ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI MATEMATICA E APPLICAZIONI

RENATA GRIMALDI, IGNAZIA MANISCALCO

Extension de métriques riemanniennes et type de croissance

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni, Serie 9, Vol. 9 (1998), n.3, p. 213–220.

Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1998_9_9_3_213_0>

L'utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi di ricerca e studio. Non è consentito l'utilizzo dello stesso per motivi commerciali. Tutte le copie di questo documento devono riportare questo avvertimento.

Geometria differenziale. — Extension de métriques riemanniennes et type de croissance. Nota di Renata Grimaldi e Ignazia Maniscalco, presentata (*) dal Socio E. Vesentini.

ABSTRACT. — Extension of Riemannian metrics and growth-type. Let M be a noncompact differentiable manifold and V an open proper submanifold endowed with a complete Riemannian metric g. We prove that g can be extended all over M to a complete Riemannian metric G having the same growth-type as g.

KEY WORDS: Riemannian metrics; Geodesic balls; Volume.

RIASSUNTO. — Estensione di metriche riemanniane e tipo di crescenza. Sia M una varietà differenziabile non compatta e sia V una sottovarietà propria aperta, dotata di una metrica riemanniana completa g. Si mostra come estendere g a una metrica completa G su M con lo stesso tipo di crescenza di g.

1. Introduction

Soit (V, g) une variété riemannienne connexe et complète; on appelle *type de croissance* de la métrique g la classe d'équivalence, pour la relation de reciproque dominance, de la *fonction croissance* $v_x(r) =:$ volume $_g B(x, r)$, où B(x, r) est la boule géodésique fermée de centre $x \in V$ et de rayon r > 0 (voir, par exemple, [3] à [11]).

Dans cette *Note*, on considère une variété différentiable connexe non compacte M de dimension q = p + m et une sous-variété *propre* (1) ouverte connexe V de dimension p et on montre le théorème suivant:

Théorème 1. Si g est une métrique riemannienne complète sur la sous-variété V, il existe sur la variété M une métrique complète G qui est une extension de g et dont le type de croissance est celui de g.

2. Démonstration du Théorème 1

On va faire la démonstration du théorème en plusieurs étapes.

I^{ere} étape - Une decomposition topologique.

Soit M une variété différentiable connexe non compacte de dimension q=p+m et soit V une sous-variété propre ouverte connexe de dimension p.

On considère sur V une métrique riemannienne complète g et on prend les boules géodésiques [1, 2] fermées \widetilde{B}_n de centre un point $x \in V$ et de rayon $n = 1, 2, \ldots$ On

- (*) Nella seduta del 24 aprile 1998.
- (1) Propre dans le sens que l'inclusion $i: V \hookrightarrow M$ est une application propre.

а

$$V = \bigsqcup_{n=1}^{\infty} \widetilde{B}_n$$

et

$$\widetilde{B}_n \subset \operatorname{int} \widetilde{B}_{n+1}$$
 , $\forall n$.

Cela veut dire qu'on a une exhaustion compacte de V; mais, alors, on peut bien prendre une interpolation $\widetilde{B}_n \subset B_n \subset \widetilde{B}_{n+1}$ pour avoir une exhaustion compacte de V par des sous-variétés lisses B_n , à bord, de codimension zéro.

On pose

$$\Sigma_n =: \partial B_n$$
, $\forall n$.

On considère, maintenant, le *fibré normal* E =: TM/TV de V: il est connu [12] qu'on peut le réaliser comme un voisinage tubulaire fermé de V. Soit $E \xrightarrow{\pi} V$ ce fibré normal: $\forall x \in V$ la fibre $\pi^{-1}(x)$ est (difféomorphe à) la boule euclidienne fermée B^m de dimension m = q - p. En outre, E est une sous-variété à bord de M, dont le bord ∂E est fibré aussi sur V, $\partial E \xrightarrow{\pi_{|\partial E}} V$, et la fibre est la sphère euclidienne S^{m-1} .

On utilise, à ce point, un fait bien connu:

Lemme 1. Toute exhaustion de V par des sous-variétés compactes (à bord) de codimension zéro s'étend à une exhaustion de M par des sous-variétés compactes W_n de codimension zéro.

Ceci veut dire que $W_{n} \cap V = B_{n}, \ \forall n$.

En utilisant ce lemme on peut faire la suivante decomposition topologique dans M: on considère le complémentaire $M-\stackrel{\circ}{E}$ dans M de l'intérieur du fibré normal E, et son bord ∂E .

Il existe, alors, dans $M - \stackrel{\circ}{E}$ une famille de sous-variétés compactes de codimension 1, N_n , à bord et propres dans le sens que le bord ∂N_n est dans ∂E :

$$(N_n, \partial N_n) \hookrightarrow (M - \stackrel{\circ}{E}, \partial E),$$

et telles que:

(i) $N_n \cap N_m = \emptyset$ pour $n \neq m$,

$$(ii) \ \partial \overset{\text{\tiny in}}{N}_n = \overset{\text{\tiny in}}{\pi}^{-1} \Sigma_n \cap \partial E = (\pi_{|\partial E})^{-1} \Sigma_n.$$

Il existe, alors, dans M des sous-variétés compactes W_n , de codimension zéro, à bord telles que

$$\partial W_n = N_n \cup \pi^{-1} \Sigma_n;$$

ces W_n constituent l'exhaustion compacte de M qui étend l'exhaustion de V.

Revenons à la sous-variété V avec sa métrique g: pour chaque n, on considère un voisinage tubulaire *riemannien* de Σ_n dans V:

$$I_{\mathbf{n}}=:\Sigma_{\mathbf{n}}\times [-\varepsilon_{\mathbf{n}}\,,\,\varepsilon_{\mathbf{n}}]\subset V;$$

on veut dire que les fibres de I_n sont des arcs géodésiques orthogonaux à Σ_n , tous de même longueur $2\varepsilon_n$, dans la métrique g (voir fig. 1).

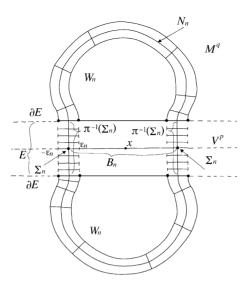


Fig. 1.

Mais il peut bien arriver que la limite inférieure $\lim_{n\to+\infty} \varepsilon_n = 0$ (on peut trouver une sous-suite $\overline{\varepsilon}_n \to 0$ dont la vitesse dépend de la métrique).

Dans le fibré bord $\partial E \xrightarrow{\pi_{|\partial E}} V$ on considère

$$(\pi_{|\partial E})^{-1}(I_n) = \pi^{-1}(\Sigma_n \times [-\varepsilon_n, \varepsilon_n]) \cap \partial E.$$

Nous allons construire, maintenant, une métrique sur E.

II^{me} étape - Construction d'une métrique riemannienne sur E.

Nous voulons mettre sur E une métrique g_E telle que sa restriction à V (section nulle) soit la métrique donnée g sur V, et les volumes et les longueurs sur E soient comparables, à constantes près, aux volumes et aux longueurs dans V: avec ces conditions on aura que la croissance de g_E sera la même de g.

Lemme 2. Sur E il existe une métrique riemannienne complète \tilde{g} qui, restreinte à la section nulle V est égale a g et, en dehors d'un petit voisinage de la section nulle, s'écrit

$$\widetilde{g} = \pi^* g + g_1$$

(où π^* g est un produit scalaire sur TE et g_1 est la métrique canonique euclidienne en coordonnées polaires sur la fibre B^m) et telle que :

- (i) la métrique induite sur chaque fibre B^m est O(m)-invariante;
- $\mbox{(ii)} \quad \mbox{\it vol}_{\widetilde{g}} \pi^{-1}(\mbox{\it A}) \sim \mbox{\it vol}_{\mbox{\it g}} \mbox{\it A} \qquad \forall \mbox{\it A} \subset \mbox{\it V} \,;$
- (iii) $long_g \pi \ell \sim long_{\widetilde{g}} \ell$ $\forall chemin \ell \subset E$.

Avec ces conditions $cr(\tilde{g}) = cr(g)$.

Preuve du Lemme 2. Soit $V^p = \bigsqcup_{\alpha} U_{\alpha}$, $E_{|U_{\alpha}} = U_{\alpha} \times B^m$ et soient $U_{\alpha} \cap U_{\beta} \xrightarrow{h_{\alpha\beta}} O(m)$ les fonctions de transition.

Si g_1 est la métrique standard de B^m , pour chaque α on considère sur $U_\alpha \times B^m$ la métrique produit

$$\widetilde{g}_{\alpha} =: g_{|U_{\alpha}} + g_{1}.$$

Si $U_{\alpha} \cap U_{\beta} \neq \emptyset$, sur $(U_{\alpha} \cap U_{\beta}) \times B^m$ les métriques \widetilde{g}_{α} et \widetilde{g}_{β} coïncident $(h_{\alpha\beta}(x) \in O(m))$.

Donc, en recollant ces métriques locales on a une métrique globale \tilde{g} sur E, complète, qui satisfait bien les conditions réquises.

Il reste à voir seulement la propriété iii).

Soit ℓ un chemin géodésique entre $p \notin V$ et q dans E. On considère sur V les points $\pi(p)$ et $\pi(q)$, et soit ℓ' une géodésique minimale entre ces points: on a, donc,

$$\log_{\mathbf{g}} \ell' \leq \log_{\mathbf{g}} \pi \ell.$$

Mais, par la construction de \tilde{g} , on a aussi:

$$\log_{\mathbf{g}} \pi \ell \leq \log_{\widetilde{\mathbf{g}}} \ell.$$

On considère la fibre $\pi^{-1}(\pi(p))$ et soit $0 < c \le 1$ la distance euclidienne de p à l'origine; soit E_c le sous-fibré en sphères de rayon c et soit

$$X =: \pi^{-1} \ell' \cap E_c \stackrel{\text{diff.}}{=} S_c^{m-1} \times \ell'.$$

Alors $\exists!$ champ de vecteurs tangents \tilde{v} de norme 1 sur X, orthogonal à la fibre; soit λ la courbe intégrale par p de ce champ de vecteurs (λ est un chemin de p à un point $q' \in \pi^{-1}(\pi(q))$).

On a

$$\pi\lambda = \ell'$$

i.e. λ est un relèvement de ℓ' , et

$$\mathrm{long}_{\widetilde{g}}\lambda=\mathrm{long}_{g}\ell'.$$

Par l'inegalité triangulaire:

$$\log_{\widetilde{g}} \ell \leq \log_{\widetilde{g}} \lambda + \text{const}$$

(où const = d(q, q')), *i.e.*

$$long_{\widetilde{g}}\ell \leq long_g\ell' + const.$$

On conclut que $\log_{\mathfrak{g}} \pi \ell \sim \log_{\mathfrak{g}} \ell$.

Les conditions ii) et iii) impliquent que $cr \ \widetilde{g} = cr \ g$.

Dans cette métrique \widetilde{g} les longueurs des fibres de $\pi^{-1}(\Sigma_n \times [-\varepsilon_n, \varepsilon_n]) \cap \partial E$ restent égales à $2\varepsilon_n$ et $\lim_{n \to +\infty} \varepsilon_n = 0$.

Nous voulons qu'elles soient constantes sans changer la croissance.

On va modifier la métrique \widetilde{g} en une métrique g_F de la forme:

$$g_E = f^2(x, u)(\pi^* g) + \psi^2(x, u)g_1$$

à l'aide de deux fonctions réelles positives f et ψ , definies sur E de la manière suivante. L'espace E est fibré aussi sur [0,1]:

$$E \xrightarrow{\overline{\pi}} [0, 1]$$

 $p \mapsto \overline{\pi}(p) = \text{distance de } p \text{ à l'origine dans la fibre } \pi^{-1}(\pi(p)).$

Pour chaque point $p \in E$ on pose $x = \pi(p)$ et $u = \overline{\pi}(p)$ et on considère deux fonctions f(x, u) et $\psi(x, u)$:

$$E \to V \times [0,1] \xrightarrow{f \atop \psi} \mathbb{R}_+$$

$$p \cong (x, u) \xrightarrow{\mapsto} f(x, u)$$

 $\mapsto \psi(x, u)$

comme suit:

 I_f) On fixe u=1, c'est-à-dire on considère les points $p\in\partial E; \ \forall p\in\partial E$ tel que $\pi(p)=x\in\Sigma_n\times[-\varepsilon_n$, ε_n], alors $f(x,1)=\frac{1}{\varepsilon_n}$.

Dans les autres points $p \in \partial E$, on prend une interpolation C^{∞} .

$$II_f$$
) Soit $0 < \delta_2 < 1$; pour $0 \le u \le 1 - \delta_2$, $f(x, u) = 1$.

$$III_f$$
) Pour $1 - \delta_2 < u < 1$, $f(x, u) > 1$ est une interpolation C^{∞} .

IV_f) À u fixé dans la zone $1-\delta_2 < u \le 1$, $f(x,u) \to +\infty$ très rapidement pour $x \to +\infty$.

Après, la fonction $\psi(x, u)$ est toujours $0 < \psi(x, u) \le 1$ et:

$$I_{\psi}$$
) si $0<\delta_1<\delta_2$ alors pour $0\leq u\leq \delta_1,\; \psi(x$, $u)=1$.

 II_{ψ}) Dans la zone $1-\delta_2 < u \leq 1, \; \psi(x$, u) est telle que le volume $_{g_F}$ de la partie

$$\widetilde{E} =: \{ p \in E | p \cong (x, u), 1 - \delta_2 \leq u \leq 1 \}$$

de *E* soit trés petit:

$$\operatorname{vol}_{g_F}\widetilde{E}0 ext{ petit}).$$

Pour avoir ça, on doit choisir $\psi(x,u)$ de telle sorte que, à u fixé dans la zone $1-\delta_2 \le \le u \le 1$, $\psi(x,u) \to 0$ très rapidement pour $x \to +\infty$: plus précisément on doit avoir que le produit

$$f(x, u)\psi(x, u) \rightarrow 0$$

très rapidement pour $x \to +\infty$.

 III_{ψ}) Dans la zone $\delta_1 < u < 1 - \delta_2$ on prend une interpolation C^{∞} .

Propriétés de cette métrique g_E sur E.

$$cr g_E = cr g.$$

En fait, le volume total de la partie \widetilde{E} est fini et non donne contribution à la croissance; puis, dans la zone $0 \le u \le \delta_1$ la métrique g_E coïncide avec \widetilde{g} et dans la zone intermediaire f est égale à 1 et ψ est bornée $0 < \psi(x, u) < 1$; le volume des boules de la métrique g_E est comparable au volume des boules dans la métrique \widetilde{g} et, par le Lemme 2, $cr\ \widetilde{g} = cr\ g$.

b) La longueur des fibres de $\pi^{-1}(\Sigma_n \times [-\varepsilon_n, \varepsilon_n]) \cap \partial E$, (fibres qui sont $\pm \pi_{|\partial E}^{-1}(\Sigma_n)$) est égale à 2 pour tout n, par la condition I_f).

III^{me} étape - Construction d'une métrique G sur M.

D'abord, on construit une métrique riemannienne sur M-E de la manière suivante. On considère, $\forall n$, la variété à bord N_n et on prend une métrique σ_n sur N_n de telle sorte que

$$\begin{split} \sum_{n}^{\infty} & \operatorname{diam}_{\sigma_{n}} N_{n} < + \infty \; , \\ \sum_{n}^{\infty} & \operatorname{vol}_{\sigma_{n}} N_{n} < + \infty. \end{split}$$

Puis on considère le voisinage tubulaire (topologique) $P_n =: N_n \times [-1, 1]$ (voir fig. 1) et sur ce voisinage tubulaire on met la métrique

$$g_n =: \sigma_n + dt^2$$

(où dt^2 est la métrique standard de [-1, 1] i.e. la longueur de [-1, 1] est 2).

Propriétés de g_n:

- (1) Chaque fibre de $N_n \times [-1, 1]$ est $\perp N_n$;
- (II) la longueur de chaque fibre de $N_n \times [-1, 1]$ est constante égale à 2, $\forall n$;

(III)
$$\sum\limits_{n}^{\infty} vol_{g_n}(N_n \times [-1 \ , 1]) <+ \infty.$$

Si on appelle "TROU n", disons $T_n \subset M$ la partie compacte intermédiaire entre P_n

et P_{n-1} , on va mettre sur tels trous T_n , $\forall n$, une métrique g_{T_n} t.q.

$$\sum_{n}^{+\infty} \operatorname{diam}_{g_{T_n}} T_n o 0$$
 , $\sum_{n}^{+\infty} \operatorname{vol}_{g_{T_n}} T_n o 0$

très rapidement pour $n \to +\infty$.

En utilisant une partition de l'unité, on peut recoller toutes ces métriques g_E , g_n , g_{T_n} $\forall n$, pour avoir une métrique globale G bien définie sur M.

IV me étape - Étude de la croissance de G.

Propriétés de la métrique G.

1) Si $B_G(n)$ est la boule géodésique fermée, dans M, de centre $x \in V$ et de rayon n, on a

$$\pi^{-1}(B_n) \subset B_G(n) \subset \pi^{-1}(B_n) \cup \left(\bigsqcup_{i=1}^n (P_i \cup T_i)\right).$$

- 2) G est complète: en fait, $\forall n$, $B_G(n)$ est contenue dans un compact, par les inclusions precedentes.
 - 3) cr G = cr g.

Comme tous les volumes de P_i et T_i dans la métrique G sont très petits,

$$\mathit{vol}_{\mathit{g}} B_{\mathit{n}} \leq \mathit{volume}_{\mathit{G}} B_{\mathit{G}}(\mathit{n}) \leq \mathit{vol}_{\mathit{g}} B_{\mathit{n}} + \mathit{k}_{\mathit{n}}$$

où $k_n \to 0$.

Cela conclut la démonstration du théorème.

Travail réalisé avec le concours du M.U.R.S.T. d'Italie et dans le groupe G.N.S.A.G.A. du C.N.R. Les auteurs desirent éxprimer leur gratitude à V. Poénaru pour des fructueuses discussions.

BIBLIOGRAPHIE

- [1] I. Chavel, Riemannian Geometry. Acad. Press, 1984.
- [2] J. Cheeger D. Ebin, Comparison theorems in Riemannian Geometry. North-Holland 1975.
- [3] R. GRIMALDI, Sur la croissance des métriques C^{∞} sur \mathbb{R}^2 et \mathbb{H}^2 . Istit. Lombardo Rend. Sc., A 124, 1990, 119-124.
- [4] R. GRIMALDI, Construction de métriques riemanniennes avec type de croissance de plus en plus grand. C. R. Acad. Sc. Paris, 316, Sér. I, 1993 585-587.
- [5] R. GRIMALDI, On systolic growth-type. Diff. Geom. Appl., 5, 1995, 331-334.
- [6] R. GRIMALDI, Sur la croissance des variétés riemanniennes. Analele Stiint. Ovidius Univ. Constanta, Ser. Matem. III, 1995, fasc. 2, 47-54.
- [7] R. GRIMALDI P. PANSU, Sur le type de croissance des métriques de révolution. C. R. Acad. Sc. Paris, 311, Sér. I, 1990, 889-892.
- [8] R. GRIMALDI P. PANSU, Sur la croissance du volume dans une classe conforme. Jour. Math. pures et appl., 71, 1992, 1-19.

- [9] R. GRIMALDI P. PANSU, Sur la régularité de la fonction croissance d'une variété riemannienne. Geometriae Dedicata, 50, 1994, 301-307.
- [10] R. GRIMALDI P. PANSU, Sur le degré de différentiabilité de la fonction croissance en dimension deux. Boll. U.M.I., (7) 11-B, 1997, Suppl. fasc. 2, 25-38.
- [11] M. Gromov, Volume and bounded cohomology. Publ. I.H.E.S., 56, 1982, 5-100.
- [12] M. Hirsch, Differential Topology. Springer-Verlag, Berlin-Heidelberg 1976.

Pervenuta il 26 febbraio 1998, in forma definitiva il 19 marzo 1998.

R. Grimaldi:
Dipartimento di Matematica ed Applicazioni
Facoltà di Ingegneria
Università degli Studi di Palermo
Viale delle Scienze - 90128 Palermo
grimaldi@ipamat.math.unipa.it

I. Maniscalco: Dipartimento di Matematica ed Applicazioni Facoltà di Scienze M.F.N. Università degli Studi di Palermo Via Archirafi, 34 - 90123 PALERMO