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Analisi matematica. — On the regularity of abstract Cauchy problems and boundary
value problems. Nota di Philippe Clément e Sylvie Guerre-Delabrière, presentata (*) dal
Corrisp. G. Da Prato.

Abstract. — Maximal regularity (in Lp-sense) for abstract Cauchy problems of order one and boundary
value problems of order two is studied. In general, regularity of the first problems implies regularity of
the second ones; the converse is shown to hold if the underlying Banach space has the UMD property. A
stronger notion of regularity, introduced by Sobolevskii, plays an important role in the proofs.

Key words: Abstract differential equations; UMD-spaces; Maximal regularity.

Riassunto. — Sulla regolarità di problemi di Cauchy astratti e di problemi al contorno. Viene studiata
la regolarità massimale (in Lp ) di problemi di Cauchy astratti di ordine uno e di problemi al contorno di
ordine due. In generale, la regolarità del primo tipo di problemi implica la regolarità del secondo; l’inverso
viene dimostrato quando lo spazio di Banach in oggetto ha la proprietà UMD. Una nozione di regolarità
forte, introdotta da Sobolevskii, ha un ruolo importante nelle dimostrazioni.

0. Introduction

The aim of this paper is to compare several notions of regularity associated with the
abstract inhomogeneous Cauchy-problem of order one:

(P1;T )
{

u′(t ) + Au(t ) = f (t ); t ∈ [0; T ]; 0 < T < ∞;

u(0) = 0;

and the abstract boundary value problems of order two:

(P2;DD)
{ −u′′(t ) + A2u(t ) = f (t ); t ∈ [0; T ]; 0 < T < ∞;

u(0) = u(T ) = 0;

and

(P2;NN )
{ −u′′(t ) + A2u(t ) = f (t ); t ∈ [0; T ]; 0 < T < ∞;

u′(0) = u′(T ) = 0:

The function u : [0; T ] → X takes its values in a complex Banach space (X; | · |); u′

(resp. u′′) denotes the first derivative (resp. the second derivative) of u with respect
to t , the operator A (in general unbounded and not necessarily densely defined) is
supposed to be the negative generator of an exponentially stable analytic semigroup on
X , denoted by (e−tA)t>0, see [11]. Notice that an analytic semigroup is exponentially

(*) Nella seduta dell’8 maggio 1998.
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stable if and only if 0 is in the resolvent set of the generator A, see Remark 7 below.
The function f is a given function in Lp([0; T ]; X ) for some p ∈ (1;∞).

The problem (P1;T ) (resp. (P2;D;D); (P2;N;N )) is called p-regular if for every f ∈
∈Lp([0; T ]; X ), it has one and only one solution u ∈ W 1;p([0; T ]; X )∩Lp([0; T ]; D(A))
(resp. u ∈ W 2;p([0; T ]; X ) ∩ Lp([0; T ]; D(A2))) where D(A) (resp. D(A2)) denotes the
domain of A (resp. A2) equipped with the graph norm, see Definition 1.1 below.

It will appear (see Lemma 1.0 below) that if (P1;T ) (resp.(P2;DD) or (P2;NN )) is
p-regular, then (0:1) holds (resp. (0:2)):





There exists M ≥ 1 such that

‖u′‖Lp ([0;T ];X ) + ‖Au‖Lp ([0;T ];X ) ≤ M ‖u′ + Au‖Lp ([0;T ];X );

for every u ∈ W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A))

satisfying u(0) = 0;

(0.1)

respectively:





There exists M ≥ 1 such that

‖u′′‖Lp ([0;T ];X ) + ‖A2u‖Lp ([0;T ];X ) ≤ M ‖ − u′′ + A2u‖Lp ([0;T ];X );

for every u ∈ W 2;p([0; T ]; X ) ∩ Lp([0; T ]; D(A2))

satisfying u(0) = u(T ) = 0 (resp. u′(0) = u′(T ) = 0):

(0.2)

Recall that if (P1;T ) is p-regular for some p ∈ (1;∞) and some T > 0, it is also
p-regular for all p ∈ (1;∞) and all T > 0, [26, 8, 5], but of course the constant M
may depend on p and T .

We shall call problem (P1;T ) (resp. (P2;DD), (P2;NN )) λ-p-regular if problem

(P1;T )λ

{
u′(t ) + λAu(t ) = f (t ); t ∈ [0; T ]; 0 < T < ∞;

u(0) = 0;

(resp. (P2;DD)
λ
, (P2;NN )

λ
) is p-regular for all λ > 0 and inequality (0:1) (resp. (0:2))

holds where A (resp. A2) is replaced by λA (resp. λ2A2) with λ > 0 and M is
independent of λ, see Definition 1.2 below. We will denote by (0:1)

λ
and (0:2)

λ
the

corresponding inequalities.

In §1, we first give precise definitions of regularity and λ-regularity in a general
setting. These notions will be used in a essential way in §2 and §3. Then, we recall
without proofs some results of Da Prato-Grisvard [9] and Sobolevskii [25] concerning
the sum of commuting positive operators in Banach spaces, which are used in this paper.
Finally, we recall some results concerning the λ-p-regularity of the Cauchy problem of
order one.

In §2, under hypothesis (HA) defined in §1, we compare the p-regularity (resp. the
λ-p-regularity) of problems of order one and two in a general setting.
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In §3, under the same assumption, we consider the p-regularity (resp. the λ-p-
regularity) of periodic problems (P1;P;T ) and (P2;P;T ) of order one and two, that is:

(P1;P;T )
{

u′(t ) + Au(t ) = f (t ); t ∈ [0; T ];

u(0) = u(T );

and

(P2;P;T )
{ −u′′(t ) + A2u(t ) = f (t ); t ∈ [0; T ];

u(0) = u(T ); u′(0) = u′(T ):

We study the different notions of p-regularity of these problems and compare them
with the p-regularity of (P1;T ) for the first order and with the p-regularity of (P2;DD)
and (P2;NN ) for the second order.

We deduce from this that, if (P1;T ) is p-regular, then both (P2;DD) and (P2;NN ) are
λ-p-regular. Moreover if X has the UMD-property, then the p-regularity of (P2;DD) or
(P2;NN ) implies the λ-p-regularity of (P1;T ).

As a consequence of these results, it appears that if p ∈ (1;∞), the space X has the
UMD property and the operator A satisfies (HA), then all problems defined above are
simultaneously p-regular and λ-p-regular.

1. Preliminaries

Let E be a complex Banach space with norm ‖ · ‖ and let A and B be two closed
operators in E (not necessarily densely defined). Consider the problem:

(P ) Au + Bu = f in E:

Definition 1.1. Problem (P ) is called regular in E , or equivalently, the pair (A;B) is
called regular, if for all f ∈ E , there exists a unique u ∈ D(A) ∩ D(B) such that (P ) holds.

If (P ) is regular, it follows from Banach theorem that inequality (1:0) holds:

(1.0) ‖u‖ + ‖Au‖ + ‖Bu‖ ≤ M ‖Au + Bu‖

for some M ≥ 1 and for all u ∈ D(A) ∩ D(B).
It is easy to verify the following lemma:

Lemma 1.0. Let A and B be two closed operators in E (not necessarily densely defined ).
Then (P ) is regular if and only if :

1) (1:0) holds
2) R(A + B) is dense in E .

If moreover 0 ∈ ρ(A) or ρ(B) (where ρ(:) denotes the resolvent set of an operator ), (1:0) is
equivalent to (1:1):

(1.1) ‖Au‖ + ‖Bu‖ ≤ M ‖Au + Bu‖

for some M ≥ 1 and for all u ∈ D(A) ∩ D(B).
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Remark 0. The operator A + B is closed if and only if

‖u‖ + ‖Au‖ + ‖Bu‖ ≤ M
(
‖Au + Bu‖ + ‖u‖

)

for some M ≥ 1 and for all u ∈ D(A) ∩ D(B). In particular, if (P ) is regular, A + B
has to be closed.

A pair of operators (A;B) such that problem (P ) is regular is called coercive in [25].

Also, the stronger notion of coercively positive pair is introduced in [25], which
motivates our Definition 1.2:

Definition 1.2. Problem (P ) is called λ-regular in E , or equivalently, the pair (A;B) is
called λ-regular, if problem

(P )
λ λAu + Bu = f in E

is regular for all λ > 0 and moreover, inequality (1:1)λ holds, for all λ > 0:

(1.1)
λ ‖λAu‖ + ‖Bu‖ ≤ M ‖λAu + Bu‖

for some M ≥ 1, independent of λ and for all u ∈ D(A) ∩ D(B).

Remark 1. 1) In [2], an example of two operators A and B, with B bounded, on a
Hilbert space H such that (A;B) is regular but not λ-regular is given.

2) Clearly if (1:1)
λ holds, then the inequality

λ‖Au‖ + µ‖Bu‖ ≤ M ‖λAu + µBu‖
holds for some M ≥ 1, for all λ;µ > 0 and u ∈ D(A) ∩ D(B), which shows that the
definition of λ-regularity is symmetric in A and B. It is also clear that this inequality
is equivalent to the following ones:

‖Au‖ ≤ M ‖Au + λBu‖;

for some M ≥ 1 and all λ > 0 and u ∈ D(A) ∩ D(B), and

λ‖Bu‖ ≤ M ‖Au + λBu‖
for some M ≥ 1 and all λ > 0 and u ∈ D(A) ∩ D(B).

The following analogue for the λ-regularity of Lemma 1.0 is easily verified:

Lemma 1.0.λ. Let A and B be two closed operators in E (not necessarily densely defined ).
If 0 ∈ ρ(A), then (P ) is λ-regular if and only if :

1) (1:1)
λ holds for all λ > 0,

2) There exists λ0 > 0 such that R(λ0A + B) is dense in E .

Let us recall classical definitions on closed operators:
A closed linear operator A : D(A) ⊂ E → E (not necessarily densely defined) is

called positive in (E; ‖ · ‖), [28], if there exists C > 0 such that (1.2) holds:

(1.2) ‖u‖ ≤ C ‖u + λAu‖; for every λ > 0 and u ∈ D(A);

and if R(I + λA) = E for some λ > 0, equivalently for all λ > 0.
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Remark 2. In [28], an operator A is called positive if it is positive and satisfies the
additional assumption that 0 ∈ ρ(A). In this paper, it is convenient to relax this extra
condition.

If A is positive, injective and densely defined, it is easy to prove that A−1 is also
positive.

If X is reflexive and A is positive, then A is densely defined [20].

Let Σσ := {λ ∈ C\{0}; | arg λ| ≤ σ} ∪ {0}, for σ ∈ [0;π). If A is positive, there
exists θ ∈ [0;π) such that (1.3) holds, [20, p. 288]:

(1.3)




i) σ(A) ⊆ Σθ

ii) for each θ′ ∈ (θ;π]; there exists

M (θ′) ≥ 1 such that ‖λ(λI −A)−1‖ ≤ M (θ′);

for every λ ∈ C\{0} with |arg λ| ≥ θ′;

where σ(A) denotes the spectrum of A.
The number ωA := inf{θ ∈ [0;π); (1:3) holds} is called the spectral angle of the

operator A.
Clearly ωA ∈ [0;π).

An operator A is said to be of type (ω; M ) [27], if A is positive, ω is the spectral
angle of A and

M := min{C ≥ 0; (1:2) holds}:

Note that M is also the smallest constant in (1.3) ii) for θ′ = π.
In general, we have M ≥ 1.
If M = 1, the operator A is called m-accretive, and then ω ≤ π=2 [27].
If A is of type (ω; M ) with ω < π=2, then A2 (with D(A2) := {u ∈ D(A);Au ∈
∈ D(A)}) is of type (2ω; M ′) for some M ′ ≥ 1.

Let A be an operator of type (ω; M ) and densely defined, then the fractional powers
of A; Aα with α ∈ (0; 1), [20], are well-defined and are positive operators of type
(αω; M ′). Moreover the domain of A is dense in the domain of Aα equipped with the
graph norm [27]. If A is an operator of type (ω; M ) with ω < π=2 and if 0 ∈ ρ(A),
then (A2)1=2 = A.

Two positive operators A and B in E are said to be (resolvent) commuting if the
bounded operators (I + λA)−1 and (I + µB)−1 commute for some λ;µ > 0, equiva-
lently for all λ;µ > 0.

If A and B are commuting positive operators then A + B (with domain D(A)∩D(B))
is closable [9].

The following theorem, which is a consequence of a theorem of Da Prato-Grisvard
[9], will be essential in the sequel:

Theorem 1.1. Let A and B be two commuting positive operators in E satisfying :
i) D(A) + D(B) is dense in E ,
ii) ωA + ωB < π:
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Then the closure of A + B is of type (ω; M ) with ω ≤ max (ωA;ωB).

If moreover
iii) 0 ∈ ρ(A) (resolvent set of A), then
a) there exists M > 0 such that

(1.4) ‖u‖ ≤ M ‖Au + Bu‖; for all u ∈ D(A) ∩ D(B);

and 0 ∈ ρ(A + B).
b) R(A + B) ⊇ D(A) + D(B);
c) A + B is closed if and only if R(A + B) = E if and only if (1:1) holds.

Remark 3. 1) Under hypotheses i)-iii) of Theorem 1.1, assumption 2) of Lemma
1.0 is always satisfied. Therefore, in order to prove the regularity of problem (P ), it is
sufficient to verify inequality (1:1).

2) Similarly, under hypotheses i)-iii) of Theorem 1.1, assumption 2) of Lemma
1.0.λ is always satisfied. Therefore, in order to prove the λ-regularity of problem (P ),
it is sufficient to verify inequality (1:1)

λ.

In this paper, we shall always be in the situation of i)-iii) of Theorem 1.1.

Remark 4. Under assumptions i) - iii) of Theorem 1.1, the pair (A;B) is λ-regular
if and only if the closed operator BA−1 is positive.

A useful consequence of λ-regularity is the following result of Sobolevskii [25]:

Theorem 1.2. Let A and B be two commuting positive operators in E satisfying :
i ′) D(A) and D(B) are dense in E ,
ii ′) ωA + ωB < π,
iii ′) 0 ∈ ρ(A) ∩ ρ(B),
iv′) (A;B) satisfies (1:1)λ.
Then for every α ∈ (0; 1); D(A) ∩ D(B) ⊂ D(AαB1−α) and there is Mα > 0 such that

(1:5) holds :

(1.5) ‖AαB1−αu‖ ≤ Mα‖Au + Bu‖;

for all

u ∈ D(A) ∩ D(B):

Remark 5. It is also shown in [25] that under the assumptions of Theorem 1.2, the
following interpolation inequality holds:

(1.6) ‖AαB1−αu‖ ≤ M ′
α‖Au‖α‖Bu‖1−α;

for some M ′
α > 0 and for all u ∈ D(A) ∩ D(B).

We mention in Remark 6, some sufficient conditions on A;B and E of Theorem 1.1
which guarantee the regularity of the pair (A;B):

Remark 6. 1) If E has the UMD property, A and B are positive, injective, resolvent
commuting and satisfy ‖Ais‖ ≤ Meα|s| and ‖Bis‖ ≤ Meβ|s| for some M ≥ 1;α ≥ 0 and
β ≥ 0 such that α + β < π and for all s ∈ R, then:
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a) in [15], if 0 ∈ ρ(A) ∩ ρ(B), then (A;B) is a regular pair.

b) in [16] and later in [24], inequality (1:1) is proved without using the condition
0 ∈ ρ(A) ∩ ρ(B).

c) It follows from the proof of [24] that not only (1:1) holds but also stronger
inequality (1:1)

λ
holds. This implies in particular that if 0 ∈ ρ(A), (A;B) forms a

λ-regular pair.

2) If E is a Hilbert space, A and B are positive with ωA+ ωB < π, injective, resolvent
commuting and satisfying ‖Ais‖ ≤ M for some M ≥ 1 and for all s ∈ [−1; + 1], then:

a) in [15], if 0 ∈ ρ(A) ∩ ρ(B), then (A;B) is a regular pair.

b) in [2], it is shown that under the weaker condition 0 ∈ ρ(A) only, then (A;B)
is a λ-regular pair.

In this paper we use Theorem 1.1 in the following particular case:

Let (X; | · |) be a complex Banach space and T > 0.

For p ∈ (1;∞), we shall denote by Ep, the Banach space Lp([0; T ]; X ), equipped
with the usual norm, which will be denoted by ‖ · ‖.

Let A be a positive operator on X . Define the operator A on Ep by:

D(A) := Lp([0; T ]; D(A))

where D(A) is equipped with the graph norm and

(1.7) (Au)(t ) := Au(t ); a:e: in [0; T ]:

The operator A is also a positive operator on Ep with spectral angle ωA = ωA.
Moreover the following holds:

((I + A)−1u)(t ) = (I + A)−1(u(t )); a:e: in [0; T ]; and all u ∈ Ep:

Next, we define the operator BT acting in Ep as follows:

D(BT ) := {u ∈ W 1;p([0; T ]; X ); u(0) = 0}

and

(BT u)(t ) := u′(t ); a:e: in [0; T ]:

We recall that the operator BT (see [9]) is m-accretive and densely defined on Ep

and commute in the sense of the resolvent with the operator A defined in (1.9).

Since the spectral angle of BT is equal to π=2, Theorem 1.1 applies to the pair
(A;BT ), provided that the operator A satisfies assumption (HA):

(HA)
(HA)1) ωA < π=2;

(HA)2) 0 ∈ ρ(A):
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Remark 7. 1) We recall that if D(A) is dense in X , the assumption (HA)1) is equiva-
lent to saying that (−A) is the generator of a bounded analytic semi-group (e−tA)t>0 and
moreover that if (HA)1) holds, then (HA)2) is equivalent to saying that the semi-group
(e−tA)t>0 is exponentially stable, which means that

|e−tA| ≤ MAe−ωt

for some M ≥ 1, ω > 0 and for all t > 0.
2) More generally, if D(A) is not dense in X and (HA)1) holds, then it is shown in

[11] that (−A) generates in an appropriate sense a bounded analytic semi-group (e−tA)t>0

on X which is strongly continuous only on D(A) and satisfying (1:8) when (HA)2) is
fulfilled:

(1.8) |e−tA| ≤ MAe−ωt ; |tAe−tA| ≤ MAe−ωt ; |t 2A2e−tA| ≤ MAe−ωt

for some MA ≥ 1, ω > 0 and for all t > 0.
Moreover, if (HA) is satisfied, then

(1.9) 1 ∈ ρ(e−tA)

for all t > 0.
It is clear from the definitions that the pair (A;BT ) is regular in Ep (resp. λ-regular)

if and only if (P1;T ) is p-regular (resp. λ-p-regular), see §0 for definitions of Cauchy
problem (P1;T ).

The analogy is the same between general inequality (1:1) and inequalities (0:1) for
Cauchy problems of §0 (resp. (1:1)λ and inequalities (0:1)λ).

In Proposition 1.3, we show that, under the hypothesis (HA), the p-regularity and
the λ-p-regularity of problem (P1;T ), is equivalent; the main step is a result of Dore-
Kato [14, Theorem 2.4] which proves that if the pair (A;BT ) is regular in Ep for some
T > 0, then the natural extension of this pair to [0;∞) is regular in Lp([0;∞); X ).
Recently, Le Merdy, [21], gave an interesting example of a bounded operator A in X
for which the Cauchy problem is not regular in Lp([0;∞); X ), hence probleme (P1;T )
is not λ-p-regular.

Proposition 1.3. Let p ∈ (1;∞) and A satisfy (HA), then the following statements are
equivalent :

1. Problem (P1;T ) is p-regular
2. Problem (P1;T ) is λ-p-regular.

Proof. 1⇒2
If (P1;T ) is p-regular and (HA) holds, it follows from [14] that the problem on

[0;∞) is also p-regular (in an obvious sense).

Next, by the change of variables t → λt , the problem on [0;∞) is clearly λ-p-
regular.
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Let u ∈ W 1;p([0; T ]; X ) ∩ (Lp([0; T ]; D(A)) such that u(0) = 0 be given and set

f (t ) = u′(t ) + λAu(t ) for t ∈ [0; T ]

= 0 for t > T:

Clearly, f ∈ Lp([0;∞); X ). From the λ-p-regularity of the problem on [0;∞), there
exists one and only one ũ ∈ W 1;p([0;∞); X ) ∩ (Lp([0;∞); D(A)) with ũ(0) = 0, sat-
isfying ũ′(t ) + λAũ(t ) = f on [0;∞). Moreover there exists C > 0 with, for all
λ > 0:

‖ũ′‖ + λ‖Aũ‖ ≤ C ‖f ‖:

Since ũ(t ) = u(t ) on [0; T ], by uniqueness of the solution of (P1;T ), we get by
restriction, since ‖:‖Lp ([0;T ];X ) ≤ ‖:‖Lp ([0;∞);X ) :

‖u′‖ + λ‖Au‖ ≤ C ‖f ‖

and thus (P1;T ) is λ-p-regular, which proves 2.

2 ⇒ 1 is obvious.

Remark 8. For the sake of completeness, we recall without proof that if (P1;T ) is
p-regular, the solution u is given by:

u(t ) =

∫ t

0
e−(t−s)Af (s) ds =

∫ t

0
e−sAf (t − s) ds

for t ≥ 0.

2. First order versus second order problems

In this Section we are concerned with the regularity of pairs (A;B) and (A2;−B2),
in a general setting, as it was done in Theorem 1.1. This will give us a technical result
for comparing problems of order one and of order two.

Proposition 2.1. Let E be a Banach space and A be a positive operator in E satisfying :
i) ωA < π=2,
ii) 0 ∈ ρ(A).

Let B be the generator of a bounded strongly continuous group on E . Suppose that A and B as
well asA and −B are resolvent commuting. Then, the two following assumptions are equivalent :

a) The pairs (A;B) and (A;−B) are regular (resp. λ-regular ).
b) The pair (A2;−B2) is regular (resp. λ-regular ) and satisfies (2:1) (resp. (2:1)

λ
) :

(2.1) D(A2) ∩ D(B2) ⊂ D(BA) and ‖BAu‖ ≤ M ‖A2u − B2u‖

for some M > 0 and for all u ∈ D(A2) ∩ D(B2),

(2:1)
λ D(A2) ∩ D(B2) ⊂ D(BA) and λ‖BAu‖ ≤ M ‖λ2A2u − B2u‖

for some M > 0, independent of λ, for all u ∈ D(A2) ∩ D(B2) and all λ > 0.
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We shall need the following:

Lemma 2.2. Let A and B be two positive operators in a Banach space E , resolvent
commuting, with 0 ∈ ρ(A). Then :

(2.2) D(BA) ⊂ D(AB) and BAu = ABu

for all u ∈ D(BA).

Proof of Lemma 2.2. We shall identify operators in E with their graphs in E × E .

From A−1(I + B)−1 = (I + B)−1A−1, we obtain
(
(I + B)A

)−1
=

(
A(I + B)

)−1
,

hence (I + B)A = A(I + B). Then for any x ∈ D(BA), [that is x ∈ D(A) with Ax ∈
∈ D(B)], we have x ∈ D(B) together with x + Bx ∈ D(A) and Ax + BAx = Ax +

+ ABx . This implies (2:2).

Proof of Proposition 2.1. a) ⇒ b):

In order to prove the regularity of the pair (A2;−B2), we shall use Theorem 1.1 with
A replaced by A2 and B replaced by −B2.

Observe that the operator A2 is positive with ωA2 = 2ωA < π and 0 ∈ ρ(A2).
It is known (see e.g. [22]) that under the assumption on B, the operator −B2 is

positive with ω−B2 = 0.
Moreover, A2 and −B2 are resolvent commuting: indeed, it is enough to check

the equality: (A2)−1(I −B2)−1 = (I −B2)−1(A2)−1 which follows from the assumption
that A and B as well as A and −B are resolvent commuting and the observation that
(A2)−1(I − B2)−1 = A−1A−1(I − B)−1(I + B)−1.

Moreover, since B is in particular the generator of a strongly continuous semigroup
on E , D(B2) is dense in E , see [23].

In view of Theorem 1.1, the regularity of the pair (A2;−B2) is a consequence of the
surjectivity of A2 −B2. In order to prove it, we need the following regularity property
of the solution to the equations Ax + Bx = y ∈ E and Ax −Bx = y ∈ E . Without loss
of generality, we only consider the first equation. We claim that if y ∈ D(A) ∩ D(B),
then the unique solution x satisfies x ∈ D(A2) ∩ D(BA) ∩ D(B2). Indeed if y ∈ D(B)
and z = (I + B)y, let x̂ ∈ D(A) ∩ D(B) be the unique solution to Ax + Bx = z . We
obtain:

y = (I + B)−1z = (I + B)−1Ax̂ + (I + B)−1Bx̂ = A(I + B)−1x̂ + B(I + B)−1x̂

using the resolvent commutativity of A and B.
By uniqueness, we get x = (I + B)−1x̂, hence x ∈ D(AB) ∩ D(B2). Similarly, if

y ∈ D(A), we have x ∈ D(A2) ∩ D(BA), which establishes the claim.
We are in a position to prove the surjectivity of A2 − B2: let f ∈ E and let

v ∈ D(A)∩D(B) be such that Av + Bv = f . Let u ∈ D(A)∩D(B) satisfy Au−Bu = v.
We have u ∈ D(A2) ∩ D(AB) ∩ D(BA) ∩ D(B2), hence by Lemma 2.2,

f = (A + B)v = (A + B)(A− B)u = A2u −ABu + BAu − B2u = A2u − B2u

which shows that A2 − B2 is surjective.
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Next we prove (2:1) and (2:1)
λ
. We only consider the case of (2:1)

λ
. Let u ∈

∈ D(A2) ∩ D(B2) and let f := A2u − B2u. From what precedes and the injectivity of
A2 − B2, we have u ∈ D(BA). For any λ > 0,

λ‖BAu‖ = ‖(B)(λAu)‖ ≤ M1‖(λA + B)λAu‖

in view of the λ-regularity of the pair (A;B).

By using (2:2), we have (λA + B)λAu = λA(λA + B)u and by the λ-regularity of
the pair (A;−B), we obtain

‖(λA + B)λAu‖= ‖λA(λA + B)u‖ ≤ M2‖(λA−B)(λA + B)u‖=M1M2‖λ
2A2u−B2u‖:

b) ⇒ a):

Since the pairs (A;B) and (A;−B) satisfy the hypotheses i)-iii) of Theorem 1.1,
it suffices to prove (1.1) (resp. (1:1)

λ) for these two pairs.

Let u ∈ D(A) ∩ D(B) and set f := (A + B)u. By hypothesis, there exists w ∈
∈ D(A2) ∩ D(B2) such that

f = A2w − B2w:

By using (2.1) and (2.2), we can write:

f = (A + B)(A− B)w:

By the injectivity of (A + B), we get u = (A− B)w.

By the regularity of the pair (A2;−B2), Lemma 2.2 and (2.1), we get M; M ′ > 0
such that:

‖Au‖ ≤ ‖A2w‖ + ‖ABw‖ ≤ (M + M ′)‖f ‖;

which proves the regularity of the pair (A;B). We proceed similarly for the regularity
of the pair (A;−B) and the λ-regularity.

3. The periodic case and the conclusion

In this Section, we are concerned with the regularity and the p-regularity of problems
(P1;T ) on one side and (P2;DD) and (P2;NN ) on the other side.

In order to prove their equivalence, we introduce periodic problems of order one
and two, (P1;P;T ) and (P2;P;T ), which are defined in the Introduction.

As in §0, we define the p-regularity of (P1;P;T ) and (P2;P;T ) as follows: (P1;P;T )
(resp. (P2;P;T )) is p-regular if for all f ∈ Lp([0; T ]; X ) there exists a unique function
u ∈ W 1;p([0; T ]; X )∩Lp([0; T ]; D(A)) (resp. u ∈ W 2;p([0; T ]; X )∩Lp([0; T ]; D(A2)))
with u(0) = u(T ) (resp. u(0) = u(T ) and u′(0) = u′(T )) such that (P1;P;T ) (resp.
(P2;P;T )) is satisfied.

As above, it appears that if (P1;P;T ) (resp.(P2;P;T )) is p-regular, then (3:1) holds
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(resp. (3:2)):





There exists M ≥ 1 such that

‖u′‖ + ‖Au‖ ≤ M ‖u′ + Au‖;

for every u ∈ W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A))

satisfying u(0) = u(T );

(3.1)

respectively:





There exists M ≥ 1 such that

‖u′′‖ + ‖A2u‖ ≤ M ‖ − u′′ + A2u‖;

for every u ∈ W 2;p([0; T ]; X ) ∩ Lp([0; T ]; D(A2))

satisfying u(0) = u(T ) and u′(0) = u′(T ):

(3.2)

As in §0, we shall call problem (P1;P;T ) (resp. (P2;P;T )) λ-p-regular if problem

(P1;P;T )λ

{
u′(t ) + λAu(t ) = f (t ); t ∈ [0; T ]; 0 < T < ∞;

u(0) = u(T );

(resp. (P2;P;T )λ), is p-regular for all λ > 0 and inequality (3:1) (resp. (3:2)) holds
where A (resp. A2) is replaced by λA (resp. λ2A2) with λ > 0 and M is independent of
λ. We will denote by (3:1)λ-(3:2)λ the corresponding inequalities.

Let us state our results:

Theorem 3.1. Let p ∈ (1;∞) and A satisfy (HA) on X . Then :
1) If (P1;T ) is p-regular (respectively λ-p-regular ), then (P1;P;T ) is also p-regular (respec-

tively λ-p-regular ).
2) If (P2;P;T ) is p-regular, then (P2;P;T ) is λ-p-regular.

Theorem 3.2. Let p ∈ (1;∞) and A satisfy (HA) on X . Then, if X has the UMD
property :

1) (P2;DD) is p-regular if and only if (P2;NN ) is also p-regular.
2) If (P2;P;T ) is p-regular, then (3:3) holds :

(3.3) ‖Au′‖ ≤ M ‖ − u′′ + A2u‖

for some M > 0 and for all u ∈ Lp(R; D(A2)) ∩ W 1;p(R; D(A)) ∩ W 2;p(R; X ) satisfying
u(0) = u(T ) ; u′(0) = u′(T ).

In order to finish to compare the regularity of these problems, we need the following
proposition:

Proposition 3.3. Let p ∈ (1;∞) and A satisfy (HA) on X .
1) (P1;P;T ) is p-regular if and only if (P2;P;T ) is p-regular and verifies (3:3).
2) (P2;P;T ) is p-regular (resp. λ-p-regular ) if and only if (P2;DD) and (P2;NN ) are

p-regular (resp. λ-p-regular ).
3) If (P1;P;T ) is p-regular, then (P1;T ) is p-regular.
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All together, these results imply the following Corollary, which closes the circle of
implications comparing the regularity of Cauchy problems and boundary value problems
defined in §0:

Corollary 3.4. Let p ∈ (1;∞) and A satisfy (HA) on X .
1) If (P1;T ) is p-regular, then (P2;DD) and (P2;NN ) are λ-p-regular.
2) If X has the UMD property, if (P2;DD) or (P2;NN ) is p-regular, then (P1;T ) is

λ-p-regular.

As in §1, we set Ep = Lp([0; T ]; X ) and define the operator A by (1.7). We set

(3.4) D(BP ) := {u ∈ W 1;p([0; T ]; X ); u(0) = u(T )}

and

(3.5) (BP u)(t ) := u′(t ); t ∈ [0; T ]; for u ∈ D(BP ):

The operators BP and −BP are m-accretive in E , as generators of translation groups.
Obviously, A and BP are resolvent commuting. So by Theorem 1.1, if A satisfies (HA),
(P1;P;T ) is λ-p-regular if and only if the pair (A;BP ) verifies (1:1)λ.

Similarly if A satisfies (HA), since −B2
P is positive with ω−B2 = 0, ωA2 < π and A2

and −B2
P are resolvent commuting, in order to prove that (P2;P;T ) is λ-p-regular, it is

sufficient to verify (1:1)
λ, with A replaced by A2 and B by −B2

P .
For the sequel, it is convenient to identify periodic functions defined on R and

functions defined on [0; T ], taking the same value on 0 and T .
Moreover, replacing u and f by their periodic extensions, we get easily that (P1;P;T )

is p-regular if and only if the extended problem of order one on R is p-regular (in an
obvious sense) and (P2;P;T ) is p-regular if and only if the extende problem of order two
on R is p-regular.

We will use these two formulations in the proofs, when needed.
Proof of Theorem 3.1.

1) (P1;T ) p-regular (resp. λ-p-regular) ⇒ (P1;P;T ) p-regular (resp. λ-p-regular).

We already know from Proposition 1.3 that problem (P1;T ) is p-regular if and only
if it is λ-p-regular. So it is sufficient to establish: (P1;T ) λ-p-regular implies (P1;P;T )
λ-p-regular.

Suppose λ > 0, u ∈ D(A) ∩ D(B) and set fλ = λAu + Bu. Since u is a solution to
(P1;P;T )λ, then u satisfies:

(3.6) u(t ) = e−λtAu(0) +

∫ t

0
e−λ(t−s)Afλ(s) ds

where {e−tA}t>0 is the semigroup constructed in [11]. Since, u(0) = u(T ) and 1 ∈
∈ ρ(e−tA) for all t > 0 by Remark 7. 2), property (1.9), we have:

(3.7) u(0) = (I − e−λTA)−1
∫ T

0
e−(T −s)Afλ(s)ds:



258 ph. clément - s. guerre-delabrière

Defining u1(t ) and u2(t ) by

(3.8) u1(t ) =

∫ t

0
e−λ(t−s)Afλ(s)ds;

and

(3.9) u2(t ) = e−λtA(I − e−λTA)−1
∫ T

0
e−λ(T −s)Af

λ
(s) ds;

we get by (3.6) and (3.7) that

(3.10) u(t ) = u1(t ) + u2(t ) =

∫ t

0
e−λ(t−s)Afλ(s)ds + e−λtA(I − e−λTA)−1

∫ T

0
e−λ(T −s)Afλ(s) ds:

From the λ-p-regularity of (P1;T ), we have

(3.11) u1 ∈ W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A));

and there exists M ≥ 1 independent of λ > 0, such that

(3.12) λ‖Au1‖ ≤ M ‖fλ‖:

Concerning u2 observe that
∫ T

0
e−λ(T −s)fλ(s) ds = u1(T )

lies in the trace space associated with W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A)), see [9, 11].
The same holds for (I − e−λTA)−1u1(T ) since:

(3.13) (I − e−λTA)−1u1(T ) =

∫ T

0
e−λ(T −s)A(I − e−λTA)−1fλ(s) ds:

It follows that, since u2(t ) = e−λtA(I − e−λTA)−1u1(T ), then by [13, 11], u2 belongs
to W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A)).

It remains to prove (3.12) with u1 replaced by u2.
By definition,

u2(t ) = e−λtA

∫ T

0
e−λ(T −s)A(I − e−λTA)−1fλ(s) ds =

∫ T

0
e−λ(t+T −s)A(I − e−λTA)−1fλ(s) ds =

=

∫ T

0
e−λ(t+s)A(I − e−λTA)−1fλ(T − s) ds:

Thus,
∫ T

0
|λAu2(t )|p dt =

∫ T

0
|
∫ T

0
λAe−λ(t+s)A(I − e−λTA)−1fλ(T − s) ds|p dt ≤

≤ |(I − e−λTA)−1|p
∫ T

0

[∫ T

0
MAe−λω(t+s) 1

t + s
|fλ(T − s)| ds

]p

dt
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by (1.8). Thus,

∫ T

0
|λAu2(t )|p dt ≤ |(I − e−λTA)−1|pM p

A

∫ T

0

[∫ T

0

1
t + s

|fλ(T − s)| ds

]p

dt:

Since the kernel
1

t + s
defines a bounded operator on Lp([0; T ];R), [14], there exists

M , depending only on p and T , such that:
∫ T

0
|λAu2(t )|p dt ≤ M p

A M p|(I − e−λTA)−1|p
∫ T

0
|fλ(t )|p dt:

Hence,

‖λAu2‖ ≤ MAM |(I − e−λTA)−1|‖fλ‖:

Then we prove that

(3.14) sup
0<λ0≤λ

|(I − e−λTA)−1| < ∞ for every λ0 > 0:

Since |e−tA| ≤ MAe−ωt , for some ω > 0 and MA ≥ 1 by (1.8), we have |e−λTA| ≤
≤ 1=2; for all λ ∈ [λ1;∞), for some λ1 > 0.

It follows that |(I − e−λTA)−1| ≤ 2 for λ ∈ [λ1;∞).
Observe that |(I − e−λTA)−1| is a continuous function of λ ∈ (0;∞), since t → e−tA

is analytic from (0;∞) to L(X ) and (I − e−tA) is invertible for all t > 0 by (1.9) in
Remark 7.2).

Therefore, |(I − e−λTA)−1| is bounded on intervals [λ0;λ1], with 0 < λ0 < λ1,
which implies (3.12) for u2.

We have shown that given λ0 > 0, there exists M = M (λ0) ≥ 1 such that for every
u ∈ W 1;p([0; T ]; X ) ∩ Lp([0; T ]; D(A)) satisfying u(0) = u(T ), we have

(3.15) λ‖Au‖ ≤ M ‖u′ + λAu‖;

for every λ ∈ [λ0;∞).
Finally we remove the restriction on λ0.
For u ∈ D(A) ∩ D(BP ) and n ∈ N, let v be the T=n-periodic function with values

in X which coincides with u(t=n) on [0; T=n]. Then

v ∈ D(A) ∩ D(BP )

and for λ ∈ [λ0;∞), we have:

λp‖Av‖p
Lp ([0;T ];X ) ≤ M p

1 ‖v′ + λAv‖p
Lp ([0;T ];X ):

Observe that ‖Av‖p
Lp ([0;T ];X ) = n‖Av‖p

Lp ([0;T=n];X ) as well as

‖v′ + λAv‖p
Lp ([0;T ];X ) = n‖v′ + λAv‖Lp ([0;T=n];X ):

It follows that λ‖Av‖Lp ([0;T=n];X ) ≤ M1‖v′ + λAv‖Lp ([0;T=n];X ), which implies by rescaling:

(3.16) (λ=n)‖Au‖Lp ([0;T ];X ) ≤ M1‖u′ + (λ=n)Au‖Lp ([0;T ];X ):
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It follows that (3.15) holds for all λ > 0 . This completes the proof of the λ-p-
regularity of problem (P1;P;T ).

2) If (P2;P;T ) is p-regular, then (P2;P;T ) is λ-p-regular.

In this part, we will consider periodic functions extended to R, as mentioned in the
beginning of the proof.

Let us denote by Lp
T (Y ) the space of T -periodic functions defined on R with values

in a Banach space Y , p-integrable on [0; T ] and by W m;p
T (Y ) the corresponding Sobolev

spaces for m = 1; 2; : : :
Under the hypothesis that (P2;P;T ) is regular, it is sufficient to prove that for some

M > 0 independant of λ, for all u ∈ W 2;p
T (X ) ∩ Lp

T (D(A2)) and for all λ > 0,

λ2‖A2u‖ ≤ M ‖ − u′′ + λ2A2u‖

where ‖:‖ := ‖:‖L
p
T

(X ).
Choose a sequence of mollifiers (ϕn)n∈N, with compact supports in R such that, for
u ∈ W m;p

T (Y ):

ϕn ∗ u ∈ C ∞
T (Y ) and ϕn ∗ u → u in W m;p

T (Y ):

Let u ∈ W 2;p
T (X ) ∩ Lp

T (D(A2)) and define un := ϕn ∗ u ∈ C ∞
T (D(A2)).

Set vn := u′
n + λAun ∈ C ∞

T (D(A)) and fn := −v′
n + λAvn ∈ C ∞

T (X ).
Then, since un ∈ C ∞

T (D(A2)), we have (Aun)′ = Au′
n and:

−u′′
n + λ2A2un = fn:

We recall a result of [11]:

For all g ∈ W 1;p
T (X ), if A verifies (HA), there exists a unique solution of the problem

z ′(t ) + λAz(t ) = g (t ) ; t ∈ R

in W 1;p
T (X ) ∩ Lp

T (D(A)). Let us denote by Sλ;T g this solution.
We claim that

(3.17) S
λ;T g (t ) = z(t ) = (I − e−λTA)−1

∫ T

0
e−σλAg (t − σ) dσ:

To prove this claim, we write

(I − e−λTA)z(t ) =

∫ T

0
e−σλAg (t − σ) dσ =

=

∫ t

0
e−σλAg (t − σ) dσ +

∫ t+T

t

e−σλAg (t − σ) dσ −
∫ t+T

T

e−σλAg (t − σ) dσ =

=

∫ t

0
e−σλAg (t − σ) dσ +

∫ T

0
e−(t+σ)λAg (−σ) dσ −

∫ t

0
e−(σ+T )λAg (t − σ) dσ =

= (I − e−λTA)
∫ t

0
e−σλAg (t − σ) dσ + e−λtA

∫ T

0
e−σλAg (T − σ) dσ:

This last expression is the one which was already proved in (3.10).
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Thus, if P denotes as before the operator on R such that (Pz)(t ) = z(−t ), we have
(Pz)′(t ) = −(Pz ′)(t ) and applying this to vn, we get:

(Pvn)(t ) = (I − e−λTA)−1
∫ T

0
e−σλA(Pfn)(t − σ) dσ

which is the same as

(3.18) vn(t ) = (I − e−λTA)−1
∫ T

0
e−sλAfn(s + t ) ds:

From the definition of un, we have:

un(t ) = (I − e−λTA)−1
∫ T

0
e−σλAvn(t − σ) dσ:

Replacing vn by its value, we get:

un(t ) = (I − e−λTA)−2
∫ T

0
e−σλA

∫ T

0
e−sλAfn(s + t − σ) ds dσ:

Set Dλ = (I − e−λTA)−2.

From the proof of the first part of Theorem 3.1, D
λ is uniformly bounded, say by C ,

for λ ≥ 1. Then:

‖λ2A2un‖
p =

∫ T

0
|λ2A2un(t )|p dt =

∫ T

0
|λ2A2

∫ T

0
e−σλA

∫ T

0
e−sλADλfn(s + t −σ) ds dσ|p dt:

Let us make the change of variables: σλ → σ ; sλ → s ; tλ → t :

‖λ2A2un‖
p =

1
λ

∫ λT

0
|A2

∫ λT

0
e−σA

∫ λT

0
e−sAD

λ
fn(

s + t − σ

λ
) ds dσ|p dt :

To complete the proof, let λ = m ∈ N? and divide the triple integral above in four
parts:

I1 =
1
m

∫ mT

0
|A2

∫ T

0
e−σA

∫ T

0
e−sADmfn

( s + t − σ

m

)
ds dσ|p dt

I2 =
1
m

∫ mT

0
|A2

∫ T

0
e−σA

∫ mT

T

e−sADmfn

( s + t − σ

m

)
ds dσ|p dt

I3 =
1
m

∫ mT

0
|A2

∫ mT

T

e−σA

∫ T

0
e−sADmfn

( s + t − σ

m

)
ds dσ|p dt

I4 =
1
m

∫ mT

0
|A2

∫ mT

T

e−σA

∫ mT

T

e−sADmfn

( s + t − σ

m

)
ds dσ|p dt:
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For I1, by periodicity and using the λ-regularity of (P2;P;T ), we get:

I1 =
1
m

m−1∑

k=0

∫ (k+1)T

kT

|A2
∫ T

0
e−σA

∫ T

0
e−sADmfn

( s + t − σ

m

)
ds dσ|p dt =

=
1
m

m−1∑

k=0

∫ T

0
|A2

∫ T

0
e−σA

∫ T

0
e−sADmfn

(
s + t + kT − σ

m

)
ds dσ|p dt ≤

≤ M p 1
m

m−1∑

k=0

∫ T

0
|Dmfn

(
t + kT

m

)
|p dt ≤

≤ M p|Dm|
p

m−1∑

k=0

∫ (k+1)T
m

kT
m

|fn(t )|p dt = M p|Dm|
p‖fn‖

p:

For I4, using (1.8), we define a kernel on R by setting K (s) = 0 for 0 ≤ s ≤ T and

K (s) =
MA

T
e−ωs for s > T and we get by using Young’s inequality for convolutions:

I4 =
1
m

∫ mT

0
|
∫ mT

T

Ae−σA

∫ mT

T

Ae−sADmfn

( s + t − σ

m

)
ds dσ|p dt ≤

≤ 1
m
|Dm|

p

∫ mT

0

[ ∫ mT

0
K (σ)

∫ mT

0
K (s)|fn

( s + t − σ

m

)
| ds dσ

]p
dt =

= |Dm|
pm2p

∫ T

0

[∫ T

0
K (mσ)

∫ T

0
K (ms)|fn(s + t − σ)| ds dσ

]p

dt ≤

≤ |Dm|
p

(∫ T

0
K (s) ds

)2p ∫ T

0
|fn(t )|p dt ≤

(
MA

ωT

)2p

|Dm|
p‖fn‖

p:

For I2 (and in the same way for I3) we also use (1.8):

I2 =
1
m

∫ mT

0
|
∫ T

0

∫ mT

T

A2e−(σ+s)ADmfn

( s + t − σ

m

)
ds dσ|p dt ≤

≤ |Dm|
p 1
m

∫ mT

0

(∫ T

0

∫ mT

T

M 2
A

(s + σ)2 e−(σ+s)ω|fn
( s + t − σ

m

)
| ds dσ

)p

dt ≤

≤ |Dm|
p 1
m

∫ mT

0

[∫ mT

0

∫ mT

T

(
MA

T

)2

e−ω(s+σ)|fn
( s + t − σ

m

)
| ds dσ

]p

dt =

= |Dm|
p 1
m

∫ mT

0

( ∫ mT

0
K1(s)

∫ mT

0
K (s)|fn

( s + t − σ

m

)
| ds dσ

)p
dt



on the regularity of abstract cauchy problems : : : 263

where K1(σ) =
MA

T
e−ωσ, for σ ≥ 0

= |Dm|
pm2p

∫ T

0

(∫ T

0
K1(mσ)

∫ T

0
K (ms)|fn(s + t − σ)| ds dσ

)p

dt ≤

≤ |Dm|
pm2p

(∫ T

0
K1(mσ) dσ

)p (∫ T

0
K (ms) ds

)p

‖fn‖
p ≤

≤ |Dm|
p

(∫ mT

0
K1(s) ds

)p (∫ mT

0
K (s) ds

)p

‖fn‖
p ≤ |Dm|

p M 2p
A

(ωT )2p ‖fn‖
p:

Putting together these four majorations, we see that ‖m2A2un‖
p is uniformly bounded

by a constant times ‖fn‖
p if m ≥ 1.

To remove this last restriction, we conclude like in the first part of the proof of
Theorem 3.1 and we get inequality (1:1)

λ for un, first for positive rational numbers of
the form m2=q, m; q ∈ N∗, hence for all positive real numbers λ.

Taking limits when n → ∞, this inequality remains true for u ∈ W 2;p
T (X ) ∩

∩ �Lp
T (D(A2)), which is sufficient to prove the λ-p-regularity of (P2;P;T ) as announced

at the beginning.

Proof of Theorem 3.2.

Recall that in this part, we suppose that X has the UMD property.

1. (P2;DD) p-regular ⇐⇒ (P2;NN ) p-regular

Note that, because of the boundary conditions, we can extend functions on [0; T ]
to [−T; T ] by oddness if we are working with (P2;DD) and by evenness if we are
working with (P2;NN ). It is clear that like for the periodic case, we can extend these
functions to R by periodicity.

Under the assumptions of Theorem 3.2, (P2;DD) (resp. (P2;NN )) is p-regular if and
only if there exists M > 0 such that, for all u ∈ W 2;p

T (X )∩Lp
T (D(A2)), odd (resp. even),

the following inequality holds:

(3.19) ‖A2u‖ ≤ M ‖A2u − u′′‖ :

It is enough to prove that if this property is true for odd functions, then it holds for
even functions and conversely. Let us prove the direct part, the converse being similar.
Suppose that (P2;DD) is p-regular. Then inequality (3.19) is true for odd functions.

Let u be an even function of W 2;p
T (X ) ∩ Lp

T (D(A2)). Then if u0 is the average of
u on [−T; T ], we can work with ũ = u − u0 and without loss of generality, we can
suppose that u0 = 0.

It is sufficient to show (3.19) when u belongs to a dense subset of even functions
belonging to W 2;p

T (X )∩ �Lp
T (D(A2)), namely the even trigonometrical polynomials with
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values in D(A2):

Pn(t ) :=
n∑

k=1

cos
2πkt

T
ak; with ak ∈ D(A2):

If H denotes the Hilbert transform, acting on Lp
T (R; X ), we get that

(HPn)(t ) :=
n∑

k=1

sin
2πkt

T
ak:

Since HPn is odd, (3.19) holds and we have:

‖A2HPn‖ ≤ M ‖A2HPn − (HPn)′′‖ :

We have that H2 = −I , H commutes with A2 and with the second derivative. Since
X has the UMD property, there exists C > such that:

‖A2Pn‖ ≤ MC ‖A2Pn − P ′′
n ‖ :

This proves the p-regularity of (P2;NN ).

2. (P2;P;T ) p-regular ⇒ (3.3) holds

We want to apply Sobolevskii’s result written in Theorem 1.2. We already know that
if (P2;P;T ) is p-regular then it is also λ-p-regular by Theorem 3.1 2). After substracting
averages, which is possible since 0 ∈ ρ(A), it is convenient to work with spaces of
periodic functions with null average. Set:

W m;p
T;∗ (Y ) :=

{
u ∈ W m;p

T (Y ) =
1
T

∫ T=2

−T=2
u(t ) dt = 0

}

for m = 0; 1; 2; :::. On W m;p
T;∗ (X ), the second derivative −B2

P is invertible. Since A2 is
also invertible by hypothesis, we are in position to apply Theorem 1.2 to A2

∗ and −B2
∗,

which denotes the restrictions of these operators to Lp
T;∗(D(A2)) and W 2;p

T;∗ (X ). From
the Banach valued version of Marcinkiewicz’s theorem instead of Mihlin’s theorem, see
[1, 31], we obtain:

D(B2
∗) ∩ D(A2

∗) ⊂ D
[(
I − B2

∗
)1=2(A2)1=2]

and

‖
[(
I − B2

∗
)1=2(A2)1=2]

u‖ ≤ M ‖A2
∗u − u′′‖

for some M > 0 and for all u ∈ W 2;p
T;∗ (X ) ∩ Lp

T;∗(D(A2)).

Observe that
(
A2

∗
)1=2

= A∗ and
(
I−B2

∗
)1=2

= HB∗ where H is the Hilbert transform,
[1]. We get then that, on W 2;p

T;∗ (X ) ∩ Lp
T;∗(D(A2))

‖HA∗u′‖ ≤ M ‖A2
∗ − u′′‖:

Since X has the UMD property, H is bounded on Lp
T (R; X ) and this inequality

implies (3.3).
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Proof of Proposition 3.3.

1. (P1;P;T ) p-regular ⇐⇒ (P2;P;T ) p-regular and (3.3)

Since BP is the generator of the translation group on Lp([0; T ]; X ), 1) follows from
Proposition 2.1.

2. (P2;P;T ) p-regular ⇐⇒ (P2;DD) and (P2;NN ) p-regular

It is sufficient to remark that, after extending these problems to R by periodicity for
(P2;P;T ), oddness then periodicity for (P2;DD) and evenness then periodicity for (P2;NN ),
the solution of (P2;DD) is the odd part of the solution of (P2;P;T ) and the solution of
(P2;NN ) its even part. Conversely, by decomposing functions into odd parts and even
parts, the solution of (P2;P;T ) is the sum of the solution of (P2;DD) and the solution
of (P2;NN ).

3. (P1;P;T ) p-regular ⇒ (P1;T ) p-regular

It is enough to show that problem (P1;T ) has a solution for every f ∈ Lp([0; T ]; X ).
For such function f , let u1 be the solution to (P1;P;T ). Then there exists exactly one
function u2 ∈ W 1;p([0; T ]; X )∩Lp([0; T ]; D(A)) satisfying u′

2(t ) + Au2(t ) = 0; u2(0) =

−u1(0), (see [9, appendix on trace spaces] and [11]).

Thus u = u1 + u2 is a solution to (P1;T ).
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