Valerio Talamanca

A Note on height pairings on polarized abelian varieties

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1999_9_10_1_57_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Abstract. — Let A be an abelian variety defined over a number field k. In this short Note we give a characterization of the endomorphisms that preserve the height pairing associated to a polarization. We also give a functorial interpretation of this result.

Key words: Abelian varieties; Height pairings; Endomorphisms.

Riassunto. — Una Note sugli accoppiamenti associati alle altezze sulle varietà abeliane polarizzate. Sia A una varietà abeliana definita su un campo di numeri k. In questa breve Nota diamo una caratterizzazione degli endomorfismi che lasciano invariata la forma bilineare associata all’altezza canonica definita a partire da una polarizzazione. Diamo, inoltre, un’interpretazione funtoriale di questo risultato.

1. Introduction

Let A be an abelian variety defined over a number field k. In [4], A. Néron introduced the canonical height pairing: $\langle \ , \ \rangle : \widehat{A}(\overline{k}) \times A(\overline{k}) \rightarrow \mathbb{R}$, between A and its dual abelian variety, \widehat{A}. This pairing satisfies the following fundamental properties:

HP1 The pairing $\langle \ , \ \rangle$ is bilinear.

HP2 If $f : A \rightarrow B$ is a k-homomorphism, then

$$\langle f(b) , a \rangle = \langle b , f(a) \rangle$$

for all $a \in A(\overline{k})$ and $b \in \widehat{B}(\overline{k})$.

A *polarization* on A is an isogeny $\lambda : A \rightarrow \widehat{A}$, such that $\lambda_{\overline{z}} = \varphi_{\mathcal{L}}$ for some ample invertible sheaf on $A_{\overline{z}} = A \times_{\text{spec} k} \text{spec} \overline{k}$ where $\varphi_{\mathcal{L}}(a) = t_{a}^* \mathcal{L} \otimes \mathcal{L}^{-1}$, and t_{a} is the translation by a map (cf. [3]). To any polarization λ we can then associate a symmetric bilinear pairing

$$\langle \ , \ \rangle_{\lambda} : A(\overline{k}) \times A(\overline{k}) \rightarrow \mathbb{R} ,$$

$$a , b \longmapsto \langle \lambda(a) , b \rangle ,$$

which is called the *height pairing associated to λ*.

In this short Note we give a characterization of the endomorphisms that preserve the height pairing associated to a polarization (actually, we prove a slightly more general result see the proposition below). In order to state our functorial interpretation of this result we need to define the category \mathfrak{hgm}, of height Galois modules. This is done as follows:

(*) Nella seduta del 12 febbraio 1999.
objects: pairs \((G, \langle , \rangle_G) \), where \(G \) is an abelian group endowed with an action of \(\Gamma = \text{Gal}(\overline{k}/k) \); \(\langle , \rangle_G \) is a symmetric bilinear real valued pairing on \(G \), which is \(\Gamma \)-equivariant if we let \(\Gamma \) act trivially on \(\mathbb{R} \).

morphisms: \(\Gamma \)-equivariant homomorphisms \(f : G \to H \) such that
\[
\langle f(a), f(a') \rangle_H = \langle a, a' \rangle_G
\]
for all \(a, a' \in G \).

Theorem. Let \(k \) be a number field and \(\Gamma = \text{Gal}(\overline{k}/k) \). Let \(\text{pav}_k \) denote the category of polarized abelian varieties defined over \(k \). Then, the functor \(F : \text{pav}_k \to \text{hgm} \), which assigns to \((A, \lambda) \) the height Galois module \(F(A, \lambda) = (A(\overline{k}), \langle , \rangle_\lambda) \), and to any morphism \(f : A \to B \) the induced morphism \(f : A(\overline{k}) \to B(\overline{k}) \), is fully faithful.

2. Height pairings and homomorphisms

Let \((A, \lambda), (B, \eta) \), be two polarized abelian varieties defined over \(k \). An homomorphism of polarized abelian varieties is an homomorphism \(f : A \to B \) such that \(\lambda = f \circ \eta \circ f \). We denote by \(\text{Hom}_k((A, \lambda), (B, \eta)) \) the set formed by those homomorphisms from \((A, \lambda) \) to \((B, \eta) \) that are defined over \(k \).

Our aim is the following:

Proposition. Let \(g : A \to B \) be a morphism defined over \(k \). Suppose that \(\lambda, \eta \) are polarizations on \(A \) and \(B \) respectively. Let \(g = t_u \circ f \), where \(u \in B(k) \), and \(f : A \to B \) is a homomorphism. Then
\[
\langle g(a), g(a') \rangle_\eta = \langle a, a' \rangle_\lambda \quad \forall \ a, a' \in A(\overline{k})
\]
if and only if \(f \in \text{Hom}_k((A, \lambda), (B, \eta)) \) and \(u \) is a torsion point.

Corollary. Let \((A, \lambda) \) be a polarized abelian variety and \(f \) an endomorphism of \(A \). Then
\[
\langle f(a), f(a') \rangle_\lambda = \langle a, a' \rangle_\lambda \quad \forall \ a, a' \in A(\overline{k})
\]
if and only if \(\lambda = f \circ \lambda \circ f \).

We need a preliminary lemma.

Lemma. Let \(\lambda \) and \(\eta \) be two polarizations on \(A \). Then \(\langle , \rangle_\lambda = \langle , \rangle_\eta \iff \lambda = \eta \).

Proof. Let \(\lambda \) and \(\eta \) be two polarizations on \(A \) such that \(\langle , \rangle_\lambda = \langle , \rangle_\eta \). Then
\[
\langle \lambda(a) - \eta(a), a' \rangle = \langle a, a' \rangle_\lambda - \langle a, a' \rangle_\eta = 0
\]
for all \(a' \) in \(A \). Since the kernel on each side of the Néron pairing is the torsion subgroup of \(A(\overline{k}) \) (see, e.g. [2, Theorem 5.6.3]) we find that for every \(a \in A(\overline{k}) \) there exists \(n \in \mathbb{Z} \), depending on \(a \), such that \([n]\lambda(a) = [n]\eta(a) \). Let \(C \) be a simple abelian
subvariety of A. Then $\lambda(a) = \eta(a)$ for infinitely many $a \in C(\overline{K})$, and thus λ and η coincide when restricted to C. The Poincaré reducibility theorem yields the lemma. □

Proof of the Proposition. We start by proving the proposition for homomorphisms. If $a, a' \in A(\overline{K})$, then

$$\langle f(a), f(a') \rangle_\eta = \langle \eta(f(a)) \rangle = \langle (\widehat{f} \circ \eta \circ f)(a), a' \rangle = \langle a, a' \rangle_{\widehat{f} \circ \eta \circ f}.$$

If $f \in \text{Hom}(\langle A, \lambda \rangle, \langle B, \eta \rangle)$, then $\widehat{f} \circ \eta \circ f = \lambda$, and hence f has the desired property. Conversely, suppose that $\langle f(a), f(a') \rangle_\eta = \langle a, a' \rangle_\lambda$ for all $a, a' \in A(\overline{K})$. Then, by (2.2), we have $\langle , \rangle_{\widehat{f} \circ \eta \circ f} = \langle , \rangle_\lambda$. Therefore, $\widehat{f} \circ \eta \circ f = \lambda$ by the above lemma. Now we deal with the general case. Suppose $g = t_{u^0} f$, where $f \in \text{Hom}(\langle A, \lambda \rangle, \langle B, \lambda \rangle)$, and $u \in B(k)$ a torsion point. The bilinearity of $\langle g(a), g(b) \rangle_\eta$ combined with (2.2), gives

$$\langle g(a), g(b) \rangle_\eta = \langle f(a), f(a') \rangle_\eta = \langle a, a' \rangle_{\widehat{f} \circ \eta \circ f}.$$

Finally, suppose that $g = t_{u^0} f$ satisfies (2.1). Then $\langle g(a), u \rangle_\eta = 0$ for all $a \in A(\overline{K})$. Using the bilinearity of \langle , \rangle_η and (2.2), we find

$$\langle a, a' \rangle_\lambda = \langle f(a), f(a') \rangle_\eta = \langle a, a' \rangle_{\widehat{f} \circ \eta \circ f}.$$

It then follows from the lemma above that $\widehat{f} \circ \eta \circ f = \lambda$. It remains to show that u is a torsion point. Let L be an ample invertible sheaf on such that $\eta_L = \varphi_{L'}$. Then $L'_0 = L \otimes L^-$ (where $L^- = [-1]^* L$) is ample and symmetric. Since $L \otimes (L^-)^{-1}$ is algebraically equivalent to zero, we have that $\varphi_L = \varphi_{L'}$, so

$$\langle u, u \rangle_{\varphi_{L'_0}} = 2 \langle u, u \rangle_{\varphi_L} = 2 \langle u, u \rangle_\eta = \langle 0, 0 \rangle_\lambda = 0.$$

But, L'_0 being symmetric, $\langle u, u \rangle_{\varphi_{L'_0}}$ is proportional to the canonical height associated to L_0, which, for an ample symmetric divisor, vanishes only on torsion points. □

A functorial interpretation

The above proposition has a functorial interpretation as we shall now show. Let pav_k, denote the category whose objects are polarized abelian varieties defined over k, and let hgm be the category of height Galois modules, which we defined in the Introduction. Given (G, \langle , \rangle_G) and (H, \langle , \rangle_H), we denote by $\text{Hom}_h(G, H)$ the set of morphisms (in the category of height Galois modules) from (G, \langle , \rangle_G) to (H, \langle , \rangle_H). We define a functor $F : \text{pav}_k \rightarrow \text{hgm}$ as follows: given a polarized abelian variety (A, λ) defined over k we let $F(A, \lambda) = (A(\overline{K}), \langle , \rangle_\lambda)$. Given a k-morphism $f : (A, \lambda) \rightarrow (B, \eta)$ then $F(f)$ is just the restriction of f to $A(\overline{K})$, which is Γ-equivariant because f is defined over k. Moreover $F(f)$ satisfies (\ast) by the above proposition. The only thing that remains to be verified is that $(A(\overline{K}), \langle , \rangle_\lambda)$ is an object of hgm, i.e. that $\langle , \rangle_\lambda$ is invariant under the action of Γ. Recall that the canonical height pairing coincides with the canonical height associated to the Poincaré bundle on $\tilde{A} \times A$ (this can be seen by comparing [4, Section 14] and [5, Section 3.4], also cf. [7, Appendix A1,
But the Poincaré bundle is defined over the ground field, and absolute projective heights are invariant under the action of Γ (see [6, Lemma 5.10]). Therefore, $\langle \sigma(a), \sigma(a') \rangle$ is invariant under the action of Γ. Thus

$$\langle \sigma(a), \sigma(a') \rangle = \langle \lambda(\sigma(a)), \lambda(\sigma(a')) \rangle = \langle \lambda(a), \lambda(a') \rangle = \langle a, a' \rangle,$$

where we used that λ is defined over k.

Theorem. Let k be a number field. Then the functor $F : \text{pav}_k \rightarrow \text{hgm}$ is fully faithful.

Proof. The faithfulness of F follows directly from the above proposition. To prove that F is full let A and B be two abelian varieties defined over k, and suppose that \tilde{f} is in $\text{Hom}_k(A(\bar{k}), B(\bar{k}))$. In particular \tilde{f} is a Γ-equivariant homomorphism from $A(\bar{k})$ to $B(\bar{k})$. It was shown by Faltings (as a non-trivial consequence of the Tate's conjecture) that the natural injection $\text{End}_k(A) \rightarrow \text{End}_\Gamma(A(\bar{k}))$ is an isomorphism (see [1, Theorem 5, p. 205]). Applying this result to $A \times B$, we find that there exists an f belonging to $\text{Hom}_k(A, B)$ such that $F = \tilde{f}$. By assumption \tilde{f} belongs to $\text{Hom}_k(A(\bar{k}), B(\bar{k}))$, thus $\langle a, a' \rangle = \langle f(a), f(a') \rangle$ for all $a, a' \in A(\bar{k})$. By the above proposition f belongs to $\text{Hom}_k((A, \lambda), (B, \eta))$. □

Research partially supported by a post-doc fellowship of the University of Padova. The author would also like to thank the Mathematics Department of Università di Roma III for the kind hospitality.

References

Mathematical Institute
University of Oxford
24-29 St. Giles Oxford, OX1 3LB (Gran Bretagna)

Universiteit van Amsterdam
KdV Instituut voor Wiskunde
Plantage Muidergracht 24
1018 TV Amsterdam (Paesi Bassi)
valerio@wins.uva.nl