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Meccanica dei fluidi. — Unconditional nonlinear exponential stability in the Bénard
problem for a mixture: necessary and sufficient conditions. Nota di Giuseppe Mulone e
Salvatore Rionero, presentata (*) dal Corrisp. S. Rionero.

Abstract. — The Lyapunov direct method is applied to study nonlinear exponential stability of a basic
motionless state to imposed linear temperature and concentration fields of a binary fluid mixture heated
and salted from below, in the Oberbeck-Boussinesq scheme. Stress-free and rigid surfaces are considered
and absence of Hopf bifurcation is assumed. We prove the coincidence of the linear and (unconditional)
nonlinear critical stability limits, when the ratio between the Schmidt and the Prandtl numbers is less or
equal to 1. Precisely, we obtain necessary and sufficient conditions of unconditional nonlinear exponential
stability of the basic motionless state.

Key words: Fluid mixture heated and salted; Lyapunov unconditional nonlinear stability; Natural
convection.

Riassunto. — Stabilità non lineare esponenziale incondizionata nel problema di Bénard per una miscela:
condizioni necessarie e sufficienti. Si applica il metodo diretto di Lyapunov allo studio della stabilità non
lineare esponenziale della soluzione di conduzione-diffusione di una miscela fluida binaria riscaldata e salata
da sotto, nello schema di Oberbeck-Boussinesq. Si considerano superfici rigide e stress-free ; si suppone che
non ci sia biforcazione di Hopf. Supposto che il rapporto fra i numeri di Schmidt e di Prandtl è minore o
uguale a 1, proviamo la coincidenza fra i parametri critici della stabilità lineare e non lineare. Si ottengono
condizioni necessarie e sufficienti di stabilità non lineare esponenziale del moto base.

1. Introduction

The study of stability and instability of motions of a binary fluid mixture heated
and salted from below is relevant in many geophysical applications, in particular in
the context of the «salt pond» (or «solar pond»), ([1-3], see also [4 and the references
therein]).

Here we study the asymptotic stability of a motionless state, to imposed linear
temperature and concentration fields (conduction - diffusion solution), of a fluid layer of
a binary mixture heated and salted from below, bounded by two horizontal parallel
planes. We assume that PC ≤ PT , in this case Hopf bifurcation’s cannot occur, and
consider the following possibilities:

(a) both the bounding surfaces are stress-free,
(b) both the bounding surfaces are rigid,
(c) one of the bounding surfaces is rigid and the other bounding surface is stress-free.
Moreover we discuss the stability problem of the conduction-diffusion solution in

the case when the domain is arbitrary and its boundary can be composed of both
stress-free and rigid elements.

(*) Nella seduta del 13 marzo 1998.
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This problem, known also as the Bénard problem for a mixture, has been studied in
the linear context in [5-9].

The linear results show that the gradient of the solute stabilizes the onset of con-
vection and the motionless state is linearly unstable when the Rayleigh number of the
temperature R2 (a measure of the gradient of temperature) is related to the Rayleigh
number of the concentration C2 (a measure of the gradient of the concentration of the
solute) by the inequality

(1.1) R2 > C2 + R2
B;

where

(1.2) R−1
B = max

S

2(w;ϑ)
D[u;ϑ]

is the smallest critical value for the Bénard problem for a homogeneous fluid (see [4,
Chap. IX]). In (1.2) u and ϑ are the perturbations to the velocity and temperature
fields, w = u · k, D[u;ϑ] = 2‖D(u)‖2 + ‖∇ϑ‖2, D(u) is the symmetric part of ∇u,
‖f ‖ is the norm of f in L2(Ω) (Ω being a suitable cell of periodicity) and S is the
space of the admissible fields. This result also holds when the domain is arbitrary, and
the boundary can be composed of both stress-free and rigid elements (provided that the
values assumed by the linear distributions of temperature and concentration of the basic
motion are in accord with preassigned boundary values), [4, 9].

In the nonlinear context, this problem has been studied, in [9], with the classical
energy

(1.3) E0(t ) = 1=2
(
‖u‖2 + PT ‖ϑ‖

2 + PC ‖γ‖
2);

where γ is the perturbation to the concentration field, and global exponential stability
has been obtained for

(1.4) R2 < R2
B:

This nonlinear stability region is the same as in the case of the simple Bénard problem
for a homogeneous fluid, [4]. In fact, in the simple Bénard problem, the linear operator
associated to the system of the disturbance to the basic motion is symmetric in the inner
product associated to the energy norm, while in our case (binary fluid mixture) the linear
operator is divided into two parts: one is symmetric and the other is skewsymmetric
(this second part is connected to C2) and then, the gradient of solute has only a not-
destabilizing effect in this norm (like in other convection problems, e.g., the Bénard
problems with rotation and a magnetic field, see [10-15]). Other nonlinear stability
results are those of [16-18]. In [17] a perturbation method has been used and in
[18] a method of modal truncation and a computer has been adopted. Joseph in [16]
introduces a generalized energy method to show the stabilizing effect of the gradient
of solute on thermal convection, for an arbitrary bounded domain and a layer, and
he proves a nonlinear stability theorem which gives global stability in the sense that it
holds for any initial value bounded in L2. But the stability so guaranteed has not been
shown to be exponential, [4, 16], and the possibility that a very large, stable disturbance,
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could be extraordinarily persistent is not excluded (at least when a part of bounding
surface is rigid).

In recent papers [19-23], using the Lyapunov direct method, the nonlinear con-
ditional stability of the motionless state and parallel shear flows and of plane parallel
convective flows of a homogeneous fluid and a binary fluid mixture has been examined.
In particular, in [23], a nonlinear stability theorem, which gives exponential stability
and shows the stabilizing effect of gradient of solute on thermal convection, has been
proved for a fluid layer. When the ratio p of the Schmidt and the Prandtl number
is less than 1, a region of coincidence of linear and nonlinear exponential stability has been
found, but this coincidence has been given only for C2 < (3 + p)=(1 − p)R2

B and for
stress-free boundary conditions.

The aim of this paper is to show that for any C2, and any of the boundary con-
ditions (a)-(c), the critical linear instability Rayleigh numbers R2

c coincide with the
critical unconditional exponential nonlinear stability Rayleigh numbers R2

E . Therefore,
we obtain necessary and sufficient conditions of unconditional nonlinear exponential stability
of the basic motion. The main idea is to introduce (like in [16]) two new fields φ

and ψ which are in a one-to-one correspondence with ϑ and γ and obtain a system
for the perturbations u;φ;ψ which is equivalent to the system for the perturbations
u;ϑ; γ. Then, we give a Lyapunov function E (t ), depending on φ and ψ which is
equivalent to the energy norm E0(t ), and prove that, by choosing properly the Lya-
punov parameters, the critical nonlinear exponential stability Rayleigh numbers (ob-
tained with this norm) coincide with the linear ones (obtained via the normal modes
analysis).

The plan of the paper is as follows: in Section 2 we give the basic motion m0 and
write the system for the perturbations u;ϑ; γ; p1 to m0 (p1 is the perturbation to the
pressure field). Then, we recall some linear instability and nonlinear stability results. In
Section 3 we introduce the fields φ and ψ and get the system for u;φ;ψ; p1. Then, we
define a Lyapunov function E (t ), equivalent to E0(t ), and write the time evolution of
E (t ). We obtain a nonlinear stability condition and solve the corresponding maximum
problem, in the case of a horizontal layer bounded by two stress-free surfaces. Then, by
properly choosing the Lyapunov parameters, our main result is proved: the critical linear
instability Rayleigh number R2

c coincides with the critical nonlinear stability Rayleigh
number R2

E . In Section 4, by a suitable change of fields, we prove that the aforesaid
coincidence holds also when the boundary conditions are of type rigid-rigid or rigid-free
and for any arbitrary domain. Finally, we make some remarks for the case when the
basic motion is a laminar flow and for p > 1.

2. Basic equations and recall of some linear and non linear stability results

Let us consider a layer of a binary fluid mixture heated and salted from below, in
the Oberbeck-Boussinesq scheme, bounded by two horizontal parallel planes. Let d > 0,
Ωd = R2 × (−d=2; d=2) and Oxyz be a cartesian frame of reference with unit vectors
i; j; k respectively. Let us assume that the layer is parallel to the plane z = 0.
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The basic motion m0 = (U; T; C; p1) is given by the following equations (see [4,
21]):

(2.1)





U = 0; T = −T1 − T2

d
z + T0; C = −C1 − C2

d
z + C0

p1

ρ0
= −gz − αT g

2d
(T1 − T2)z2 +

αC g
2d

(C1 − C2)z2 + p0

where U; T; C and p1 are the velocity, temperature, concentration and pressure fields;
ρ0; T0; C0 are reference density, temperature and concentration, respectively; αT and
αC are volume expansion coefficients, g = −gk is the acceleration of gravity, p0 is a real
number, T0 = (T1 + T2)=2, C0 = (C1 + C2)=2 and T1, T2, C1, C2 are real numbers,
with T1 > T2 and C1 > C2.

The non-dimensional equations which govern the evolution disturbance to the ve-
locity, temperature, concentration and pressure fields (u;ϑ; γ; p2) to m0 are [4, 15]:

(2.2)





ut + u · ∇u = −∇p2 + (Rϑ− Cγ)k + ∆u; ∇ · u = 0

PT

(
ϑt + u · ∇ϑ

)
= Rw + ∆ϑ

PC

(
γt + u · ∇γ

)
= Cw + ∆γ;

in Ω1 × (0;∞), where Ω1 = R2 × (−1=2; 1=2), with initial condition

(2.3) u(x; 0) = u0(x); ϑ(x; 0) = ϑ0(x); γ(x; 0) = γ0(x);

x = (x; y; z) ∈ Ω1, and boundary conditions

(2.4)





ϑ(x; y;±1=2; t ) = γ(x; y;±1=2; t ) = 0; t > 0; and

w(x; t ) = 0; uz (x; t ) = vz (x; t ) = 0; on a stress-free surface,

u(x; t ) = 0; on a rigid surface.

The subscripts z and t denote partial derivatives, u0;ϑ0; γ0 are assigned regular fields
with ∇ · u0(x) = 0, u = (u; v; w), ∇ is the «nabla» operator and ∆ is the laplacian.
The stability parameters in (2.2) are the Rayleigh numbers for heat and solute and are
given by

R2 = gβ1αT d 4=νkT ; C2 = gβ2αC d 4=νkC (Rayleigh number for heat and solute),

where β1 and β2 are the constant gradients of temperature and concentration, respec-
tively, kT and kC are the thermal and solute diffusivity coefficients, ν is the kinematic
viscosity. Moreover

PT = ν=kT and PC = ν=kC

are the Prandtl and Schmidt numbers.
As it is usual, we assume that the perturbations u;ϑ; γ; p2 are periodic functions

of x and y of periods 2π=ax , 2π=ay , respectively, (ax > 0; ay > 0) and denote by Ω

the periodicity cell Ω = [0; 2π=ax ]× [0; 2π=ay]× [−1=2; 1=2] and by a = (a2
x + a2

y )1=2
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the wave number. Moreover, taking into account the fact that the stability of m0 makes
sense only in a class of solutions of (2.2)-(2.4) in which m0 is unique, in the case when
both the bounding planes are stress-free, we exclude any other rigid solution requiring
the «average velocity condition»

(2.5)
∫

Ω

u dΩ =

∫

Ω

v dΩ = 0:

For a bounded domain the stress-free boundary conditions correspond to the con-
ditions

u · n|@Ω
= 0; [D(u) · n − n · D(u) · nn]|@Ω

= 0;

where n is the unit vector of the outward normal to @Ω.

The stability of the conduction - diffusion solution of a mixture heated and salted
from below, has been studied in the linear case in [5-8].

For a horizontal layer bounded by both stress-free surfaces on which ϑ and γ are
required to vanish, instability is guaranteed when

(2.6)

R2 > RB
2 + C2 (p < 1);

R2 > RB
2 + C2 (p > 1; C=C0 < 1)

R2 >
RB

2(p + 1)(1 + PT p)

PT p2 +
(1 + PT p)C2

(1 + PT )p2 (p > 1; C=C0 > 1);

where

(2.7) RB
2 = 657:511; C0

2 = (RB
2=PT )

(
(PT + 1)=(p − 1)

)
;

and

(2.8) p = PC =PT :

For any arbitrary domain whose boundary can be composed of both stress-free and rigid
elements (on which ϑ = γ = 0) instability is guaranteed (see [4, 9]) when

(2.9) R2 > RB
2 + C2;

with RB
2 given by (1.2).

In the nonlinear case the stability problem has been studied in [9, 16-18].
In [9], the classical energy

(2.10) E0(t ) = 1=2
(
‖u‖2 + PT ‖ϑ‖

2 + PC ‖γ‖
2);

has been used, and global exponential stability has been obtained for

(2.11) R2 < R2
B:

Thus the nonlinear stability region, obtained with this norm, is the same as in the case
of the simple Bénard problem for a homogeneous fluid [4], and then, the stabilizing
effect of the gradient of concentration on the onset of convection is not achieved. In
order to obtain this effect, Joseph, [16, 4], uses a generalized energy method to show
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the stabilizing effect of the gradient of solute on thermal convection. He proves a
nonlinear stability theorem, [16, Theorem 1], which gives global stability, in the sense
that it holds for any initial value bounded in L2. But the stability so guaranteed has not
been shown to be exponential. In [23], a theorem of nonlinear exponential stability has
been shown and the coincidence between the critical linear instability Rayleigh number

(2.12) R2
c = RB

2 + C2

and the nonlinear one has been obtained for a layer, with stress-free boundary condi-
tions, when

C2 < (3 + p)=(1 − p)RB
2:

3. Unconditional nonlinear exponential stability and the maximum problem.

Coincidence of the critical linear and nonlinear limits

in the case of stress-free surfaces

Here we prove a nonlinear exponential stability theorem which shows, for p < 1,
the coincidence between the linear critical Rayleigh number and the nonlinear one for
any C2. For this, now we introduce two fields φ and ψ, which are in a one-to-
one correspondence with ϑ and γ, and give the system for the new perturbations
u;φ;ψ; p2.
Let us define the fields

(3.1) φ = Rϑ− Cγ

(3.2) ψ = Rϑ− pδCγ
with p defined by (2.8) and δ ∈ R is a constant to be chosen. We assume that

(3.3) pδ �= 1:

Let us observe that the first field φ comes naturally from (2.2)1, while the second is
related to the first as in the Joseph’s coupling parameters method, [16].

Then, the system (2.2) is equivalent to the system

(3.4)





ut + u · ∇u = −∇p2 + φk + ∆u; ∇ · u = 0

PT (ψt + u · ∇ψ) = (R2 − δC2)w +
δ(p − 1)
pδ − 1

∆φ +
δ − 1
pδ − 1

∆ψ

PC (φt + u · ∇φ) = (pR2 − C2)w +
p2δ − 1
pδ − 1

∆φ− p − 1
pδ − 1

∆ψ;

with boundary conditions (2.4)2, (2.4)3 and

φ = ψ = 0 on z = ±1=2; t > 0;

and initial conditions (2.3)1 and

φ(x; 0) = Rϑ0 − Cγ0; ψ(x; 0) = Rϑ0 − pδCγ0; x ∈ Ω1:
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In order to study the stability of the basic motion, we use the following Lyapunov
function

(3.5) E (t ) = 1=2[λ‖u‖2 + µPT ‖ψ‖
2 + PC ‖φ‖

2];

with λ; µ positive constants to be chosen.
The evolution equation of E (t ) is:

(3.6)
Ė(t ) = (pR2 − C2 + λ)(φ; w) + µ(R2 − δC2)(w;ψ) − [2λ‖D(u)‖2 +

+
p2δ − 1
pδ − 1

‖∇φ‖2 +
µ(δ − 1)
pδ − 1

‖∇ψ‖2 +
(p − 1)(µδ − 1)

pδ − 1
(∇φ;∇ψ)] = I0 −D0;

with

(3.7) I0 = (pR2 − C2 + λ)(φ; w) + µ(R2 − δC2)(w;ψ);

(3.8) D0 = 2λ‖D(u)‖2 +
p2δ−1
pδ − 1

‖∇φ‖2 + µ
δ − 1
pδ−1

‖∇ψ‖2 +
(p−1)(µδ−1)

pδ − 1
(∇φ;∇ψ):

In order to assure that the functional D0 is positive-definite, we require

(3.9)
p2δ − 1
pδ − 1

> 0;
δ − 1
pδ − 1

> 0; [(p − 1)(µδ − 1)]2 − 4µ(p2δ − 1)(δ − 1) < 0:

From the assumption (3.9) it follows that there exists a positive real number α1 such
that

(3.10)

α1(‖∇φ‖2 + ‖∇ψ‖2) ≤

≤ p2δ − 1
pδ − 1

‖∇φ‖2 + µ
δ − 1
pδ − 1

‖∇ψ‖2 +
(p − 1)(µδ − 1)

pδ − 1
(∇φ;∇ψ);

α1 =
4µ(δ − 1)(p2δ − 1) − (p − 1)2(µδ − 1)2

4(pδ − 1)[p2δ − 1 + µ(δ − 1)]
:

From this it follows that

(3.11) Ė(t ) ≤ (m − 1)D0;

where

(3.12) m = max
H

I0

D0
;

and H is the space of the admissible fields:

(3.13)
H = { u;ψ;φ regular fields, periodic in x and y of periods 2π=ax , 2π=ay;

0 < D0 < ∞; satisfying (2.4) and, for both stress-free surfaces, (2:5)}:

Assuming (stability condition)

(3.14) m < 1;

then, from (3.11), we have

(3.15) Ė(t ) ≤ (m − 1)(α1‖∇φ‖2 + α1‖∇ψ‖2 + λ‖∇u‖2):
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Now we use the Poincaré inequality

(3.16) k2(Ω)
∫

Ω

f 2 dΩ ≤
∫

Ω

|∇f |2 dΩ;

where f is a regular field in the periodicity cell Ω, f = 0 on z = ±1=2 or f = 0 on
z = −1=2, fz = 0 on z = 1=2 (k2(Ω) = π2 in the first case, and k2(Ω) = π2=4 in the
second case), and the Wirtinger inequality

(3.17) π2
0

∫

Ω

f 2 dΩ ≤
∫

Ω

|∇f |2 dΩ;

where f is a regular field in the periodicity cell Ω,
∫
Ω

f dΩ = 0, fz = 0 on z = ±1=2,
and π2

0 = min(π2; a2
x ; a2

y ) (W. von Wahl, private communication, July 1997), to obtain

(3.18) Ė(t ) ≤ 2γ1(m − 1)E (t );

where

(3.19) γ1 = min(
α1π

2

PC

;
α1π

2

µPT

;α2τ
2);

and τ 2 = π2, τ 2 = π2

4 , τ 2 = π2
0; in the rigid-rigid, rigid-free and free-free bound-

ary cases, respectively, α2 is the constant (depending on Ω) in the Korn inequality
α2‖∇u‖2 ≤ 2‖D(u)‖2.

Integrating the last inequality, we obtain

(3.20) E (t ) ≤ E (0) exp{−2γ1(1 − m)t};

and the stability condition m < 1 assures unconditional nonlinear exponential stability of the
basic motion. We observe that the Friedrichs-Poincaré inequality holds also for a bonded
domain Ω with a piecewise C 1 boundary @Ω. In fact, if Σ is a part of the boundary @Ω

on which the unit normal vector n has three independent directions, then there exists a
positive constant k(Ω), depending only on the domain Ω, such that k(Ω)‖u‖ ≤ ‖∇u‖,
’u ∈ W 1

2 (Ω), u · n|Σ = 0, [24]. Therefore (3.20) (with a suitable γ1 depending on
k(Ω)) holds also in the case of any (regular) bounded domain whose boundary can be
composed of both stress-free and rigid elements (see [4] for the appropriate boundary
conditions. In this case H is the space of the admissible fields which satisfy these
conditions).

In order to obtain the critical nonlinear Rayleigh number R2
E , we must solve the

maximum problem (3.12). In the sequel we shall assume

(3.21) p < 1:

Then, (3.9)1 and (3.9)2 are verified if we choose δ such that

(3.22) δ < 1 or δ > 1=p2:

Now we rewrite the maximum problem in the following way

(3.23) m = max
H

α(φ; w) + β(ψ; w)
2λ‖D(u)‖2 + Γ‖∇φ‖2 + ζ‖∇ψ‖2 + η(∇φ;∇ψ)

;
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where

(3.24)
{

α = pR2 − C2 + λ; β = µ(R2 − δC2); Γ = (p2δ − 1)=(pδ − 1);

ζ = µ(δ − 1)=(pδ − 1); η = (p − 1)(µδ − 1)=(pδ − 1):

In the sequel of this section we shall assume that the domain is a horizontal layer
with both stress-free bounding planes.

The Euler-Lagrange equations for the maximum problem (3.23) are the following

(3.25)





αφk + βψk + 2mλ∆u = ∇p′

αw + 2mΓ∆φ + mη∆ψ = 0

βw + 2mζ∆ψ + mη∆φ = 0 :

By taking the third component of the double curl of (3:25)1, we have

(3.26)





α∆1φ + β∆1ψ + 2mλ∆∆w = 0

αw + 2mΓ∆φ + mη∆ψ = 0

βw + 2mζ∆ψ + mη∆φ = 0;

where ∆1f = fxx + fyy . Now, following the standard analysis of normal modes, [25],
and observing that all the even derivatives of w;φ;ψ vanish on the planes z = ±1=2, it
is easy to see that the appropriate solutions of (3.26) are w = W0 cos nπz exp i(k1a1x +

+ k2a2y), φ = Φ0 cos nπz exp i(k1a1x + k2a2y), ψ = Ψ0 cos nπz exp i(k1a1x + k2a2y);
(n = 1; 3; 5; :::, k1 �= 0 and k2 �= 0 integers), with W0; Φ0; Ψ0 constants. Substituting
these functions in (3.26) we obtain:

(3.27)





− αr2Φ0 − βr2Ψ0 + 2mλ(n2π2 + r2)2W0 = 0

− 2mΓ(n2π2 + r2)Φ0 − mη(n2π2 + r2)Ψ0 + αW0 = 0

− mη(n2π2 + r2)Φ0 − 2mζ(n2π2 + r2)Ψ0 + βW0 = 0 ;

with r2 = k2
1 a2

1 + k2
2 a2

2 :
In order to have solutions of (3.27) which do not vanish identically, the determinant

of the system (3.27) must vanish. Then, we easily obtain

(3.28) m2λs(4ζΓ − η2) + ηαβ − β2Γ − ζα2 = 0;

where s = (n2π2 + r2)3=r2: Because of (3.9)3, we have 4ζΓ−η2 > 0; then, from (3.28),
it follows that

(3.29) m2 =
β2Γ + α2ζ − ηαβ

λs(4ζΓ − η2)
:

By taking the maximum over k2
1 , k2

2 and n2 of the RHS of (3.29) we have

(3.30) m2 =
β2Γ + α2ζ − ηαβ

λR2
B(4ζΓ − η2)

;
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where R2
B have been introduced in Section 1.

Substituting the value of α;β; Γ; η; ζ, given by (3.24), in (3.30), we have

(3.31) m2 = A=B;

where

(3.32)

A =µ(pδ − 1)[µ(R2 − δC2)2(p2δ − 1) + (pR2 − C2 + λ)2(δ − 1)−
−(p − 1)(µδ − 1)(pR2 − C2 + λ)(R2 − δC2)];

B =λR2
B[4(p2δ − 1)(δ − 1)µ− (p − 1)2(µδ − 1)2]:

In order to obtain the best value for the nonlinear critical Rayleigh number R2
E , we

minimize m2 with respect to the Lyapunov parameters λ and µ. For this, by computing
the partial derivatives of m2 with respect to λ and µ, and by making them equal to
zero, we obtain

λ1 =
(C2 −R2)(δp − 1)

1 − δ
; µ1 =

(C2 −R2)(p − 1)

(δ − 1)(C2δp −R2)
;

λ2 = pR2 − C2; µ2 =
(1 − p)(C2 − pR2)

(δp − 1)(C2δp −R2)
:

Now we choose δ < 1, in this way (3.9)1 and (3.9)2 are verified.
In a first moment, we also assume that, C2 <R2, then, in these hypotheses (i.e. p <1;

δ < 1, C2 < R2) we have

λ1 > 0; µ1 > 0:

By choosing λ = λ1, µ = µ1 in (3.32), we obtain

A =
(δp − 1)3(1 − p)(C2 −R2)

(1 − δ)3(C2δp −R2)2

{
C6δ[δ(3p + 1) − 4p] − C4R2[δ2(7p + 1) +

+ 2δ(3 − 5p) − 4] + C2R4[4δ2p + 2δ(5 − 3p) − p − 7] −R6(4δ − p − 3)
}

;

B =
R2

B(p − 1)(δp − 1)3(C2 −R2)

(1 − δ)3(C2δp −R2)2

{
C4δ[δ(3p + 1) − 4p]−

−2C2R2[2δ2p + 3δ(1 − p) − 2] + R4(4δ − p − 3)
}

:

Factorizing A, we have

(3.33)

A =
(δp − 1)3(1 − p)(C2 −R2)2

(1 − δ)3(C2δp −R2)2 K0(R2)

B =
R2

B(p − 1)(δp − 1)3(C2 −R2)

(1 − δ)3(C2δp −R2)2 K0(R2);

where

(3.34) K0(R2) = C4δ[δ(3p + 1)−4p]−2C2R2[2δ2p + 3δ(1− p)−2] + R4(4δ− p−3):
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We observe that hypothesis (3.9)3 requires

(p − 1)2(µ1δ − 1)2 − 4µ1(p2δ − 1)(δ − 1) < 0;

and, by the definition of µ1, this implies

(3.35) K0(R2)
(1 − p)(δp − 1)2

(δ − 1)2(C2δp −R2)2 < 0:

Since p < 1, δ < 1, C2 < R2, from last inequality, we obtain K0(R2) < 0:
Thus

(3.36) K0(R2) < 0; and A=B < 1;

imply nonlinear stability.

Our next goal is to determine the nonlinear critical Rayleigh number. For this, now
we study the system of inequalities

(3.37)





K0(R2) < 0

R2 − C2

R2
B

< 1:

As concerns (3.37)1, by choosing δ ∈](p + 3)=4; 1[; we see that (3.37)1 is equivalent
to R2

1 < R2 < R2
2; with R2

1 = C2h1(δ); R2
2 = C2h2(δ); and

(3.38)

h1(δ) =
2δ2p + 3δ(1 − p) − 2 − 2

√
(δ − 1)3(δp2 − 1)

4δ − p − 3
;

h2(δ) =
2δ2p + 3δ(1 − p) − 2 + 2

√
(δ − 1)3(δp2 − 1)

4δ − p − 3
:

When δ ∈](p + 3)=4; 1
[
, it is easy to verify that the following properties hold

(3.39)

i) h2(δ) > h1(δ) > 1;

ii) lim
δ→1−

h1(δ) = lim
δ→1−

h2(δ) = 1;

iii) lim
δ→((p+3)=4)+

h2(δ) =+ ∞; lim
δ→((p+3)=4)+

h1(δ) =
3(p + 3)
4(p + 2)

:

Then, the system (3.37) is satisfied for

(3.40) R2
1 < R2 < min(R2

2; C2 + R2
B):

From (3.38) - (3.40), it is easy to see that, by varying δ in the interval ](p+3)=4; 1[;
and by taking ⋃

δ∈
]

(p+3)=4;1
[
]R2

1; C2 + R2
B[;
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we shall obtain the nonlinear stability region ]C2; C2 + R2
B[. This means that every

time we choose R̂2 ∈]C2; C2 + R2
B[, it is possible to find δ̂ ∈](p + 3)=4; 1[ such that

m2 < 1.
Now we show that also when 0 < R2 ≤ C2, as it is obvious to be expected, we

have m2 < 1. In fact, by choosing δ ∈]0; 1[, and R2 = δC2, from (3.31) and (3.33) it
follows that

(3.41) m2 =
µ(pδ − 1)(δ − 1)(pR2 − C2 + λ)2

λR2
BD(µ)

;

with

D(µ) = 4µ(p2δ − 1)(δ − 1) − (p − 1)2(µδ − 1)2 > 0:

Setting

µ = µ =
2(p2δ − 1)(δ − 1) + δ(p − 1)2

δ2(p − 1)2 ; λ = (1 − pδ)C2;

we have

D(µ) =
4(δ − 1)(δp − 1)2(δp2 − 1)

δ2(p − 1)2 > 0;

and

m2 = 0;

and then the stability condition is verified for 0 < R2 < C2: Finally, when R2 = C2,
choosing λ = (1 − p)C2, µ = µ as before, we have

m2 =
µ 2δ2(1 − δ)(1 − p)C2

4R2
B(1 − δp)

:

Since for δ → 1− it follows that µ → 1, then we have m2 → 0. Consequently, for any
C2, we can have m2 < 1 as we take δ < 1, close to 1.

Hence we conclude that whenever

(3.42) R2 < C2 + R2
B;

the nonlinear stability condition m < 1 is satisfied.
The criticality, i.e. m2 = 1, will be reached when R2 = R2

E ; where R2
E = C2 + R2

B:
This last value is the critical nonlinear stability Rayleigh number and is coincident with
the critical linear instability Rayleigh number (2.12).

From the linear instability results (2.6), the instability theorem of [26], and the
previous proof, we can now formulate our main result:

Theorem 3.1. Assuming p < 1, the condition

(3.43) R2 ≤ C2 + R2
B;

is necessary and sufficient for nonlinear stability of the basic motion m0. If

(3.44) R2 < C2 + R2
B;
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then m0 is nonlinearly exponentially stable according to (3:20). The critical linear instability
Rayleigh number R2

c coincides with the critical nonlinear stability Rayleigh number R2
E .

Remark 3.1. The previous method is valid also when the basic motion is different
from the rest state. In particular, for Couette and Poiseuille flows of a mixture, it is
possible to obtain, for any C2, a conditional nonlinear stability condition which does
not depend on the Reynolds number and an unconditional stability result for R2 < R2

E ,
any C2, and Reynolds number less than co(1 − m). These results will appear in a next
paper.

4. The rigid-rigid and rigid-free boundary conditions

in a layer and the bounded domain case

In this section, we shall prove the coincidence between the critical linear instability
Rayleigh number and the nonlinear critical one, in the case when the domain is a
horizontal layer bounded by two rigid planes or by one rigid plane and the other
stress-free. We shall also obtain the aforesaid coincidence for any bounded domain.

In fact, in all the previous cases, taking the boundary conditions into account, the
evolution equations of the Lyapunov function E (t ) is given by

(4.1)
Ė(t ) = (pR2 − C2 + λ)(φ; w) + µ(R2 − δC2)(w;ψ) − [2λ‖D(u)‖2 +

+
p2δ − 1
pδ − 1

‖∇φ‖2 +
µ(δ − 1)
pδ − 1

‖∇ψ‖2 +
(p − 1)(µδ − 1)

pδ − 1
(∇φ;∇ψ)];

and the related maximum problem is given by

(4.2) m = max
H

α(φ; w) + β(ψ; w)
2λ‖D(u)‖2 + Γ‖∇φ‖2 + ζ‖∇ψ‖2 + η(∇φ;∇ψ)

;

where α, β, Γ, ζ, η are given by (3.24) and H is the space of the appropriate admissible
functions. We observe that, in the case of a layer with rigid-rigid or rigid-free boundary
conditions and for a bounded domain with all the boundary rigid, we have 2‖D(u)‖2 =

= ‖∇u‖2.
Now we denote by (V;χ) the fields which are related to u, φ and ψ by the following

equalities:

(4.3) V =
√
λu; αφ = k

√
σχ βψ = (2 − k)

√
σχ;

with

(4.4) σ =
β2Γ + α2ζ − ηαβ

4ζΓ − η2 > 0;

(observe that, by (3.9)3, 4ζΓ − η2 > 0) and

(4.5) k =
α(2αζ − βη)

β2Γ + α2ζ − ηαβ
:
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Since the fields V and χ satisfy the same boundary conditions as u and φ (or ψ),
then, as it is easy to verify, the maximum (4.2) becomes

(4.6) m =

√
σ

λ
max
H

2(χ; V3)

2‖D(V)‖2 + ‖∇χ‖2 =
√

σ

R2
Bλ

;

where V3 = V · k, and now R2
B is the value which is appropriate to the domain

with the assigned boundary conditions, for example, in the case of a layer with rigid-
rigid boundary conditions R2

B = 1708, in the case of a layer with rigid-free boundary
conditions R2

B = 1100.
From (4.6) we get the stability condition

√
σ=R2

Bλ < 1;

which is equivalent to

σ < R2
Bλ:

Now, proceeding exactly as in Section 3, we easily obtain that, whenever

R2 < R2
E ; R2

E = C2 + R2
B;

we have m < 1. Thus, also in these cases (rigid-rigid, rigid-free in a layer, any bounded
domain) Theorem 3.1 holds and we reach the coincidence between the linear and non-
linear critical Rayleigh numbers.

Remark 4.1. In the case p = 1, we can obtain the same results as before in the limit
p → 1. In fact, in this case, the equations (3.4)1−2 and (3.4)4 do not contain ψ and
can be solved separately. One writes the evolution equations of

E1(t ) = 1=2[λ‖u‖2 + PC ‖φ‖
2]

and proves that it decays exponentially. Then it is easy to prove that also ‖ψ‖ decays
exponentially (see, e.g. [27]).

Remark 4.2. The case p > 1 will be studied in a forthcoming paper. In this case,
for moderate C2, the principle of exchange of stabilities is still valid and we are able to
find unconditional nonlinear stability up to the linear critical value. For example, for
p = 2 and C2 ≤ R2

B=3, we obtain R2
E = R2

c , while, for C2 > R2
B=3, we get R2

E < R2
c ,

and this is in agreement with other nonlinear stability results of [4-6].

Remark 4.3. In the case p < 1, Joseph gives stability results (not exponential) only
for C2 < R2 while here we have obtained exponential stability results for any R2 such
that 0 < R2 < R2

E .

Remark 4.4. The stability results, obtained in the case of a mixture heated and salted
from below, apply also in the case of a mixture heated and salted from above (typical
configuration at sea). To have the unconditional stability result in this case, one need
only to interchange R2 and C2, PT and PC .
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