
un semigruppo di transi-

zione di un processo di Ornstein-Uhlenbeck non simmetrico e a valori in uno spazio di Hilbert e sia µ la
sua misura Gaussiana invariante. Proviamo che il semigruppo

(
Rt

)
è analitico in L2(µ) se e solo se il suo

generatore è variazionale. In particolare dimostriamo che il semigruppo di transizione di un processo di
Ornstein-Uhlenbeck finito dimensionale è analitico se e soltanto se il processo di Wiener è non degenere.

0. Introduction

This work deals with properties of the solution to a linear parabolic equation

(0.1)

{ @u
@t

(t; x) = Lu(t; x);

u(0; x) = φ(x); t ≥ 0 ;

on a real separable Hilbert space H . The operator L in this equation stands for the
so-called Ornstein-Uhlenbeck operator

(0.2) Lφ(x) =
1
2

tr
(
QD2φ(x)

)
+ 〈Ax; Dφ(x)〉;

where Dφ denotes the Fréchet derivative of a function φ : H → R. We assume that A
is a generator of the C0-semigroup S (t ), t ≥ 0, of bounded operators on H and Q is a
bounded linear operator on H which is moreover symmetric and nonnegative. In this
paper we require that

(A)
∫ ∞

0
tr (S (u)QS∗(u))du < ∞ and ker Q∞ = {0};

where

Q∞ =

∫ ∞

0
S (u)QS∗(u)du;

and tr(T ) stands for the trace of a nuclear operator on H . If (A) holds then we can
define on H the family of Gaussian measures µt , t ≥ 0, and µ with the mean zero and

(*) Nella seduta del 23 aprile 1999.
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the covariance operators

Qt =

∫ t

0
S (u)QS∗(u)du

and Q∞ =
∫∞

0 S (u)QS∗(u)du respectively.
If φ is a sufficiently smooth cylindrical function then Lφ is well defined and (0.1)

has a classical solution u(t; ·) = Rtφ(·) given by the formula (see [6] for details)

Rtφ(x) =

∫

H

φ(S (t )x + y)µt (dy):

Moreover, the measure µ is invariant for Rt for every t ≥ 0, that is
∫

H
Rtφ(x)µ(dx) =

=
∫

H
φ(x)µ(dx) and the family of operators {Rt ; t ≥ 0}, defines a strongly continuous

semigroup of contractions on L2(H;µ). It has been shown in [1] that L has a unique
extension to a generator of the C0-semigroup on L2(H;µ) which coincides with

(
Rt

)
.

The semigroup
(
Rt

)
may be identified as the transition semigroup corresponding to the

Ornstein-Uhlenbeck process on H . If, for x ∈ H , we define

Z x (t ) = S (t )x +

∫ t

0
S (t − s)dW (s);

where W is a Wiener process on H with the covariance operator Q , then Rtφ(x) =

= Eφ
(
Z x (t )

)
(see [6] for details).

The aim of this paper is to give necessary and sufficient conditions for analyticity of
the semigroup (Rt ). Note that this property does not hold in the space of continuous
and vanishing at infinity functions even if H is finite dimensional (see [5]). The first
results on the analyticity of nonsymmetric Ornstein-Uhlenbeck semigroup can be found
in [11]. Recently, sufficient conditions were given in [9] for the finite dimensional
case and in [8] for an arbitrary Hilbert space. The approach in [11] and [8] was to
impose conditions on the semigroup (Rt ) which assure that the generator L is variational.
In this paper we justify this approach. Namely, we show that the semigroup (Rt ) is
analytic if and only if L is variational. In fact, we show that one of the sufficient
conditions given in [8] when properly reformulated turns out to be a sector condition
and is necessary for the analyticity of the Ornstein-Uhlenbeck semigroup (Rt ). In other
words the Ornstein-Uhlenbeck semigroup is analytic if and only if its generator defines
a nonsymmetric Dirichlet form. The general theory of such processes can be found in
[10] (see also references therein).

The proof is based on the fact shown in [2] that the Ornstein-Uhlenbeck semigroup
can be obtained as a result of the second quantization procedure Γ

(
S∗

0 (t )
)

applied
to a properly defined C0-semigroup S∗

0 (t ) acting on H (see Section 1 for definition).
We show that this property holds also for a holomorphic extension of (Rt ) (if exi-
sts) to a sector in a complex plane. It is well known that the second quantization
operator Γ (T ) of the operator T is bounded on L2(H;µ) if and only if T is a con-
traction on H . Therefore, to prove the aforementioned result it remains to apply to
the semigroup S∗

0 (t ) the characterization of holomorphic contraction semigroup given
in [10].
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Section 1 below contains some auxiliary results on the Wiener-Ito decomposition of
the space L2(H;µ) and the representation of the semigroup (Rt ) as a second quantization
operator. In Section 2 we show that the semigroup (Rt ) is analytic if and only if the
generator A∗

0 of the semigroup S∗
0 (t ) satisfies the sector condition. We provide also

some necessary conditions for analyticity and in some cases we derive more explicit
sufficient conditions for analyticity extending earlier results of [9, 7]. In particular
we show that if dim H < ∞ then (Rt ) is analytic if and only if Q is nondegenerate.
Sufficiency of this condition in finite dimension has been shown by a different method
in [9].

We finish this section with a remark on notation. In what follows we use the same
notation ‖ · ‖ and 〈·; ·〉 for the norm and inner product in the spaces H and L2(H;µ).
The relevant meaning will be obvious from the context.

1. Wiener-Ito decomposition and the Ornstein-Uhlenbeck semigroup

We shall enunciate and prove theorems without repeating the assumptions on the
operator L (given by (0.2)) made earlier in the Introduction.

Let H0 = Q 1=2
∞ (H ) be the Reproducing Kernel Hilbert Space of the measure µ.

The space H0 endowed with the norm ‖x‖0 =
∥∥∥Q−1=2

∞ x
∥∥∥ is continuously and densely

imbedded into H . The operator

S∗
0 (t ) = Q 1=2

∞ S∗(t )Q−1=2
∞

is clearly well defined and bounded on H0. Moreover, it has been shown in [2] that
the space H0 is invariant for the semigroup S (t ):

S (t )(H0) ⊂ H0

for every t ≥ 0 and therefore S∗
0 (t ) can be extended to a bounded operator S∗

0 (t ) on
H (see [2] for details). For the reader’s convenience we repeat the relevant properties
of the operators S∗

0 (t ) in the lemma below.

Lemma 1.1. The family of operators {S∗
0 (t ); t ≥ 0} defines a strongly continuous semigroup

on H0. Its generator A∗
0 has the domain

dom
(
A∗

0

)
= Q 1=2

∞ (dom (A∗))

and A∗
0h = Q 1=2

∞ A∗Q−1=2
∞ h for h ∈ dom

(
A∗

0

)
. The family of operators (S∗

0 (t )) defines a
strongly continuous semigroup of contractions on H and the generator A∗

0 is the part of the
generator A∗

0 of (S∗
0 (t )) in H0. Finally, S (t )H0 ⊂ H0 for every t ≥ 0, the family of operators

S0(t ) = Q−1=2
∞ S (t )Q 1=2

∞ , t ≥ 0, defines a strongly continuous semigroup of contractions on H and
the semigroup (S∗

0 (t )) is adjoint to the semigroup (S0(t )).

Proof. See [2].
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In the sequel we use the same notation S∗
0 for the semigroup S∗

0 on H0 and S∗
0 on H .

Let H be a separable real Hilbert space with the inner product 〈·; ·〉R and let HC
denote its complexification HC = H + iH endowed with the inner product

〈h + ik; x + iy〉C = 〈h; x〉R + 〈k; y〉R + i
(
〈h; y〉R − 〈k; x〉R

)
:

From now on we omit the subscript C and denote by 〈·; ·〉 the inner product in HC.
By L2

C(H;µ) we denote the space of C-valued square integrable functions defined on
H . For every h ∈ H0 we define a linear function on H

φh(x) =
〈

x; Q−1=2
∞ h

〉
:

If h = h1 + ih2 with h1; h2 ∈ H0 then φh = φh1
+ iφh2

.

Let H≤n denote the closed subspace of L2
C(H;µ) spanned by all products φh1

·: : :·φhm

of order m ≤ n of the functions φh1
; : : : ;φhm

,where h1; : : : ; hm ∈ H0 + iH0 and let Hn

be the orthogonal complement of H≤n−1 in H≤n. Then the Ito-Wiener decomposition
says that

L2
C(H;µ) =

∞⊕

n=0

Hn;

where H0 is the space generated by constants. For h ∈ H0 we define the function

Eh = exp
(
φh −

1
2
‖h‖2

)
:

The family
{

Eh : h ∈ H0

}
is linearly dense in L2

C(H;µ).
We will recall now some basic properties of the operator of second quantization

as defined for example in [12], see also [2]. Let In be the orthogonal projection of
L2

C(H;µ) onto Hn. If T is a bounded operator on HC then we define the operator
Γn(T ) : Hn → Hn for n ≥ 1 by the formula

(1.1) Γn(T )In(φh1
: : :φhn

) = In(φTh1
: : :φThn

):

For n = 0 we put Γ0(T )1 = 1. The operator Γn can be extended to the whole of Hn

and ‖Γn(T )‖ = ‖T ‖n. If ‖T ‖ ≤ 1 then the formula

(1.2) Γ(T )φ =
∑

n≥0

Γn(T )In(φ)

defines a bounded operator on L2
C(H;µ) and ‖Γ(T )‖ = 1. If ‖T ‖ > 1 then the operator

Γ(T ) defined by (1.2) is necessarily unbounded. Let T1 and T2 be two contractions
on HC. Then by (1.1)

(1.3) Γ
(
T1T2

)
= Γ

(
T1

)
Γ
(
T2

)
:

A bounded operator T : H → H is extended to HC by the formula T C (h + ik) =

= Th + iTk, h; k ∈ H . If T : H → H is a contraction on H then T C is a contraction
on HC and the operator Γ

(
T C

)
is well defined. Let ΓR(T ) be the second quantization
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operator defined by the formula (1.2) in the space L2
R(H;µ) and let ΓC(T )(φ + iψ) =

= ΓR(T )φ + iΓR(T )ψ. Then

(1.4) ΓC(T ) = Γ
(

T C
)

:

Indeed, for h ∈ H0

ΓC(T )Eh = ΓR(T )Eh = Γ
(

T C
)

Eh

and (1.4) follows from the density of lin {Eh : h ∈ H0}.

Proposition 1.2. For all t ≥ 0 RC
t = Γ

(
S∗

0 (t )C
)

.

Proof. By Theorem 1 in [2] Rt Eh = Γ(S∗
0 (t ))Eh , hence the proposition follows from

(1.4).

The existence of invariant measure for the semigroup
(
Rt

)
implies (see [6, Theorem

11.7]) that

(1.5) 〈A∗x; y〉 + 〈A∗y; x〉 = −〈Qx; y〉

for all x; y ∈ dom (A∗). We will use the notation K = Q 1=2
∞ (dom (A∗)). Note that by

(A) K is dense in H and it can be easily seen by Lemma 1.1 and the Core Theorem
that K is a core for the operator A∗

0 acting in H . Putting x = Q−1=2
∞ h and y = Q−1=2

∞ k
for h; k ∈ K , we can rewrite (1.1) in the form

(1.6)
〈
A∗

0h; k
〉

+
〈
A∗

0k; h
〉

= −〈Vh; Vk〉;

where V = Q 1=2Q−1=2
∞ is an operator in H with the domain dom (V ) = K .

By P(K ) we denote the subspace of L2(H;µ) spanned by all functions of the form
φn

h , where n ≥ 0 and h ∈ K . Then we define

DQφ
n
h = Q 1=2Dφn

h = nφn−1
h Vh

and extend this definition to the whole of P(K ) by linearity. The operator L defined
by (0.2) may be rewritten in the form

Lφ(x) =
1
2

tr
(
QD2φ(x)

)
+

〈
Q−1=2

∞ x; A∗
0Q 1=2

∞ Dφ(x)
〉

and thereby

Lφn
h =

n(n − 1)
2

‖Vh‖2φn−2
h + nφn−1

h φA∗
0 h

is well defined for h ∈ K and n ≥ 2. Clearly, Lφh = φA∗
0 h and L1 = 0. Hence, L

extends to P(K ) by linearity.
The next lemma is a minor variation of the result proved in [1] hence we omit the

proof.

Lemma 1.3. The operator (L;P(K )) has a unique extension to a generator of a C0-semigroup
on L2(H;µ) which may be identified with

(
Rt

)
.
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We introduce now the bilinear form

E(φ;ψ) = 〈−Lφ;ψ〉

with the domain dom (E) = P(K ). The symmetric part of E

Es(φ;ψ) =
1
2

(E(φ;ψ) + E(ψ;φ))

will be considered on the same domain P(K ). Note that

E
(
φh;φk

)
=

〈
−A∗

0h; k
〉

; h; k ∈ K:

If φ;ψ ∈ P(K ) then by the standard calculation

L(φψ)(x) = φ(x)Lψ(x) + ψ(x)Lφ(x) +
〈

DQφ(x); DQψ(x)
〉

:

Therefore, integrating the above with respect to µ and taking into account that 〈Lφ;1〉=
= 0 we find that

Es(φ;ψ) =
1
2

〈
DQφ; DQψ

〉
; φ;ψ ∈ P(K ):

In particular it follows from (1.6) that

Es(φh;φk) =
1
2
〈Vh; Vk〉 :

2. Analyticity

For a > 0 we define a sector

s(a) = {z ∈ C : |Im z | ≤ aRe z}:

We will be using the following definition of the holomorphic semigroup.

Definition 2.1. The family {T (z) : z ∈ s(a)} of bounded operators on a Hilbert space
HC is called a holomorphic semigroup with the sector s(a) if

(i) T (0) = I ,
(ii) T (z1 + z2) = T (z1)T (z2) for all z1; z2 ∈ s(a),

(iii) for every h ∈ HC

lim
z→0

‖T (z)h − h‖ = 0

provided z ∈ s(ã ) with any ã < a.
(iv) the function z → 〈T (z)h; k〉 is analytic in the interior of s(a) for all h; k ∈ HC.
(v) if ‖T (z)‖ ≤ 1 for all z ∈ s(a) then we say that {T (z) : z ∈ s(a)} is a holomorphic

semigroup of contractions.

Theorem 2.2. The semigroup (RC
t ) is a restriction of a holomorphic semigroup if and only

if there exists a > 0 such that

(2.1)
∣∣〈A∗

0h; k
〉

R

∣∣ ≤ a‖Vh‖‖Vk‖
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for all h; k ∈ K . Moreover, if (2:1) holds then s
(

1
2a

)
is the analyticity sector for the semigroups(

RC
t

)
and

(
S∗C

0 (t )
)

,
∥∥∥RC

z

∥∥∥ = 1 for z ∈ s
(

1
2a

)
, and

(2.2) |〈Lφ;ψ〉| ≤ a
∥∥∥DQφ

∥∥∥
∥∥∥DQψ

∥∥∥

for φ;ψ ∈ dom (L).

Proof. Sufficiency. Assume that (2.1) holds. By (1.6)

(2.3) ‖Vh‖2 = −2
〈
A∗

0h; h
〉

; h ∈ K:

Let h ∈ dom
(
A∗

0

)
and let

(
hn

)
⊂ K be such a sequence that hn → h and A∗

0hn → A∗
0h

in H . Such a sequence exists because K is a core for A∗
0 . Then

∥∥V
(
hn − hm

)∥∥2
= −2

〈
A∗

0

(
hn − hm

)
; hn − hm

〉

and it follows that V can be extended to dom
(
A∗

0

)
. Denoting still this extension

by V we find that (2.1) and (2.3) hold for h; k ∈ dom
(
A∗

0

)
. Note that (2.1) is a

condition for continuity of the bilinear form associated to the generator A∗
0 . Hence

by Corollary I.2.21 in [10] (S
∗

0 (t )C) is a restriction of the holomorphic semigroup of
contractions S∗

0
(z), z ∈ s

(
1
2a

)
. Therefore, the operator Γ

(
S∗

0 (z)
)

is well defined in

L2
C(H;µ) and

∥∥Γ
(
S∗

0 (z)
)∥∥ = 1. The function t → RC

t is a restriction of the function

Rz = Γ
(
S∗

0 (z)
)

defined for z ∈ s
(

1
2a

)
to the halfaxis t > 0. It remains to show that Rz is a holomorphic

semigroup. The semigroup property follows immediately from (1.3). We shall show
now that for φ ∈ L2

C(H;µ) and z ∈ s(ã ), ã < 1
2a

(2.4) lim
z→0

‖Rzφ− φ‖ = 0:

By uniform boundedness it is enough to check this property for the monomials In

(
φn

h

)

for n ≥ 1 and h ∈ H0. Since ‖φn
h = Cn‖h‖n for all n ≥ 0 and h ∈ H0 we obtain for a

certain C > 0
∥∥RzIn

(
φn

h

)
− In

(
φn

h

)∥∥ =
∥∥∥In

(
φn

S∗
0 (z)h

)
− In

(
φn

h

)∥∥∥ ≤

≤
∥∥∥φn

S∗
0 (z)h − φn

h

∥∥∥ ≤
n−1∑

k=1

(
n
k

)∥∥∥φk
S∗

0 (z)h−h

∥∥∥
∥∥∥φn−k

h

∥∥∥ ≤ C
∥∥S∗

0 (z)h − h
∥∥ ‖h‖n−1

and (2.4) follows. Finally, since ‖Rz‖ ≤ 1 it is enough to show that for all h; k ∈ H0

the function
t →

〈
RC

t Eh; Ek

〉

extends to a holomorphic function on the interior of the sector s
(

1
2a

)
. Indeed, we have

〈
RC

t Eh; Ek

〉
=

〈
Rt Eh; Ek

〉
=

〈
ES∗

0 (t )h; Ek

〉
= exp

(〈
S∗

0 (t )h; k
〉)

and the proof of sufficiency is finished. Moreover if Rz = Γ
(
S∗

0 (z)
)

then Rz1 = 1 and
therefore

∥∥Rz

∥∥ = 1. It follows easily from the proof of sufficiency that RC
t extends
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to a holomorphic semigroup in the sector s
(

1
2a

)
if and only if (S∗

0 (t )C) extends to
holomorphic semigroup of contractions in the same sector s

(
1
2a

)
. Finally, because the

semigroup (RC
t ) is a restriction of the holomorphic semigroup of contractions, Corollary

I.2.21 in [10] yields (2.2).

Necessity. Let T (z), z ∈ s
(

1
2a

)
be a holomorphic semigroup extending {RC

t ; t ≥ 0}
for a certain a > 0. Then for any n ≥ 1, φ ∈ Hn and ψ ∈ H⊥

n Proposition 1.2
yields 〈T (z)φ;ψ〉 = 0: In particular, the semigroup T (z) when restricted to H1 is a
holomorphic extension of the C0-semigroup RC

t I1 and because

RC
t I1φh = φS∗

0 (t )h

we find that the semigroup (S∗
0 (t )C) can be extended to a holomorphic semigroup in

the sector s
(

1
2a

)
. Similar argument shows that for all n > 1 the semigroup RC

t In =

= Γn

(
S∗

0 (t )C) is a restriction of the holomorphic semigroup Γn

(
S∗

0 (z)
)

and therefore

T (z)In = Γn

(
S∗

0 (z)
)

:

Assume that
∥∥S∗

0 (z)
∥∥ > 1 for a certain z ∈ s

(
1
2a

)
. Then taking into account that

∥∥T (z)In

∥∥ =
∥∥S∗

0 (z)
∥∥n

we obtain

lim
n→∞

∥∥T (z)In

∥∥ = ∞:

Hence T (z) is unbounded on L2
C(H;µ) which gives the desired contradiction. It follows

that
∥∥S∗

0 (z)
∥∥ ≤ 1 for all z ∈ s

(
1
2a

)
and therefore invoking again Corollary I.2.21 in

[10] and (1.2) we obtain
∣∣〈A∗

0h; k
〉

R

∣∣ ≤ a
√〈

−A∗
0h; h

〉
R

√〈
−A∗

0k; k
〉

R = a ‖Vh‖ ‖Vk‖;

for h; k ∈ K .

Remark 2.3. Let W 1;2
Q (H;µ) denote the completion of P(K ) with respect to the

norm

‖φ‖2
W 1;2

Q
= ‖φ‖2 +

∥∥∥Q 1=2Dφ
∥∥∥

2
:

If
(
Rt

)
is analytic then by Theorem 2.2 above and Proposition 3.3 in [10] the bilinear

form Es is closable in L2(H;µ) and its domain may be identified with W 1;2
Q (H;µ)

which is a subspace of L2(H;µ) in this case. Equivalently, the operator V with the
domain K is closable in H and H0 ⊂ dom

(
V
)
.

Corollary 2.4. Assume that (2:1) is satisfied. Then the following conditions hold.
(i) ker Q = {0}.

(ii) Q∞(H ) ⊂ dom (A).

Proof. (i) Note first that the operator V = Q 1=2Q−1=2
∞ is well defined on H0.

Assume that Qx = 0 for a certain x ∈ H . Then x = Q−1=2
∞ h for a certain h ∈ H and
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Vh = 0. Let
(
hn

)
⊂ K be chosen in such a way that xn = Q−1=2

∞ hn converges to x .
Then

hn → h and Vhn → 0:

It follows from (2.1) that

(2.5)
∣∣〈A∗

0hn; k
〉

R

∣∣ ≤ a
∥∥Vhn

∥∥ ‖Vk‖

for all k ∈ K . Moreover,

S∗
0 (t )hn − hn =

∫ t

0
S∗

0 (s)A∗
0hn ds;

and therefore

S∗
0 (t )h − h = lim

n→∞

∫ t

0
S∗

0 (s)A∗
0hn ds:

On the other hand, for any k ∈ K

lim
n→∞

∫ t

0

〈
S∗

0 (s)A∗
0hn; k

〉
R ds = 0

by (2.5) and this yields S∗
0 (t )h = h for all t ≥ 0. The identity Qt = Q∞ −S (t )Q∞S∗(t )

implies
〈
Qt x; x

〉
R = ‖h‖2 −

∥∥S∗
0 (t )h

∥∥2
= 0

and therefore
〈
Q∞x; x

〉
R = lim

t→∞

〈
Qt x; x

〉
R = 0

which gives x = 0.
(ii) Let h = Q 1=2

∞ x and k = Q 1=2
∞ y for some x; y ∈ dom (A∗), a dense subset of H .

Then (2.1) yields ∣∣〈Q∞A∗x; y
〉

R

∣∣ ≤ a‖Q‖‖x‖‖y‖

and this implies boundedness of the operator Q∞A∗.
The next corollary is an extension of the result proved in [7] by a completely

different method.

Corollary 2.5. Assume that the operator Q has bounded inverse. Then the semigroup (Rt )
is analytic if and only if

(2.6) Q∞(H ) ⊂ dom (A) :

Proof. In view of Corollary 2.4 it is enough to prove sufficiency. Taking into
account invertibility of Q and invoking Lemma 1.1 we obtain for h; k ∈ K

∣∣〈A∗
0h; k

〉
R

∣∣ =
∣∣∣
〈

Q∞A∗Q−1=2
∞ h; Q−1=2

∞ k
〉

R

∣∣∣ ≤

≤
∥∥Q∞A∗∥∥

∥∥∥Q−1=2
∞ h

∥∥∥
∥∥∥Q−1=2

∞ k
∥∥∥ ≤ c

∥∥∥Q 1=2Q−1=2
∞ h

∥∥∥
∥∥∥Q 1=2Q−1=2

∞ k
∥∥∥

and the proof corollary follows.
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Remark. It has been proved in [4] that if A generates an analytic semigroup of
contractions on H and Q = I then (2.6) holds.

Corollary 2.6. Assume that dim H < ∞. Then ( Rt ) is analytic if and only if Q is
invertible.

Proof. If dim H < ∞ then (2.6) is trivially satisfied and sufficiency follows from
Corollary 2.5. Necessity follows immediately from (ii) of Corollary 2.4.
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