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Analisi matematica. — On the smoothness of viscosity solutions of the prescribed Levi-
curvature equation. Nota di Giovanna Citti, Ermanno Lanconelli e Annamaria Monta-
nari, presentata (*) dal Socio E. Magenes.

Abstract. — In this paper a C∞-regularity result for the strong viscosity solutions to the prescribed
Levi-curvature equation is announced. As an application, starting from a result by Z. Slodkowski and G.
Tomassini, the C∞- solvability of the Dirichlet problem related to the same equation is showed.

Key words: Levi equation; Viscosity solutions; Non-linear vector fields; C∞-regularity; Boundary
value problem.

Riassunto. — Regolarità delle soluzioni viscose dell’equazione della curvatura di Levi assegnata. In questa
Nota viene annunciato un teorema di regolarità C∞ delle soluzioni viscose, in senso forte, dell’equazione di
Levi con assegnata curvatura. Da questo teorema, e da un precedente risultato di Slodkowski e Tomassini,
segue la risultibilità C∞, in senso classico, del problema di Dirichlet relativo alla stessa equazione.

1. Introduction

In this Note we are concerned with the regularity properties of the solutions to a
boundary value problem for the prescribed Levi curvature equation on a bounded open
subset Ω of R3. Given a real function k defined on Ω × R; the equation of the
prescribed Levi-curvature k is defined as

(1) Lu = k(ξ; u)(1 + a2 + b2)3=2(1 + u2
t )1=2;

where

(2) Lu := uxx + uyy + 2auxt + 2buyt + (a2 + b2)utt ;

and a = a(∇u); b = b(∇u) depend on the gradient of u as follows

(3) a; b : R3 → R a(p) =
p2 − p1p3

1 + p2
3

; b(p) =
−p1 − p2p3

1 + p2
3

:

In (1), (2), ξ = (x; y; t ) denotes the point of R3, ut is the first derivative of u with
respect to t and analogous notations are used for the other first and second order
derivatives of u.

As suggested by G. Tomassini, we call equation (1) the prescribed Levi-curvature
equation, since, if it has a solution u, then the graph of u has Levi curvature k(ξ; u(ξ)) at
every point (ξ; u(ξ)): This notion, first introduced by E. E. Levi in order to characterize
the holomorphy domains of C2; plays an important role in the geometric theory of
several complex variables (see for instance [9]).

(*) Nella seduta del 23 aprile 1999.
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The aim of this Note is to show that the Dirichlet problem associated to equation (1)

(4)
{ Lu = k(ξ; u)(1 + a2 + b2)3=2(1 + u2

t )1=2 in Ω

u = φ on @Ω

has a classical solution u of class C ∞ in Ω, under suitable conditions on Ω, the
boundary data φ and the curvature k (see Corollary 1.1 below).

The quasilinear operator L in (2) is degenerate elliptic as its characteristic form

(5)
A(p; ζ) = ζ2

1 + ζ2
2 + 2a(p)ζ1ζ3 + 2b(p)ζ2ζ3 + (a2(p) + b2(p))ζ2

3 =

= (ζ1 + a(p)ζ3)2 + (ζ2 + b(p)ζ3)2;

is non-negative defined. Furthermore, since the minimum eigenvalue of A(p; ·) is equal
to zero for every p ∈ R3; L is not elliptic at any point. Hence the theory of boundary
value problems for second order quasilinear elliptic equations (see [8]) does not apply
to our problem.

When k ≡ 0 a first existence and regularity result for (4) was established by Bedford
and Gaveau [1] by means of a geometric technique. We briefly recall their result and
we refer to the paper for a more precise statement.

Theorem. If k ≡ 0, Ω is a regular pseudoconvex open set, φ ∈ C m+5(Ω̄ ); m ∈ N
and @Ω and φ satisfy some additional geometric conditions, then problem (4) has a solution
u ∈ C m+α(Ω) ∩ Lip(Ω̄ ); 0 < α < 1:

The geometric arguments used in [1] do not work when k �= 0. Slodkowski and
Tomassini were able to handle (4) for general k, by using almost completely PDE’s
methods based on the elliptic regularization of the operator L: For every ε > 0

(6) Lεu := Lu + ε2 utt

1 + u2
t

is an elliptic operator since its characteristic form Aε(p; ζ) is positive defined with
minimum eigenvalue bounded away from zero in {p ∈ R3 : |p| < M } for every M > 0:
As a consequence, for the classical theory of elliptic equations, if u ∈ C 2(Ω) solves

(7) Lεu = k(ξ; u)(1 + a2 + b2)3=2(1 + u2
t )1=2;

and k is smooth, then u ∈ C ∞(Ω):

Definition 1.1. We say that a function u : Ω → R is a strong viscosity solution to the
equation (1) if there exist a sequence (un) in C ∞(Ω) and a sequence of positive numbers εn → 0
such that

(i) (un) pointwise converges to u in Ω;
(ii) there exists M > 0 such that ||un||L∞(Ω) + ||∇un||L∞(Ω) ≤ M; ’n ∈ N.
(iii) Lεn

un = H (ξ; un;∇un) in Ω for any n ∈ N:

Here H denotes the right-hand side of equation (1).

Every strong viscosity solution of (1) is locally Lipschitz-continuous in Ω and solves
the equation in the viscosity sense of Crandall-Ishii-Lions [4].
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We are now in a position to state the existence result for (4) proved by Slodkowski
and Tomassini in [10, Theorem 4].

Theorem. Let Ω be a strictly pseudoconvex domain with @Ω ∈ C 2;α; 0 < α < 1: Let
k ∈ C 1(Ω̄ ×R) satisfy the conditions of Proposition 2 and Theorem 3 in [10]. Then, for every
φ ∈ C 2;α(Ω̄ ) the Dirichlet problem (4) has a strong viscosity solution u ∈ Lip(Ω̄ ):

This existence theorem holds for a wide class of curvatures k and requires less
regularity hypotheses on @Ω than that of Bedford and Gaveau. However, it leaves open
a problem of regularity: the solution found in [10] is merely Lipschitz continuous and
only satisfies the Levi-curvature equation in the weak sense of the viscosity; besides, the
regularity results for viscosity solutions to non–linear elliptic and parabolic equations in
[3] cannot be applied to our case since the operator L is neither elliptic nor parabolic.

The structure of the Levi equation is well highlighted by some identities first ex-
plicitly written in [2], involving the two non-linear vector fields, which appear in the
characteristic form of L, defined in (5):

(8) X (p) := @x + a(p)@t ; Y (p) := @y + b(p)@t ;

where a and b are defined in (3).
For a given function u : Ω → R we will write X instead of X (∇u). Analogous

abbreviations will be used for Y . Then we have

(9) a = Yu; b = −Xu;

(10) Lu = (X 2u + Y 2u)(1 + u2
t );

(11) [X; Y ] = − Lu

1 + u2
t

@t :

The left-hand side of (11) stands for the Lie-bracket of the first order differential
operators X and Y defined in (8). By using identities (9) and (10) the prescribed
Levi-curvature equation (1) can be written as

(12) X 2u + Y 2u = k(ξ; u)
(1 + a2 + b2)3=2

(1 + u2
t )1=2

:

This structure has been very recently used by two of the authors in [5] to prove a
first regularity result for viscosity solutions:

Theorem. Let us suppose k ∈ C 1(Ω×R): Let u be a strong viscosity solution of (1). Then
Xu; Yu ∈ H 1

loc(Ω) and u satisfies (12) pointwise almost everywhere.

Here H 1
loc(Ω) denotes the classical Sobolev space of order 1.

Without any extra condition on the curvature k it seems that the previous result
cannot be improved. On the other hand the following theorem was known ([2], see
also [6]):

Theorem. If k ∈ C ∞(Ω×R) and never vanishes in Ω×R; then every C 2;α
loc (Ω) classical

solution to (1), with α > 1=2; is of class C ∞ in Ω:
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In this paper we fill the gap between these results and prove the following theorem.

Theorem 1.1. Let k ∈ C ∞(Ω × R) be such that k(ξ; s) �= 0 for every (ξ; s) ∈ Ω × R:
Then every strong viscosity solution to (1) is of class C 2;α; with α > 1=2; and solves the
equation in the classical sense.

We will sketch the proof of this theorem in the next sections. Together with
Theorem 4 in [10] and Theorem 1.1 in [2] our theorem immediately gives the following
C ∞-solvability result for (4):

Corollary 1.1. Let Ω and k satisfy the hypotheses of Theorem 4 in [10]. Let us also assume
k ∈ C ∞(Ω × R) and k(ξ; s) �= 0 for any (ξ; s) ∈ Ω × R: Then, for every φ ∈ C 2;α(@Ω) the
Dirichlet problem (4) has a solution u ∈ C ∞(Ω) ∩ Lip(Ω̄).

We would like to emphasize some important differences between our Corollary 1.1
and the result of Bedford and Gaveau [1]. The interior regularity of the solutions
given in [1] for k = 0 strictly depends on the regularity of their values at the boundary,
and this result cannot be improved, since every C 2 function u depending only on the
variable t solves equation (1). On the contrary, if k is of class C ∞ and everywhere
different from zero, our solutions are of class C ∞ for every boundary data of class C 2;α.

The sketch of the proof of Theorem 1.1 is organized in three steps. In Sections
2 and 3 we show some a priori estimates respectively in Lp and C α for the solutions
to the regularized equation (7). In Section 4 we apply these estimates to the viscosity
solution u, and prove the stated result.

2. Lp estimates

In this Section we assume that u is a fixed C ∞ solution of the regularized equation
(7). Because of identities (6) and (10), u is a solution of

(13) X 2u + Y 2u + T 2
ε u = k(·; u)

(1 + a2 + b2)3=2

(1 + u2
t )1=2

:

where T
ε denotes the following first order differential operator

Tε(p) :=
ε

(1 + p2
3)1=2

@t :

We fix two open sets Ω1 and Ω2 subsets of Ω such that Ω1 ⊂ Ω2 ⊂ Ω2 ⊂ Ω, and
a function φ ∈ C ∞

0 (Ω2) such that φ ≡ 1 in Ω1: We also asssume that there exists a
constant M > 0; only depending on Ω1; Ω2 such that

(14) ||u||L∞(Ω2) + ||∇u||L∞(Ω2) + ||a||H 1(Ω2) + ||b||H 1(Ω2) ≤ M:

Hereafter we will denote by c a positive constant only depending on M .
In order to state the main steps of the proof it is convenient to introduce some

notations.
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Definition 2.1. For the fixed function u we call intrinsec L−gradient the operator

∇L = (X; Y; Tε)

and denote by D(i); i = 1; 2; 3; its components: D(1) = X; D(2) = Y; D(3) = T
ε
:

Moreover, we set D(4) = @t . For every i = 1 · · · 3, we say that Di has length 1 while, as suggested
by identity (11), D4 has length 2. Then, for any multi-index i = (i1; · · · ; ip) ∈ {1; 2; 3; 4}p

we call
Di = Di1 ◦ · · · ◦ Dip ;

a derivation operator of length l (Di) = l (Di1 ) + · · · + l (Dip ):

By differentiating equation (13) we prove that all the derivatives of u and the
function

v := arctan ut

are solutions of a linear equation of the following type:

(15) X 2w + Y 2w + T 2
ε w = f

with different right–hand sides f . Then we prove the following result.

Proposition 2.1. Any solution w ∈ C ∞(Ω) of (15) satisfies the following estimate

(16)
∫ (

|∇Lwt |
2 + |∇Lv|2w2

t

)
φ2 ≤ c

∫ (
w2

t |∇Lφ|
2 + φ2

)
+

∫
@t fwtφ

2:

Similar inequalities are also satisfied if we replace wt with Xw, Yw or Tεw.

We next use in an essential way the hypothesis k �= 0, and prove the following
statement.

Proposition 2.2. For every function w ∈ C ∞ we have

(17)
∫

|wt |
3φ6 ≤ c

∫ (
|∇Lwt |

2 + (|∇Lv|2 + |∇Lw|2)w2
t

)
φ6 + c

where c > 0 only depends on M and k. An analogous inequality is also satisfied if we replace wt

with Xw, Yw or Tεw.

Indeed, since k never vanishes, then
∫

|wt |
3φ6 ≤ c

∫ |k|(1 + a2 + b2)3=2

(1 + u2
t )1=2

@t w|wt |wtφ
6

(by using (7), (6), (11), and keeping in mind that utt =(1 + u2
t ) = vt )

(18) = −segn(k)
∫

[X; Y ]w|wt |wtφ
6 + segn(k)ε2

∫
vt w

2
t wtφ

6:

We now split in two integrals the first addend in (18) by replacing the commutator
[X; Y ] with XY − YX: Integrating by parts each of them, after some computations we
get the claimed estimate.

The preceeding inequalities underline the crucial role of the function v = arctan ut

in the regularization procedure. Indeed, if we apply the Propositions 2.1 and 2.2 to
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the function v itself, we obtain a L2 estimate for Xvt and Yvt , and a L3 estimate for
vt . Since vt = utt

1+u2
t

then, due to Definition 2.1, vt has to be considered a derivative
of length 4 of u, while Xvt and Yvt are derivatives of length 5 of the same function.
Once proved the summability of these derivatives of the function v, inequalities (16)
and (17) can be iterated so as to obtain analogous estimates for any derivation operator
of length 5 and 4:

Proposition 2.3. There exists a constant c , only dependent on M such that

(19) ||Diu||L2(Ω1) + ||Dju||L3(Ω1) ≤ c

for any differential operator Di of length 5 and Dj of length 4:

3. A priori Hölder estimates

In this Section we still denote by u a solution of the regularized equation (13),
satisfying (14). For any fixed ξ0 = (x0; y0; t0) ∈ Ω1 we define two frozen vector fields

X
ξ0

= @x + (a(∇u(ξ0)) + 2(y − y0))@t ; Yξ0
= @y + (b(∇u(ξ0)) − 2(x − x0))@t :

These are C ∞ vector fields, and their coefficients are bounded by a constant only
dependent on M . Since the commutator [X

ξ0
; Yξ0

] = −4@t ; and any commutator of
higher length is zero, then the Lie algebra generated by X

ξ0
and Yξ0

is an Heisenberg

algebra. The space R3, with the associated group law is an homogeneous Lie group,
with homogeneous dimention N = 4 (see [7]). We will denote dξ0

its natural distance
and for any ξ; ξ0 ∈ Ω2 we will set

d (ξ; ξ0) = dξ0
(ξ; ξ0) + dξ(ξ0; ξ):

By identities (9), the inequality (19) can be considered as a summability estimate on
the derivatives of length 3 and 4 of the coefficients a and b. As a consequence, we
prove the following crucial estimate.

Proposition 3.1. There exists a positive constant c only dependent on M such that

|a(ξ) − a(ξ0)| ≤ cd (ξ; ξ0); |b(ξ) − b(ξ0)| ≤ cd (ξ; ξ0)

for every ξ; ξ0 ∈ Ω1. Here a(ξ) and b(ξ) stand for a(∇u(ξ)) and b(∇u(ξ)) respectively.

Once proved that the coefficients a and b of the vector fields X and Y are Lipschitz
continuous with respect to d , a Sobolev-Morrey type imbedding theorem follows.

Theorem 3.1. There exists a constant c only dependent on M such that

(i ) if 1 < p < N , r = Np=(N − p) then

||w||Lr (Ω1) ≤ c ||∇Lw||Lp (Ω2) ’ w ∈ C ∞
0 (Ω2);

(ii ) if p > N; q > N=2, and β = min(1 − N=p; 2 − N=q) then

|w(ξ) − w(ξ0)| ≤ cd β(ξ; ξ0)
(
||∇Lw||Lp (Ω2) + ||@t w||Lq (Ω2)

)
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for every w ∈ C ∞
0 (Ω2) and for every ξ; ξ0 ∈ Ω1.

Let us only sketch the proof of the second assertion, essentially based on the following
Poincaré type inequality. There exists a positive constant c , only dependent on M , such
that for every ξ ∈ Ω1; for every d -ball B, such that cB ⊂ Ω2

(20) |w(ξ) − wB | ≤ c

∫

cB

(d (ξ; ξ′))−N +1|∇Lw(ξ′)|d ξ′ + c

∫

cB

(d (ξ; ξ′))−N +2|@t w(ξ′)|d ξ′;

where wB denotes the mean value of w on the ball B. From this inequality, the assertion
follows by standard techniques.

We next apply our embedding theorem to the derivatives of the function u in order
to obtain an estimates of theirs d -Hölder continuity norm.

Theorem 3.2. For every α ∈]0; 1[ there exists a constant c only dependent on M such that
for every j such that l (Dj ) = 2,

|Dju(ξ) − Dju(ξ0)| ≤ cd α(ξ; ξ0) ’ ξ; ξ0 ∈ Ω2:

Indeed, by Theorem 3.1

||Diu||L4(Ω1) ≤ c ||∇LDiu||L2(Ω2):

If Di is a differential operator of length 4, then, by (19) we deduce that there exists a
constant c , only dependent of M such that

(21) ||Diu||L4(Ω1) ≤ c:

Applying again Theorem 3.1 we deduce that for every p > 1, for every i ′ such that
l (Di′ ) = 3

||Di′u||Lp (Ω1) ≤ c:

In particular

||∇LDju||Lp (Ω1) ≤ c:

for all p, for every j such that l (Dj ) = 2. On the other hand, using (21), and keeping
in mind the fact that l (@t ) = 2, we have:

||@t D
ju||L4(Ω1) ≤ c:

Applying the second part of the Theorem 3.1 we get

|Dju(ξ) − Dju(ξ′)| ≤ cd α(ξ; ξ′); ’ξ; ξ′ ∈ Ω1;

for any α ∈]0; 1[, for any j such that l (Dj ) = 2.

4. C 2;α estimate

In this Section we show how to conclude the proof of Theorem 1.1. Here u denotes
a viscosity solution to (1), and (un) its approximating sequence. Hence there exists a
constant M0 > 0 independent of n such that

||un||L∞(Ω2) + ||∇un||L∞(Ω2) ≤ M0



68 g. citti et al.

and, by the result in [5],

||an||H 1(Ω2) + ||bn||H 1(Ω2) ≤ M1;

where an = a(∇un) and bn = b(∇un):
We will also denote by Dn the differential operator defined in terms of un as in

Definition 2.1 and we call dn the distance related to un, as described at the beginning
of Section 3. By Theorem 3.2 there exists a constant c only dependent on M = M0 +

+ M1 such that

|Di
nun(ξ) − Di

nun(ξ0)| ≤ cd α
n (ξ; ξ0);

for any i such that l (Di
n) = 2. Letting n → ∞ we obtain

|Diu(ξ) − Diu(ξ0)| ≤ cd α(ξ; ξ0);

for every i such that l (Di) = 2.
From these estimates, arguing as in [2], we finally obtain our main regularity result.
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[3] X. Cabré - L. Caffarelli, Fully nonlinear elliptic equations. Amer. Math. Society, Providence 1995.
[4] M. G. Crandall - H. Ishii - P. L. Lions, User’s guide to viscosity solutions of second order partial differential

equations. Bull. Amer. Math Soc., (N.S.), 27, 1992, 1-67.
[5] G. Citti - A. Montanari, Strong solutions for the Levi curvature equation. Advances in Differential

Equations, to appear.
[6] G. Citti - A. Montanari, C∞ regularity of solutions of an equation of Levi’s type in R2n+1. Preprint.
[7] G. B. Folland - E. M. Stein, Estimates for the @b

¯ complex and analysis on the Heisenberg group. Comm.
Pure Appl. Math., 20, 1974, 429-522.

[8] D. Gilgarg - N. S. Trudinger, Elliptic partial differential equations of second order . Springer-Verlag,
Berlin-Heidelberg-New York-Tokio 1983.

[9] R. M. Range, Holomorphic functions and integral representations in several complex variables. Springer-
Verlag, Berlin-Heidelberg-New York-Tokio 1986.

[10] Z. Slodkowski - G. Tomassini, Weak solutions for the Levi equation and envelope of holomorphy. J. Funct.
Anal, 101, 4, 1991, 392-407.

Pervenuta l’11 febbraio 1999,
in forma definitiva il 20 aprile 1999.

Dipartimento di Matematica
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