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Analisi matematica. — On optimal Lp regularity in evolution equations. Nota di
Alessandra Lunardi, presentata (*) dal Corrisp. G. Da Prato.

Abstract. — Using interpolation techniques we prove an optimal regularity theorem for the convolution
u(t ) =

∫ t
0 T (t − s)f (s)ds, where T (t ) is a strongly continuous semigroup in general Banach space. In the

case of abstract parabolic problems – that is, when T (t ) is an analytic semigroup – it lets us recover in a
unified way previous regularity results. It may be applied also to some non analytic semigroups, such as
the realization of the Ornstein-Uhlenbeck semigroup in Lp(Rn), 1 < p < ∞, in which case it yields new
optimal regularity results in fractional Sobolev spaces.

Key words: Abstract evolution equations; Optimal regularity; Interpolation.

Riassunto. — Regolarità ottimale Lp in equazioni di evoluzione. Usando tecniche di interpolazione si
dimostra un teorema di regolarità ottimale per la convoluzione u(t ) =

∫ t
0 T (t − s)f (s)ds, dove T (t ) è un

semigruppo fortemente continuo in uno spazio di Banach qualunque. Nel caso dei problemi parabolici
astratti – cioè quando T (t ) è un semigruppo analitico – esso permette di ritrovare in modo unificato risultati
di regolarità già noti. Il teorema può essere applicato anche nel caso di alcuni semigruppi non analitici,
come ad esempio la realizzazione del semigruppo di Ornstein-Uhlenbeck in Lp(Rn), 1 < p < ∞, per il
quale dà nuovi risultati di regolarità ottimale in spazi di Sobolev frazionari.

1. Introduction

Let T (t ) be a strongly continuous semigroup in a Banach space X , with generator
A : D(A) �→ X ; let T > 0 and let f : (0; T ) �→ X . The initial value problem

(1.1)

{
u′(t ) = Au(t ) + f (t ); 0 < t < T;

u(0) = 0

has been the object of deep investigations for many years. In particular, much effort
has been devoted to optimal Lp regularity, 1 < p < ∞. It is well known that if
f ∈ Lp(0; T ; X ) the solution u does not necessarily belong to Lp(0; T ; D(A)), even if
T (t ) is an analytic semigroup. Several counterexamples may be found in [15]. Sufficient
conditions in order that u ∈ Lp(0; T ; D(A)) whenever f ∈ Lp(0; T ; X ) were given by
Da Prato and Grisvard in [5], and by Dore and Venni in [10].

Our point of view is slightly different, although related. We do not demand that
u ∈ Lp(0; T ; D(A)) but we look for a (as small as possible) subspace Y such that
u ∈ Lp(0; T ; Y ). Our main result is the following.

Theorem 1.1. Let Yi , i = 0; 1; 2 be Banach spaces such that Y2 ⊂ Y1 ⊂ Y0, and let
T (t ) be a semigroup in Y0 such that for every x ∈ Y0 the function t �→ T (t )x is measurable

(*) Nella seduta dell’11 dicembre 1998.
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with values in Yi , i = 1; 2, and

(1.2)





tγi‖T (t )‖L(Y0;Yi ) ≤ ci(t ); t > 0; i = 1; 2;

ci ∈ Lp
∗(0; T ); i = 1; 2;

with 0 ≤ γ1 < 1 < γ2, 1 ≤ p < ∞, T > 0.
Then for every f ∈ Lp(0; T ; Y0) the function

u(t ) =

∫ t

0
T (t − s)f (s)ds

belongs to Lp(0; T ; (Y1; Y2)γ;p), with γ = (1−γ1)=(γ2−γ1), and there is C > 0, independent
of f , such that

‖u‖Lp (0;T ;(Y1;Y2)γ;p ) ≤ C ‖f ‖Lp (0;T ;Y0):

Let us illustrate some consequences of the theorem.

1) Let T (t ) be an analytic semigroup in a Banach space X with generator A, let
0 < θ < α < 1, 1 ≤ p < ∞, and choose Y0 = DA(θ; p) = (X; D(A))θ;p, Y1 = DA(α; p),
Y2 = DA(α + 1; p) = {x ∈ D(A) : Ax ∈ DA(α; p)} (definitions and properties of such
spaces are in §3). We shall prove that (1.2) holds with γ1 = α − θ, γ2 = 1 + α − θ.
Theorem 1.1 implies that for each f ∈ Lp(0; T ; DA(θ; p)) the solution u of (1.1)
belongs to Lp(0; T ; (DA(α; p); DA(α + 1; p))1−(α−θ);p). On the other hand, the space
(DA(α; p); DA(α + 1; p))1−(α−θ);p coincides with DA(θ + 1; p), with equivalence of
the respective norms: this is well known and can be seen, for instance, using Theorems
1.14.5 and 1.10.2 (reiteration theorem) of [23]. It follows that u ∈ Lp(0; T ; DA(θ +

+ 1; p)). So we recover an old result of Da Prato and Grisvard [5] (see also [7]).

2) Let T (t ) be an analytic semigroup of negative type with generator A in a Banach
space X , and set Y0 = DA(0; p) = completion of {x ∈ X : t �→ t‖AT (t )x‖ ∈ Lp

∗(0;∞)}
in the norm |x | = (

∫∞
0 (t‖AT (t )x‖)pdt=t )1=p, 1 ≤ p < ∞. The semigroup T (t )

has a natural extension to Y0. Choosing Y1 = DA(1=2; p), Y2 = DA(3=2; p), (1.2)
holds with γ1 = 1=2, γ2 = 3=2. Theorem 1.1 implies that for each f ∈ Lp(0; T ;
DA(0; p)) the solution u of (1.1) belongs to Lp(0; T ; (DA(1=2; p); DA(3=2; p))1=2;p) =

= Lp(0; T ; DA(1; p)) (the equality (DA(1=2; p); DA(3=2; p))1=2;p = DA(1; p) follows
again from Theorems 1.14.5 and 1.10.2 of [23]). So we recover a result of Di Bla-
sio [8].

3) Other – and probably more interesting – applications are provided by non analytic
semigroups, such as the Ornstein-Uhlenbeck semigroup generated by the realization A
of the differential operator

Au = Tr(QD2u) + 〈Bx; Du〉
(where Q is symmetric and positive definite, and B 
= 0) in Lp(Rn), 1 < p < ∞.
See [22]. We choose here Y0 = W θ;p(Rn), Y1 = W α;p(Rn), Y2 = W α+2;p(Rn), with
0 < θ < α < 1, and we prove that (1.2) holds with γ1 = (α−θ)=2, γ2 = 1 + (α−θ)=2.
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Theorem 1.1 implies that for each f ∈ Lp(0; T ; W θ;p(Rn)) the solution u of (1.1)
belongs to Lp(0; T ; (W α;p(Rn); W 2+α;p(Rn)1−(α−θ)=2;p) = Lp(0; T ; W 2+θ;p(Rn)). Con-

sequently, t �→ ut (t; ·) − 〈B·; Du(t; ·)〉 belongs to Lp(0; T ; W θ;p(Rn)), but in general
ut and 〈B·; Du(t; ·)〉 do not.

The study of elliptic and parabolic problems with unbounded coefficients in Rn

grew considerably in these years: see the recent papers [2, 3, 6, 18-22]. Presumably,
the developments of the theory will allow to apply Theorem 1.1 to a wider class of
parabolic problems with unbounded coefficients in the near future.

In a recent paper [17] a stationary version of Theorem 1.1 has been proved: we
have shown that if (1.2) holds, then the domain of the part of A in Y0 is continuously
embedded in (Y1; Y2)γ;p. Moreover we have obtained a result similar to the one of
Theorem 1.1 in the case p = ∞, which allowed us to prove several optimal Hölder
regularity results for parabolic problems [4, 17, 19, 20]. The technique used here
is similar.

2. Proof of Theorem 1.1

We recall that for 0 < θ < 1, 1 ≤ p < ∞, (Y1; Y2)θ;p is the subspace of Y1

consisting of all y such that ξ �→ ξ−θK (ξ; y) ∈ Lp
∗(0; 1), where

K (ξ; y) = inf
y=a+b; a∈Y1; b∈Y2

‖a‖Y1
+ ξ‖b‖Y2

:

(Y1; Y2)θ;p is endowed with the norm

‖y‖
θ;p = ‖ξ �→ ξ−θK (ξ; y)‖L

p
∗(0;1) =

(∫ 1

0
K (ξ; y)p d ξ

ξ1+θp

)1=p

:

We shall use the Hardy-Young inequalities (see [14, pp. 245-246]), which hold for
every nonnegative measurable function ϕ : (0; + ∞) �→ R, and α > 0, 1 ≤ p < ∞.

(2.1)





(i)
∫ ∞

0
σ−αp

(∫ σ

0
ϕ(s)

ds
s

)p
dσ
σ

≤ 1
αp

∫ ∞

0
s−αpϕ(s)p ds

s
;

(ii)
∫ ∞

0
σαp

(∫ ∞

σ

ϕ(s)
ds
s

)p
dσ
σ

≤ 1
αp

∫ ∞

0
sαpϕ(s)p ds

s
:

Let u : [0; T ] �→ Y0 be given by the variation of constants formula,

u(t ) =

∫ t

0
T (s)f (t − s)ds; 0 < t < T:

For every t ∈ (0; T ) and ξ ∈ (0; 1) split u(t ) as

u(t ) = a(t; ξ) + b(t; ξ);

where

a(t; ξ) =

∫ min{ξ1=(γ2−γ1);t}

0
T (s)f (t − s)ds;

b(t; ξ) =

∫ t

min{ξ1=(γ2−γ1);t}
T (s)f (t − s)ds:
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Our aim is to show that

(t; ξ) �→ ξ−θ‖a(t; ξ)‖Y1
∈ Lp

(
(0; T ) × (0; 1); dt × d ξ

ξ

)
;

(t; ξ) �→ ξ1−θ‖b(t; ξ)‖Y2
∈ Lp

(
(0; T ) × (0; 1); dt × d ξ

ξ

)
;

and their respective norms are estimated by C ‖f ‖Lp ((0;T );Y0).
In fact we have

∫ T

0
dt

∫ 1

0
ξ−θp‖a(t; ξ)‖p

Y1

d ξ
ξ

≤
∫ T

0
dt

∫ 1

0
ξ
− (1−γ1)p

γ2−γ1

(∫ min{ξ1=(γ2−γ1);t}

0

c1(s)
sγ1

‖f (t−s)‖Y0
ds

)p
d ξ
ξ

≤

≤
∫ T

0
dt

∫ ∞

0
σ−(1−γ1)p(γ2 − γ1)

(∫ σ

0

c1(s)

sγ1−1 χ(0;t )(s)‖f (t − s)‖Y0

ds
s

)p
dσ
σ

:

We use now (2.1(i)) with α =1−γ1 and we get that the last integral is less or equal to

γ2 − γ1

(1 − γ1)p

∫ T

0
dt

∫ ∞

0
c1(s)pχ(0;t )(s)‖f (t − s)‖p

Y0

ds
s

=

=
γ2 − γ1

(1 − γ1)p

∫ T

0
c1(s)p ds

s

∫ T

s

‖f (t − s)‖p
Y0

dt ≤ γ2 − γ1

(1 − γ1)p ‖c1‖
p

L
p
∗(0;T )

‖f ‖p
Lp (0;T ;Y0):

Therefore, (t; ξ) �→ ξ−θ‖a(t; ξ)‖Y1
∈ Lp((0; T ) × (0; 1); dt × d ξ=ξ), with norm less or

equal to C ‖f ‖Lp (0;T ;Y0).
Let us consider now the function b. We have

∫ T

0
dt

∫ 1

0
ξ(1−θ)p‖b(t; ξ)‖p

Y2

d ξ
ξ

≤
∫ T

0
dt

∫ 1

0
ξ

(γ2−1)p
γ2−γ1

(∫ t

min{ξ1=(γ2−γ1);t}

c2(s)
sγ2

‖f (t−s)‖Y0
ds

)p
d ξ
ξ

≤

≤
∫ T

0
dt

∫ ∞

0
σ(γ2−1)p(γ2 − γ1)

∫ ∞

σ

c2(s)

sγ2−1 χ(0;t )(s)‖f (t − s)‖Y0

ds
s

)p
dσ
σ

:

We use here (2.1(ii)) with α = γ2 − 1 to estimate the last integral by

γ2 − γ1

(γ2 − 1)p

∫ T

0
dt

∫ t

0
c2(s)p‖f (t − s)‖p

Y0

ds
s

=

=
γ2 − γ1

(γ2 − 1)p

∫ T

0
c2(s)p ds

s

∫ T

s

‖f (t − s)‖p
Y0

dt ≤ γ2 − γ1

(γ2 − 1)p ‖c2‖
p

L
p
∗(0;T )

‖f ‖p
Lp (0;T ;Y0):

Therefore, also (t; ξ) �→ ξ1−θ‖b(t; ξ)‖Y2
belongs to Lp((0; T )× (0; 1); dt × d ξ=ξ), with

norm less or equal to C ‖f ‖Lp (0;T ;Y0), and the statement follows.

Remark 2.1. Theorem 1.1 may be extended without any important changement to
evolution operators U (t; s) satisfying, similarly to (1.2),

(2.2)

{
(t − s)γi‖U (t; s)‖L(Y0;Yi ) ≤ ci(s); 0 < s < t; i = 1; 2;

ci ∈ Lp
∗(0; T ); i = 1; 2:

In this case the statement of Theorem 1.1 holds for the function u(t ) =
∫ t

0 U (t; s)f (s)ds.
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3. Examples and applications

The most obvious applications of Theorem 1.1 are optimal regularity results for
(1.1) when A generates an analytic semigroup in a Banach space X .

In such a case the assumptions of Theorem 1.1 are satisfied by Y0 = DA(θ; p),
Y1 = DA(α; p), Y2 = DA(α + 1; p), with 0 ≤ θ < α < θ + 1, thanks to next
Lemma 3.1.

The spaces DA(θ; p) are defined as follows.
Assume first that A is of negative type. For θ > 0, DA(θ; p) is the real interpolation

space (X; D(Am))θ=m;p, where m is any integer > θ. It is independent of m and it
coincides with the set of all x ∈ X such that

‖x‖(m)
DA(θ;p) =

(∫ ∞

0
(t m−θ‖AmetAx‖)p dt

t

)1=p

< ∞:

See [23, §1.14.5]. As a canonical norm we shall consider ‖x‖DA(θ;p) = ‖x‖([θ]+1)
DA(θ;p),

dropping the superscript [θ] + 1. Here [θ] is the integral part of θ.
Let now θ = 0. We denote by DA(0; p) the completion of {x ∈ X : ‖x‖DA(0;p) < ∞}

with respect to the norm

‖x‖DA(0;p) =

(∫ ∞

0
(t‖AetAx‖)p dt

t

)1=p

:

DA(0; p) is not in general an interpolation space, and it is not in general embedded
in X . In any case the semigroup T (t ) has a natural extension to DA(0; p), which will
be denoted again by T (t ). The domain of the generator of T (t ) in DA(0; p) is the
space DA(1; p) characterized by

DA(1; p) =

{
x ∈ X : ‖x‖DA(1;p) =

(∫ ∞

0
‖tA2etAx‖p dt

t

)1=p

< ∞
}

:

See [8, 9].
Let now the type of A be any real number, and fix θ ∈ [0; 1), p ∈ [1;∞). It is

possible to show that for all ω ∈ R such that Aω = A−ωI is of negative type the spaces
DAω

(θ; p) coincide, and their norms are equivalent. See [23, §1.14.5] for θ > 0, [9]
for θ = 0. If the type of A is nonnegative we choose ω = 1 + 2 type of A and we set
DA(θ; p) = DAω

(θ; p).
Next lemma was proved in [18] in the case p = 2, α < 1; its generalization to any

p and α is easy but we write down the proof for the reader’s convenience.

Lemma 3.1. Let A be the generator of an analytic semigroup in a Banach space X , and let
0 ≤ θ < α, 1 ≤ p < ∞, T > 0. Then there is C = C (θ;α; T ) > 0 such that for every
f ∈ DA(θ; p)

(∫ T

0
t (α−θ)p‖T (t )f ‖p

DA(α;p)
dt
t

)1=p

≤ C ‖f ‖DA(θ;p):

In other words, the function t �→ t (α−θ)‖T (t )‖L(DA(θ;p);DA(α;p)) belongs to Lp
∗(0; T ).
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Proof. We may assume that A is of negative type. Let f ∈ DA(θ; p), let m be any
integer bigger than α, and let [θ] denote the integral part of θ. Then
∫ T

0
t (α−θ)p‖T (t )f ‖p

DA(α;p)
dt
t

=

∫ T

0
t (α−θ)p

∫ ∞

0
(ξm−α‖AmT (t + ξ)f ‖)p d ξ

ξ

dt
t

=

=

∫ T

0
t (α−θ)p−1

∫ ∞

t

((s − t )m−α−1=p‖AmT (s)f ‖)pds dt ≤

≤
∫ ∞

0
‖AmT (s)f ‖p

∫ s

0
t (α−θ)p−1(s − t )(m−α)p−1dt ds =

=

∫ ∞

0
s(m−θ)p−1‖Am−1−[θ]T (s=2)‖p

L(X )‖A[θ]+1T (s=2)f ‖p

∫ 1

0
σ(α−θ)p−1(1−σ)(m−α)p−1dσ ds≤

≤ C ‖f ‖p
DA(θ;p);

where we have used the estimates ‖AkT (t )‖L(X ) ≤ Mkt−k for every k ∈ N.
Some obvious remarks have to be made for θ = 0, in the case where DA(0; p) is

not embedded in X . The above estimates are correct if applied to any f ∈ X such
that ‖f ‖DA(0;p) is finite. Every element of DA(0; p) is identified with a sequence {fn} of
elements of X which is a Cauchy sequence in the norm ‖ · ‖DA(0;p); the final statement
follows letting n → ∞.

We may now apply Theorem 1.1, with Y0 = DA(θ; p), Y1 = DA(α; p), Y2 =

= DA(α + 1; p), 0 ≤ θ < α < θ + 1 to get the following result.

Theorem 3.2. Let A : D(A) ⊂ X �→ X be the generator of analytic semigroup T (t ) in X ,
let 1 ≤ p < ∞, 0 ≤ θ < ∞, T > 0. Then for every f ∈ Lp(0; T ; DA(θ; p)) the solution
u of (1:1) belongs to Lp(0; T ; DA(θ + 1; p)), and consequently to W 1;p(0; T ; DA(θ; p)).
There exists C > 0, independent of f , such that

‖u‖Lp (0;T ;DA(θ+1;p)) ≤ C ‖f ‖Lp (0;T ;DA(θ;p)):

For θ > 0 Theorem 3.2 has been proved in [5], with the aid of the theory of sum
of commuting operators. Another independent proof may be found in [7]. For θ = 0
Theorem 3.2 has been proved in [8], with the techniques of [7].

An obvious application of Theorem 3.2 is to initial boundary value problems for
general 2m order elliptic operators with regular coefficients in a regular open set Ω ⊂ Rn,
and boundary operators satisfying the Agmon-Douglis-Nirenberg conditions. Actually it
is known [1, 12] that the realizations of such operators generate analytic semigroups in
X = Lq(Ω) for every q ≥ 1, and the interpolation spaces DA(θ; p) for θ > 0 have been
completely characterized in [11, 13] as (subspaces of) Besov spaces, which coincide with
fractional Sobolev spaces if p = q for noncritical values of the parameters.

Since all this is well known, we skip it referring the reader to [5, 7, 9].
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3.1. An application to a non analytic semigroup.

Let T (t ) be the Ornstein-Uhlenbeck semigroup defined in Lp(Rn), 1 < p < ∞, by

(3.1)





(T (t )ϕ)(x) =
1

(4π)n=2(Det Qt )
1=2

∫

Rn

e− 1
4 〈Q−1

t y;y〉ϕ(etBx − y)dy; t > 0;

T (0)ϕ = ϕ:

Here Q = [qij ]i;j=1;::: ;n is any symmetric positive definite matrix, B = [bij ]i;j=1;::: ;n is
any nonzero matrix and

(3.2) Qt =

∫ t

0
esBQesB∗

ds; t ≥ 0:

Its infinitesimal generator is the realization A of the differential operator

Aϕ =
n∑

i;j=1

qijDijϕ +
n∑

i;j=1

bij xjDiϕ

in Lp(Rn), and it is not an analytic semigroup (the counterexample in [22] for n = 1
may be easily extended to any n). However, it enjoys good smoothing properties, which
we state in next Proposition 3.4. For the proof we need a lemma which may be of
interest in itself.

Lemma 3.3. Let T > 0, and let X , D be Banach spaces, with D ⊂ X . Assume that
A : [0; T ] �→ L(D; X ) is a γ-Hölder continuous function, with γ > 0, such that for every
t ∈ [0; T ] A(t ) : D(A(t )) = D �→ X generates an analytic semigroup. Denote by G (t; s)
the relevant evolution operator. Then for 0 < θ < α < 1 and 1 ≤ p < ∞ the function
t �→ tα−θ‖G (t; 0)‖L((X;D)θ;p;(X;D)α;p ) belongs to Lp

∗(0; T ).

Proof. We know from Lemma 3.1 that t �→ tα−θ‖etA(0)‖L((X;D)θ;p;(X;D)α;p ) belongs to

Lp
∗(0;T ), therefore it is sufficient to prove that t �→ tα−θ‖G (t; 0)−etA(0)‖L((X;D)θ;p;(X;D)α;p )

is in Lp
∗(0; T ).

Let x ∈ (X; D)
θ;p = DA(0)(θ; p), and set

v(t ) = G (t; 0)x − etA(0)x; 0 ≤ t ≤ T:

v satisfies {
v′(t ) = A(0)v(t ) + (A(t ) − A(0))G (t; 0)x; 0 < t ≤ T;

v(0) = 0;

so that

v(t ) =

∫ t

0
e (t−s)A(0)(A(s) − A(0))G (s; 0)x ds; 0 ≤ t ≤ T:

To estimate v(t ) we use the well known estimates

‖G (σ; 0)x‖D ≤ C

σ1−θ
‖x‖(X;D)θ;p

; ‖eσA(0)y‖(X;D)α;p
≤ C

σα ‖y‖X ; 0 < σ ≤ T:
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They imply

‖v(t )‖(X;D)α;p
≤ C 2

∫ t

0

1
(t − s)αs1−θ−γ

ds‖x‖(X;D)θ;p
= C ′tγ+θ−α‖x‖(X;D)θ;p

; 0 < t ≤ T:

It follows that t �→ tα−θ‖v(t )‖(X;D)α;p
∈Lp

∗(0; T ), with norm less or equal to C ‖x‖(X;D)θ;p
,

and the statement is proved.

Proposition 3.4. Let T (t ) be defined by (3:1). For 0 < θ < α < 2 non integers and for
every T > 0

(3.3)
(i) t �→ t (α−θ)=2‖T (t )‖L(W θ;p (Rn);W α;p (Rn)) ∈ Lp

∗(0; T );

(ii) t �→ t 1+(α−θ)=2‖T (t )‖L(W θ;p (Rn);W α+2;p (Rn)) ∈ Lp
∗(0; T ):

Proof. Let us introduce the family of operators A(t ) : D(A(t )) = W 2;p(Rn) �→ Lp(Rn),

A(t )u = Tr(etBQetB∗
D2u); t ≥ 0:

For every T > 0 the function [0; T ] �→ L(W 2;p(Rn); Lp(Rn)), t �→ A(t ) is Lipschitz
continuous. Moreover each A(t ) is the realization of a constant coefficients elliptic
operator in Lp(Rn), so it generates an analytic semigroup by [1], and W θ;p(Rn) =

= DA(t )(θ=2; p) if θ 
= 1.
Let G (t; s) be the evolution operator generated by the family {A(t ) : t ≥ 0} in

Lp(Rn). For every ϕ ∈ Lp(Rn) we have

(3.4) (T (t )ϕ)(x) = (G (t; 0)ϕ)(etBx); t ≥ 0; x ∈ Rn:

Then statement (i) is a consequence of Lemma 3.3.
Concerning (ii), (3.4) implies that for every ϕ ∈ W θ;p(Rn) = DA(0)(θ=2; p), T (t )ϕ ∈

∈ DA(0)(θ=2 + 1; p) = W θ+2;p(Rn) and there is C > 0 such that

(3.5) ‖T (t )ϕ‖W θ+2;p ≤ C
t
‖ϕ‖W θ;p ; 0 < t ≤ T:

Moreover we use the identity (D2 stands for the Hessian matrix)

D2T (t )ψ = etB∗
(T (t )D2ψ)etB; for ψ ∈ W 2;p(Rn);

which can be readily deduced from (3.1), and which implies
∫ T

0
t (2+α−θ)p=2‖T (t )ϕ‖p

W α+2;p

dt
t

≤

≤
∫ T

0
t (2+α−θ)p=2

(
‖T (t )ϕ‖W 2;p +

n∑

i;j=1

‖DijT (t=2)T (t=2)ϕ‖W α;p

)p
dt
t

≤

≤ C

(
‖ϕ‖p

W θ;p +
n∑

i;j=1

∫ T

0
t (2+α−θ)p=2‖(etB∗=2(T (t=2)D2T (t=2)ϕ)etB=2)ij‖

p
W α;p

dt
t

)
≤
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≤ C ‖ϕ‖p

W θ;p + C
n∑

k;l=1

∫ T

0
t (2+α−θ)p=2‖T (t=2)Dkl T (t=2)ϕ‖p

W α;p

dt
t

≤

≤ C ‖ϕ‖p
W s;p +C

∫ T

0
t (α−θ)p=2(‖T (t=2)‖L(W θ;p;W α;p )‖tT (t=2)‖L(W θ;p;W θ+2;p )‖ϕ‖W θ;p )p dt

t
≤

≤ C ‖ϕ‖p

W θ;p

(in the last inequality we have used both (3.3(i)) and (3.5)).
We may state the final result concerning problem

(3.6)





ut (t; x) =
n∑

i;j=1

qijDiju(t; x) +
n∑

i;j=1

bij xjDiu(t; x) + f (t; x); 0 ≤ t ≤ T; x ∈Rn;

u(0; x) = 0; x ∈ Rn:

Theorem 3.5. Let f ∈ Lp(0; T ; W θ;p(Rn)), with 0 < θ < 1, 1 < p < ∞. Then the
solution u of (3:6) belongs to Lp(0; T ; W θ+2;p(Rn)), and there is C > 0, independent of f ,
such that

‖u‖Lp (0;T ;W θ+2;p (Rn)) ≤ C ‖f ‖Lp (0;T ;W θ;p (Rn)):

Proof. It is sufficient to apply Theorem 1.1 with Y0 = W θ;p(Rn), Y1 = W α;p(Rn),
Y2 = W α+2;p(Rn) with θ < α < 1, taking into account Proposition 3.4.

For a thorough study of the Ornstein-Uhlenbeck semigroup in spaces of continuous
functions and in Hölder spaces rather than Lebesgue and Sobolev spaces, see [6].
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