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Analisi matematica. — Differentiability of the transition semigroup of the stochastic
Burgers equation, and application to the corresponding Hamilton-Jacobi equation. Nota di
Giuseppe Da Prato e Arnaud Debussche, presentata (*) dal Corrisp. G. Da Prato.

Abstract. — We consider a stochastic Burgers equation. We show that the gradient of the corresponding
transition semigroup Ptϕ does exist for any bounded ϕ; and can be estimated by a suitable exponential
weight. An application to some Hamilton-Jacobi equation arising in Stochastic Control is given.

Key words: Stochastic control problem; Burgers equation; Hamilton-Jacobi equation.

Riassunto. — Differenziabilità del semigruppo di transizione dell’equazine di Burgers stocastica e appli-
cazione all’equazione di Hamilton-Jacobi corrispondente. Si considera un’equazione di Burgers stocastica. Si
prova che il gradiente del semigruppo di transizione corrispondente Ptϕ esiste per ogni ϕ limitata e che
può essere stimato con un opportuno peso esponenziale. Viene data un’applicazione ad una equazione di
Hamilton-Jacobi che interviene in un problema di controllo stocastico.

1. Introduction

We consider the stochastic Burgers equation

(1.1)





dX =

(
AX +

1
2

@
@ξ

(X 2)
)

dt +
√

QdW; ξ ∈ [0; 1]; t ≥ 0;

X (t; 0) = X (t; 1) = 0; t ≥ 0;

X (0; ξ) = x(ξ); ξ ∈ [0; 1];

where x ∈ L2(0; 1):
Here W is a cylindrical Wiener process on L2(0; 1); adapted to a stochastic basis

(Ω;F; {Ft}t≥0;P): Moreover Q is a symmetric linear operator on L2(0; 1); and A is
the unbounded operator on L2(0; 1) defined by

Ax = @2x=@ξ2; D(A) = H 2(0; 1) ∩ H 1
0 (0; 1):

Existence and uniqueness of a solution X (·; x) to (1:1), have been proved in [5]. We
consider the transition semigroup

(1.2) Ptϕ(x) = E[ϕ(X (t; x))]; x ∈ H; ϕ ∈ Bb(H ) (1);

where H = L2(0; 1): In [6] it is proved that the semigroup Pt ; t ≥ 0 is Strong Feller,
that is if ϕ ∈ Bb(H ) and t > 0 then Ptϕ is continuous. In this paper we show that,

(*) Nella seduta del 18 giugno 1998.
(1) Bb(H ) is the set of all bounded Borel real functions on H:
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under suitable assumptions on Q , Ptϕ belongs to C 1(H ) (2), and that the following
estimate holds

(1.3) |DPtϕ(x)| ≤ CT t−γeδ|x|
2‖ϕ‖0; t ∈ [0; T ]; x ∈ H;

where δ > 0 is arbitrary and CT > 0; γ < 1 are suitable constants depending on δ:

This result allows us to prove existence and uniqueness of a regular solution of the
Hamilton-Jacobi equation:

(1.4)





d
dt

u(t; x) =
1
2

Tr [QD2u(t; x)] +

(
Ax +

1
2

(x2)ξ; Du(t; x)
)

+

− F (x; Du(t; x)) + g (x);

u(0; x) = ϕ(x)

where F is Lipschitz continuous with respect to Du and exponentially decaying with
respect to x: Moreover ϕ and g ∈ Cb(H ) and D denotes derivatives with respect to x:

Hamilton-Jacobi equations in Hilbert spaces of the form




d
dt

u(t; x) =
1
2

Tr [QD2u(t; x)] + (Ax + f (x); Du(t; x)) +

−F (x; Du(t; x)) + g (x);

u(0; x) = ϕ(x)

have been studied in [2, 9], under the assumption that f is a Lipschitz contin-
uous mapping from H into H; by doing a fixed point in a space of C 1 func-
tions. These results can be generalized to the case where f has a polynomial growth,
see [3].

The more singular equation (1:4) was studied by the authors, [4], using Hopf
transform. This requires a special quadratic form of the Hamiltonian.

In this paper we will solve equation (1:4) in a more general situation by using esti-
mate (1:3) and by doing a fixed point in a suitable space of functions having exponential
growth.

This result can be applied, using an usual argument of Dynamic Programming to
the following optimal control problem,

Minimize:

(1.5) J (x; z) = E

(∫ T

0

[
g (Y (s)) +

1
2

h(Y (s))|z(s)|2
]

ds + ϕ(Y (T ))

)
;

over controls z that are adapted to W , and such that |z(s)| ≤ R; where R > 0 is fixed

(2) Cb(H ) is the Banach space of all continuous and bounded mappings from H into R; endowed
with the norm ‖ϕ‖0 = supx∈H |ϕ(x)|: Moreover C 1(H ) is the set of all functions in Cb(H ) that are Fréchet
differentiable.
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and subjected to the state equation

(1.6)





dY =
(

AY +
1
2

@
@ξ

(Y 2) +
√

Qz
)

dt +
√

QdW; ξ ∈ [0; 1]; t ≥ 0 ;

Y (t; 0) = Y (t; 1) = 0; t ≥ 0 ;

Y (0; ξ) = x(ξ) ; ξ ∈ [0; 1] :

Moreover g; h;ϕ are nonnegative functions on Cb(H ); and

(1.7) h(x) ≤ Ce−ε|x|2; x ∈ H;

for some C; ε > 0:

In this case the related Hamilton-Jacobi equation is equation (1.4) with

(1.8) F (x; z) =

{
(1=2) |z |2 if |z | ≤ R;

(
R |z | − R2=2

)
h(x) if |z | ≥ R;

see e.g. [8].

2. Estimate of the solution

Let H = L2(0; 1) be endowed with the usual norm and inner product denoted by
| · | and (·; ·): As usual, H k(0; 1); k ∈ N; is the Sobolev space of all functions in
H whose derivatives up to the order k belong to H; and H 1

0 (0; 1) is the subspace of
H 1(0; 1) of all functions whose traces at 0 and 1 vanish.

The operator A is selfadjoint, strictly negative and has a compact inverse. We can
define (−A)s and D((−A)s) for any s ∈ R: For s = 1

2 ; we have D((−A)1=2) = H 1
0 (0; 1)

and its norm and inner product are denoted by

‖x‖ = |(−A)1=2x |; ((x; y)) =
(

(−A)1=2x; (−A)1=2y
)

; x; y ∈ H 1
0 (0; 1):

The sequence of eigenvalues of A is

λk = −k2π2; k ∈ N;

it is associated to the orthonormal basis of eigenvectors {ek}k∈N;

ek =
√

2=π sin kξ; k ∈ N; ξ ∈ [0; 1]:

For any positive integer m we denote by Pm the orthogonal projector on the space
spanned by e1; :::; em:

We also consider a linear operator Q which is assumed to be symmetric, nonnegative
and of trace class, a cylindrical Wiener process W on H associated to a stochastic basis
(Ω;F; {Ft}t≥0;P):

For x ∈ H 1
0 (0; 1) we set

B(x) =
1
2

@
@ξ

(x2):
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For any x ∈ H; equation (1:1) has a unique solution, see [5]. This solution can be
constructed as the limit of Galerkin approximations. For m ∈ N; we define Bm by

Bm(x) =
1
2

Pm

[
@
@ξ

(Pmx)2
]

; x ∈ L2(0; 1);

and consider the following Galerkin approximation of (1:1):

(2.1)

{
dXm = (AXm + Bm(Xm))dt +

√
Qm dW;

Xm(0) = xm = Pmx;

where Qm = PmQPm: Notice the crucial identity

(2.2) (Bm(Xm); Xm) = 0:

We start by estimating |Xm(t )| and ‖Xm(t )‖:

Proposition 2.1. For all T > 0 there exists CT > 0 such that

(2.3) E

(
sup

t∈[0;T ]
|Xm(t )|2 +

∫ T

0
‖Xm(s)‖2ds

)
≤ CT (|x2| + 1):

Proof. For any m ∈ N; we have from Itô’s formula and (2:2); that

(2.4) |Xm(t )|2 + 2
∫ t

0
‖Xm(s)‖2ds = |x2| + t Tr Q m + 2

∫ t

0

(
Xm(s);

√
Q m dWs

)
;

that yields

(2.5) E
(
|Xm(t )|2 + 2

∫ t

0
‖Xm(s)‖2ds

)
= t Tr Q m + |x2|:

Moreover by (2:4) it follows

sup
t∈[0;T ]

|Xm(t )|2 ≤ |x2| + T Tr Q m + 2 sup
t∈[0;T ]

∫ t

0

(
Xm(s);

√
Q m dWs

)
:

Here we have dropped expectation of the Itô integral term. This fact can be justified
approximating |Xm(t )|2 with |Xm(t )|2=(1 + δ|Xm(t )|2) and then letting δ tend to 0:

Taking expectation, and using a well known martingale inequality, we find

E

(
sup

t∈[0;T ]
|Xm(t )|2

)
≤ |x2| + T Tr Q m + 4

[
E

(∫ T

0
|
√

Q mXm(s)|2ds

)]1=2

:

By (2:5) and the boundedness of Q there exists C1;T > 0 such that

E

(
sup

t∈[0;T ]
|Xm(t )|2

)
≤ C1;T (|x2| + 1):

Now the conclusion follows from (2:5):
Now we want to estimate exponential moments of |Xm(t )|:
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Proposition 2.2. Let ε ≤ ε0 = π2=(2‖Q‖); then for any t ∈ [0; T ] and m ∈ N;

(2.6) E
(

eε|Xm(t )|2+ε
∫ t

0 ‖Xm(s)‖2ds
)
≤ eε|x|

2+εt Tr Q :

Proof. We set

Z (t ) = |Xm(t )|2 +

∫ t

0
‖Xm(s)‖2ds; t ≤ [0; T ]:

Then we have

dZ (t ) =
(
−‖Xm(t )‖2 + Tr Q m

)
dt + 2

(
Xm;

√
Q m dWt

)
:

By Itô’s formula applied to eεZ (t ); it follows that

deεZ (t ) = εeεZ (t )
[
−‖Xm(t )‖2 + 2ε|

√
Q m Xm|

2 + Tr Q m

]
dt +

+ 2εeεZ (t )
(

Xm(t );
√

Q m dWt

)
:

Then, integrating and taking expectation we obtain

(2.7)
E
(

eεZ (t )
)

= eε|x|
2
+ ε Tr Q m

∫ t

0
E
(

eεZ (s)
)

ds +

+ εE
(

eεZ (t )
∫ t

0
(−‖Xm(s)‖2 + 2ε|

√
Q m Xm(s)|2)ds

)
:

Here we have dropped expectation of the Itô integral term. This fact can be justified
approximating eεZ (t ) with eεZ (t )=(1 + δeεZ (t )) and then letting δ tend to 0: Since

2ε|
√

Q m Xm(s)|2 ≤ 2ε‖Q m‖ |Xm(s)|2 ≤ 2επ−2‖Q m‖ ‖Xm(s)‖2 ≤ ‖Xm(s)‖2;

by (2:7) we have

E
(

eεZ (t )
)
≤ eε|x|

2
+ ε Tr Q m

∫ t

0
E
(

eεZ (s)
)

ds;

and the conclusion follows from Gronwall’s lemma.
Now, by Proposition 2:2 we obtain, letting m tend to infinity,

Proposition 2.3. Let X (·) be the mild solution to problem (1:1): Let ε ≤ ε0 = π2=(2‖Q‖);
then for any t ∈ [0; T ]

(2.8) E
(

eε|X (t )|2+ε
∫ t

0 ‖X (s)‖2ds
)
≤ eε|x|

2+εt Tr Q :

3. Estimates of derivatives

In this Section we are going to prove, using (2.8), some estimates on derivatives
of the transition semigroup of Burgers equation. Derivation of our estimates are not
rigorous but they can be easily justified by considering Galerkin approximations as in
the previous Section.
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We start with first derivatives. Let h ∈ H; setting

ηh(t; x) = η(t ) = DxX (t; x)h;

we have

(3.1)

{
dη=dt = Aη + (X η)

ξ

η(0) = h:

Proposition 3.1. There exists C1 > 0 such that

(3.2) |η(t )|2 +

∫ t

0
‖η(s)‖2ds ≤ eC1

∫ t
0 ‖X (s)‖4=3ds |h|2:

Proof. We start from the equality

1
2

d
dt

|η(t )|2 + ‖η(t )‖2 =

∫ 1

0
(X (t )η(t ))ξη(t ) d ξ =

= −
∫ 1

0
η(t )ηξ(t )X (t )d ξ =

1
2

∫ 1

0
η2(t )Xξ(t )d ξ:

It follows

1
2

d
dt

|η(t )|2 + ‖η(t )‖2 ≤ 1
2
‖X (t )‖|η(t )|2L4 ≤

≤ C
2

‖X (t )‖|η(t )|2
H 1=4 ≤ C

2
‖X (t )‖|η(t )|3=2 ‖η(t )‖1=2;

where we have used the embedding H 1=4(0; 1) ⊂ L4(0; 1); and a well known interpo-
latory inequality. Since

ab ≤ (3=4) a4=3 + (1=4) b4; a; b > 0;

setting

a =
C
2

‖X (t )‖|η(t )|3=2; b = ‖η(t )‖1=2;

we find

1
2

d
dt

|η(t )|2 + ‖η(t )‖2 ≤ 3
4

(
C
2

)4=3

‖X (t )‖4=3|η(t )|2 +
1
4
‖η(t )‖2:

It follows
d
dt

|η(t )|2 + ‖η(t )‖2 ≤ C1‖X (t )‖4=3|η(t )|2;

that implies, by a well known comparison result,

|η(t )|2 ≤ eC1
∫ t

0 ‖X (s)‖4=3ds |h|2 −
∫ t

0
eC1

∫ t
s ‖X (σ)‖4=3dσ‖η(s)‖2ds |h|2;

which yields (3:2).
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Proposition 3.2. For all T > 0 and ε ∈ (0; ε0); there exists C
ε;T > 0 such that

(3.3) E
(
|η(t )|2 +

∫ t

0
‖η(s)‖2ds

)
≤ Cε;T |h|

2eε|x|
2
:

Proof. For any ε ∈ (0; ε0) there exists C
ε

> 0 such that

C1

∫ t

0
‖X (s)‖4=3ds ≤ ε

∫ t

0
‖X (s)‖2ds + Cεt:

Then by (3:2) it follows

E
(
|η(t )|2 +

∫ t

0
‖η(s)‖2ds

)
≤ E

(
eε

∫ t
0 ‖X (s)‖2ds+Cεt

)
|h|2:

Now the conclusion follows from Proposition 2:3:
We now consider second derivatives. Let h ∈ H; setting

ζh(t; x) = ζ(t ) = D2
x Xm(t; x)(h; h);

we have

(3.4)





d ζ
dt

= Aζ + (X ζ)ξ +
(
η2)

ξ

ζ(0) = 0:

Proposition 3.3. There exists C2; C3 > 0 such that

(3.5) |ζ(t )|2 +

∫ t

0
‖ζ(s)‖2ds ≤ C3eC2

∫ t
0 ‖X (s)‖4=3ds |h|4:

Proof. We have, arguing as in the proof of Proposition 3:1;

1
2

d
dt

|ζ(t )|2 + ‖ζ(t )‖2 =
1
2

∫ 1

0
ζ2(t )Xξ(t )d ξ −

∫ 1

0
ζξ(t )η2(t )d ξ ≤

≤ C1‖X (t )‖4=3|ζ(t )|2 +
1
2
‖ζ(t )‖2 + |η(t )|4L4 :

It follows

(3.6)
|ζ(t )|2 +

∫ t

0
‖ζ(s)‖2ds ≤

∫ t

0
eC1

∫ t
s ‖X (σ)‖4=3dσ|η(s)|4L4 ds ≤

≤ eC1
∫ t

0 ‖X (σ)‖4=3dσ

∫ t

0
|η(s)|4L4 ds:

On the other hand by Sobolev embedding and interpolation inequality:

|η(t )|4L4 ≤ C3|η(t )|2 ‖η(t )‖2

and by (3:2) we have
∫ t

0
|η(s)|4ds ≤ C3e2C1

∫ t
0 ‖X (s)‖4=3ds |h|4:

Now the conclusion follows by substituting in (3:6).
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Finally the following result is proved as Proposition 3:2

Proposition 3.4. For all T > 0 and ε > 0 there exists C
ε;T > 0 such that

(3.7) E
(
|ζ(t )|2 +

∫ t

0
‖ζ(s)‖2ds

)
≤ C

ε;T |h|
4eε|x|

2
:

4. Regularity of the transition semigroup

Here we assume that

(4.1) |Q−1=2x | ≤ C |(−A)−β=2x |; x ∈ H;

for some C > 0 and β ∈ (1=2; 1): For simplicity we take Q = (−A)−β : Now we prove
differentiability of the transition semigroup by using the Bismut–Elworthy formula,
see [1, 7].

Proposition 4.1. Assume that (4:1) holds, and let h ∈ H and ϕ ∈ Cb(H ): Then Ptϕ is
twice differentiable and

(4.2)
(
DPtϕ(x); h

)
=

1
t
E
[
ϕ(X (t; x))

∫ t

0

(
Q−1=2ηh(s); dW (s)

)]
:

Moreover for any T > 0 and ε > 0 there exists Cε;T > 0 such that

(4.3) |DPtϕ(x)| ≤ Cε;T t−(1+β)=2 ‖ϕ‖0eε|x|
2
; t ∈ [0; T ];

and

(4.4) ‖D2Ptϕ(x)‖ ≤ Cε;T t−1−β ‖ϕ‖0eε|x|
2
; t ∈ [0; T ]:

Proof. We first note that by interpolation

|Q−1=2η| ≤ C |(−A)−β=2η| ≤ C |η|1−β‖η‖β :

Therefore

E
∫ t

0
|Q−1=2η(s)|2ds ≤ CE

∫ t

0
|η(s)|2(1−β)‖η(s)‖2βds ≤

≤ C

[
E
∫ t

0
|η(s)|2ds

]1−β [
E
∫ t

0
‖η(s)‖2ds

]β

:

By Proposition 3:2 it follows

(4.5) E
∫ t

0
|Q−1=2η(s)|2ds ≤ Cε;T t 1−β |h|2eε|x|

2
:

Consequently

|
(
DPtϕ(x); h

)
|2 ≤ t−2 ‖ϕ‖2

0E
[∫ t

0
|Q−1=2η(s)|2ds

]
≤ C 2

ε;T t−1−β ‖ϕ‖2
0|h|

2eε|x|
2
;

and (4:3) is proved. (4:4) can proved similarly, using Proposition 3:4 and the semigroup
property of Pt :
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5. Hamilton-Jacobi equation

We are here concerned with the following Hamilton-Jacobi equation

(5.1)





d
dt

u(t; x) =
1
2

Tr [QD2u(t; x)]+ (Ax + B(x); Du(t; x))−F (x; Du(t; x)) + g (x);

u(0; x) = ϕ(x)

for x ∈ H; and t > 0: We have denoted by B(x) = (1=2) (x2)ξ; and F is a continuous
and bounded mapping from H × H into H; such that

(5.2) |F (x; y1) − F (x; y2)| ≤ L(x)|y1 − y2|; y1; y2 ∈ H;

where L(x) is such that

(5.3) L(x) ≤ ke−γ|x|2;

for some k > 0 and γ > 0: Moreover ϕ; g ∈ Cb(H ):
We write problem (5:1) in the mild form

(5.4) u(t; ·) = Ptϕ +

∫ t

0
Pt−s[(F (·; Du(s; ·))) + g ]ds:

We define C 1
γ (H ) as the space of all functions of Cb(H ) that are differentiable and such

that

‖Dϕ‖0;γ = sup e−γ|x|2 |Dϕ(x)| < ∞:

Equation (5:4) will be solved by a fixed point argument in the Banach space ZT;γ

consisting of all mappings u : [0; T ] × H → R such that u ∈ C ([0; T ] × H ); for all
t ∈ (0; T ] u(t; ·) ∈ C 1

γ (H ); and

‖u‖ZT;γ
= sup

t∈[0;T ]
‖u(t; ·)‖0 + sup

t∈(0;T ]
t

1+β
2 ‖Du(t; ·)‖0;γ <+ ∞:

Theorem 5.1. Assume that F is continuous and satisfies (5:2), (5:3); and that ϕ and g are
in Cb(H ): Then there exists a unique mild solution to problem (5:1) in ZT;γ :

Proof. We shall denote by C any constant. We write equation (5:4) as

u = Γ(u) + z;

where

z(t; ·) = Ptϕ +

∫ t

0
Pt−s g ds;

and

Γ(u)(t; ·) =

∫ t

0
Pt−sF (·; Du(s; ·))ds:

Step 1. z ∈ ZT;γ :

We clearly have

‖Ptϕ‖0 ≤ C ‖ϕ‖0;
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and ∥∥∥∥
∫ t

0
Pt−s g ds

∥∥∥∥
0

≤ T ‖g‖0:

Moreover by Proposition 4:1

|DPtϕ|0;γ = sup e−γ|x|2 |DPtϕ(x)| ≤ Ct−(1+β)=2 ‖ϕ‖0;

and ∣∣∣∣D
∫ t

0
Pt−s g ds

∣∣∣∣
0;γ

≤ C

∫ t

0
(t − s)−(1+β)=2ds ‖g‖0 ≤ C ‖g‖0:

Step 2. Γ maps ZT;γ into ZT;γ :

Let u ∈ ZT;γ then

‖Γ(u)(t; ·)‖0 ≤
∫ t

0
‖F (·; Du(s; ·))‖0ds;

and by (5:2), (5:3)

|F (x; Du(s; x))| ≤ L(x)|Du(s; x)| + |F (x; 0)| ≤ k|Du(s; ·)|0;γ + ‖F (·; 0)‖0 ≤
≤ ks−(1+β)=2‖u‖ZT;γ

+ ‖F (·; 0)‖0:

Thus

‖Γ(u)(t; ·)‖0 ≤ k

∫ t

0
s−

1+β
2 ds ‖u‖ZT;γ

+ T ‖F (·; 0)‖0:

Also by Proposition 4.1

‖DΓ(u)(t; ·)‖0;γ ≤ C

∫ t

0
(t − s)−(1+β)=2‖F (·; Du(s; ·))‖0ds ≤

≤ C

∫ t

0
(t − s)−(1+β)=2s−(1+β)=2 ds ‖u‖ZT;γ

+ C

∫ t

0
(t − s)−(1+β)=2‖F (·; 0)‖0ds ≤

≤ Ct−(1+β)=2‖u‖ZT;γ
+ C ‖F (·; 0)‖0:

Step 3. Γ is a contraction.

We argue as in Step 2, for u; v ∈ ZT;γ

‖Γ(u)(t; ·) − Γ(v)(t; ·)‖0 ≤
∫ t

0
‖F (·; Du(s; ·)) − F (·; Dv(s; ·))‖0ds;

and, by (5:2), (5:3)

‖F (·; Du(s; ·)) − F (·; Dv(s; ·))‖ ≤ k|Du(s; ·) − Dv(s; ·)|0;γ;

so that

‖Γ(u)(t; ·) − Γ(v)(t; ·)‖0 ≤ k

∫ t

0
s−(1+β)=2ds ‖u − ‖ZT;γ

≤ 2k
1 − β

T (1−β)=2 ‖u − ‖ZT;γ
:
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Moreover by Proposition 4.1

‖DΓ(u)(t; ·)−DΓ(v)(t; ·)‖0;γ ≤C

∫ t

0
(t−s)−(1+β)=2‖F (·; Du(s; ·))−F (·; Dv(s; ·))‖0ds≤

≤ C

∫ t

0
(t − s)−(1+β)=2s−(1+β)=2 ds ‖u − v‖ZT;γ

≤ Ct (1−β)=2‖u‖ZT;γ
:

We deduce

‖Γ(u) − Γ(v)‖ZT;γ
≤ CT

1−β
2 ‖u − ‖ZT;γ

:

Thus there exists T0 > 0 such that Γ is a contraction on ZT0;γ and we have existence
and uniqueness of a mild solution of (5:1) in ZT0;γ : This solution can be continued to
ZT;γ in a standard way.
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