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Analisi matematica. — Variational construction of homoclinics and chaos in presence of
a saddle-saddle equilibrium. Nota di Massimiliano Berti e Philippe Bolle, presentata (*)
dal Corrisp. A. Ambrosetti.

Abstract. — We consider autonomous Lagrangian systems possessing two homoclinic orbits to an
hyperbolic equilibrium of saddle-saddle type with two different characteristic exponents. Under a nonde-
generacy assumption on the homoclinics and under suitable conditions on the geometric behaviour of these
homoclinics near the equilibrium we show, by variational methods, that they give rise to an infinite family
of multibump homoclinic solutions. We relax the nondegeneracy assumption when the two characteristic
exponents are close one to the other.

Key words: Homoclinic orbits; Chaos; Saddle-saddle equilibrium; Variational methods.

Riassunto. — Costruzione variazionale di orbite omocline e di una dinamica caotica in presenza di un
equilibrio di tipo saddle-saddle. Consideriamo sistemi Lagrangiani autonomi aventi due orbite omocline ad
un equilibrio iperbolico di tipo saddle-saddle con due differenti esponenti caratteristici. Con una ipotesi di
nondegenerazione per le omocline e sotto opportune condizioni sul comportamento geometrico di queste
omocline vicino all’equilibrio proviamo, con metodi variazionali, che esse danno luogo ad una famiglia
infinita di soluzioni omocline di tipo multibump. Quando gli esponenti caratteristici sono vicini tra loro
rilassiamo la condizione di nondegenerazione per le omocline.

1. Introduction and main result

We outline in this Note some recent results obtained in [2] where we refer for
complete proofs and details. We consider autonomous Lagrangian systems of the form

(1) −q̈ + ψ(q)J q̇ + Aq = ∇W (q);

where q = (q1; q2) ∈ R2, J =

(
0 −1
1 0

)
and A =

(
λ2

1 0
0 λ2

2

)
. System (1) can be

obtained by the following Lagrangian

L(q; q̇ ) = (1=2)|q̇ |2 + (1=2)Aq · q − q̇ · v(q) − W (q);

where v = (v1; v2) satisfies

(2) ψ(q) = @q1
v2(q) − @q2

v1(q):

System (1) admits the energy E(q; q̇ ) = (1=2)|q̇ |2 − (1=2)Aq · q + W (q) as an invariant
of the motion. We shall assume

• (W1) W ∈ C 2(R2;R), W (0) = 0;∇W (0) = 0; D2W (0) = 0; for some 0<ρ0 <ρ1

(ρ1 is specified later after hypothesis (S2)) D2W is L1-Lipschitz continuous on the

(*) Nella seduta del 24 aprile 1998.
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ball B0 := B0(0; ρ0) of center 0 and radius ρ0 and L1-Lipschitz continuous on
B1 := B1(0; ρ1) of center 0 and radius ρ1;

• (P1) ψ ∈ C 1(R2;R) is L2-Lipschitz continuous (resp. L2-Lipschitz continuous) on
B0 (resp. B1), ψ(0) = 0; ∇ψ is L3-Lipschitz continuous on B1.

By (P1), we may assume (2), with

• (v1) v ∈ C 1(R2;R2), v(0) = 0, Dv(0) = 0.

Under these assumptions 0 is a hyperbolic equilibrium of (1) and the characteris-
tic exponents are two couples of opposite real numbers ±λ1;±λ2. In this case the
equilibrium is called of saddle-saddle type. We shall assume in the sequel that

(S1) λ1 > λ2 > 0:

We are interested in a chaotic behaviour of the dynamics of (1) on the zero energy
level.

The existence of chaos in presence of a saddle-saddle equilibrium on small energy
levels {E = h} has been studied by Turaev and Shil’nikov [7] and more recently by
Bolotin and Rabinowitz [3]. However, the chaotic trajectories which are obtained in [7]
as well as in [3] are not preserved when the energy vanishes. The existence of a Bernoulli
shift at energy level {E = 0} was studied by Holmes in [6] (see also [8]). He assumed
the existence of two nondegenerate homoclinics and introduced some conditions on the
way these homoclinics approach 0, which ensure, when (S1) is satisfied, the existence of
a horseshoe at the zero energy level. However Holmes’ conditions are not very specific
and it is not obvious that they can be fulfilled in the systems (3) and (S

ε) given below.
First we prove our results assuming that

• (S2) System (1) has 2 nondegenerate homoclinics q; q̃ . «Nondegenerate» means
that the unique solutions, that tend to 0 as t → ±∞, of the linearized equation at
(for instance) q

−ḧ + Ah + ψ(q)J ḣ + ∇ψ(q) · hJ q̇ − D2W (q)h = 0

are cq̇; c ∈ R. It means that the homoclinic is «transversal» on the 0 energy level.

We can now specify the constant ρ1 in (W 1): ρ1 > max{|q|∞; |q̃ |∞} + ρ0.

We remark that there exist systems with several nondegenerate homoclinic orbits
which do not have a chaotic behaviour. Consider for example system (1) and assume
that W (q) = q4

1 + q4
2 and ψ(q) = 0: Then (1) possesses 4 nondegenerate homoclinic

trajectories but it is an integrable system. Thus additional assumptions are needed for
chaotic behaviour: some hypotheses of geometrical nature on q and q̃ , similar to the
ones given in [6], are required.

We need some notations. For r ∈ (0; ρ0=2) we define T > 0 by |q (±T )| = r
and |q(t )| < r for |t | > T . We define in the same way T̃ and we set T =

= min{T ; T̃ }. Call (α1;α2) = (q1(−T ); q2(−T )), (β1;β2) = (q1(T ); q2(T )) the
extremal intersection points of q(R) with the circle in R2 of radius r ; similarly we
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introduce (α̃1; α̃2) = (q̃ 1(−T̃ ); q̃ 2(−T̃ )), (β̃ 1; β̃ 2) = (q̃ 1(T̃ ); q̃ 2(T̃ )). Let ωu, ωs

be defined by (α1;α2) = (r cosωu; r sinωu), (β1;β2) = (r cosωs; r sinωs); ω̃u, ω̃s

are defined in the same way. We set Λ = (L1=λ2
2) + (3L2λ1=λ2

2), Λ = (L1=λ2
2) +

+ (3L2λ1=λ2
2) + max

{
|q̇ |∞; |q̃̇ |∞

}
(L3=λ2

2). Note that Λ, Λ do not change if the

equation is modified by a time rescaling q (t ) → q (αt ).

In the next conditions ωu stands for ωu or ω̃u and ωs for ωs or ω̃s .

• (H 1) ωu;ωs �=nπ=2; n∈Z, tanωu tanωs<0 and (cosωu cos ω̃u<0 or cosωs cos ω̃s <0).
(the above inequalities are satisfied for example if ωu ∈ (0;π=2), ωs ∈ (3π=2; 2π),
ω̃u ∈ (π; 3π=2) and ω̃s ∈ (π=2;π));

• (H 2)

λ2
2

λ2
1

|α2||β2| + (15λ1=4λ2)Λr3

|α1||β1|
≤

≤ l

(
λ1

λ2

)
min


e

−2
λ1−λ2

λ2 ;

(
C1eλ2(T −TC1

)

18

)2
λ1−λ2

λ2

;

(
C 2

1

40Λr

)λ1−λ2
λ2




where l (ν) = maxs∈(0;1=8)[(1− s)2(1− s=5)=(1 + s)3]sν−1 and C1 is a constant defined
by (6), which measures the transversality of the homoclinics: smaller is C1 weaker
is the transversality. TC1

= max(T C1
; T̃ C1

) where for example T C1
is defined as the

smallest positive time such that

’t ∈ R\[−T C1
; T C1

] |q(t )| ≤ ρ0 and 8Λ max
(
|q(t )|; |q̇ (t )|=λ2

)
≤ C1:

TC1
depends only on C1 and ρ0.

• (H 3)

λ2
2

λ2
1

|α2||β2| + (15λ1=4λ2)Λr3

|α1||β1|
≤ l

(
λ1

λ2

)(
C1M

36S2 + 28Λr2

)(λ1=λ2)−1

where M = minj{|αj |; |βj |; |α̃j |; |β̃ j |} and S2 = max{|α2|; |β2|; |α̃2|; |β̃ 2|}.

• (H 4) min(| sinωu;s |; | sin ω̃u;s |) ≥
√

(λ1=λ2)20Λr ; (12λ1=λ2)Λr ≤ C1:

Roughly speaking the first geometric assumption (H 1) means that the homoclinics
q, q̃ enter and leave the origin from different «quadrants». (H 2 - H 3) quantify how
small | tanωu tanωs | and r must be. Note that if the system is linear (that is W = 0,
ψ = 0) in the ball B(0; ρ0) then condition (H 4) disappears and conditions (H 2 - H 3)
are simplified (in (H 2 - H 3), Λ = 0). Moreover if λ1=λ2 → 1 then l (λ1=λ2) → 1 and
the second members in inequalities (H 2-H 3) tend to 1.

Before stating our first result we introduce some other notations. For j = (j1;: : :; jk)∈
∈ {0; 1}k and for Θ = (θ1; : : :; θk)∈ Rk we define Ti = T if ji = 0 and Ti = T̃ if
ji = 1; di = (θi+1 − Ti+1) − (θi + Ti) and d = min1≤i≤k−1 di :
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Theorem 1. Assume (W 1), (P1), (v1), (S1 - S2) and (H 1 - H 4). Then there exist 0 <
< D < J such that for every k ∈ N, for every sequence j = (j1; : : : ; jk) ∈ {0; 1}k there
is Θ = (θ1; : : : ; θk) ∈ Rk with di ∈ (D; J ) for all i = 1; : : : ; k − 1 and a homoclinic
solution of (1) xj such that

• if ji = 0 then on the interval [θi − T ; θi + T ]

|xj (t ) − q(t − θi)| ≤ (r=8) min
(
| cosωu;s |; | cos ω̃u;s |; | sinωu;s |; | sin ω̃u;s |

)
;

• if ji = 1 then on the interval [θi − T̃ ; θi + T̃ ]

|xj (t ) − q̃ (t − θi)| ≤ (r=8) min
(
| cosωu;s |; | cos ω̃u;s |; | sinωu;s |; | sin ω̃u;s |

)
:

• Outside (∪ji=0[θi − T ; θi + T ]) ∪ (∪ji=1[θi − T̃ ; θi + T̃ ]), |xi(t )| ≤ 2r .

Remark 1. (i) Since the distance di between two consecutive bumps is bounded by
the constant J which is independent of the number of bumps k, by the Ascoli-Arzela
theorem there follows easily the existence of solutions with infinitely many bumps. In
particular there is a lower bound for the topological entropy of the dynamical system
on the zero energy level given by h0

top > log 2=(2 max{T ; T̃ } + J ).
(ii) The fact that λ1 > λ2 is crucial to be able to construct multibump homoclinics.
(iii) Smaller are the quantities Λr=| cosωu cosωs | + | tanωu tanωs |, |λ1 − λ2|=λ2,

greater is the distance between the bumps.
(iv) We do not prove the existence of multibump homoclinics in an arbitrary small

neighborhood of q; q̃ . Indeed in [7] it is proved that there is a neighborhood V of
q(R) ∪ q̃ (R) such that the only homoclinic solutions contained in V are q and q̃ .

As an application of Theorem 1 we can prove the existence of multibump homoclinic
solutions to perturbed systems like

(3)
−q̈ 1 + λ2

1q1 = W ′
1 (q1) + εψ(q)q̇ 2

−q̈ 2 + λ2
2q2 = W ′

2 (q2) − εψ(q)q̇ 1;

with (q1; q2) ∈ R2. We assume that Wi(0) = W ′
i (0) = W ′′

i (0) = 0, ψ(0) = 0 and
that Wi(−qi) = Wi(qi) for i = 1; 2, ψ(q1;−q2) = ψ(−q1; q2) = ψ(q1; q2). For ε = 0
system (3) splits into the direct product of two 1-dimensional systems. Suppose for
example that:

(4) −q̈ 1 + λ2
1q1 = W ′

1 (q1)

possesses an homoclinic q0. Let Γ =
∫ +∞
−∞ ψ(q0(s); 0) q̇ 0(s) exp(λ2s) ds:

Theorem 2. Under the above assumptions, if Γ �= 0 then there is ε0 > 0 such that, for
ε ∈ (−ε0; 0) ∪ (0; ε0), (3) has a rich family of homoclinic solutions which induce chaos on the
zero energy level.

The proof consists in getting a first nondegenerate homoclinic solution qε by the
implicit function theorem. Then −qε is a homoclinic solution as well and careful
estimates enable to check that conditions (H 1 - H 4) are satisfied for ε small enough.
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2. Relaxation of the nondegeneracy condition

when the two eigenvalues are close

Consider the following system:

(S
ε
) −q̈ + ψ(q)J q̇ + A

ε
q = ∇W (q);

with A
ε

=

(
(λ + ε)2 0

0 (λ− ε)2

)
and assume that W satisfies (W 1), ψ satisfies (P1)

and that

• (A1) (S0) has two homoclinic solutions q and q̃ .

It can be shown that the limits as t →+ ∞ and as t → −∞ of q(t )=|q(t )|
(resp. q̃ (t )=|q̃ (t )|) do exist. Call these limits (cosωs; sinωs) and (cosωu; sinωu) (resp.
(cos ω̃s; sin ω̃s) and (cos ω̃u; sin ω̃u)). Moreover we suppose that

• (A2) ωu;ωs �= nπ=2; n ∈ Z , −1 < tanωu tanωs < 0 and (cosωu cos ω̃u < 0 or
cosωs cos ω̃s < 0).

Then, as another application of Theorem 1, it can be proved that, if the two
homoclinics are nondegenerate, then for ε �= 0 small enough, the same conclusion as in
Theorem 1 holds.

We would like to relax somewhat the nondegeneracy assumption. Rather than
performing this relaxation for the general case, which would require quite involved
conditions, we just deal with this perturbative equation (S

ε).

We need some preparation. In the sequel we shall use the Banach spaces Y =

= W 1;∞(R;R2) endowed with the norm ||y|| = max(|y|∞; (1=λ2)|ẏ |∞) and E =

= W 1;2(R;R2) with norm | · |E associated to the scalar product (x; y) =
∑2

j=1

∫
R ẋ j ẏ j +

+ λ2
j xj yj .

We define S : Y → Y by S (y) = y − LA(∇W (y) − ψ(y)J ẏ ) where LA is the
linear operator which assigns to h the unique solution z = LAh of −z̈ + Az = h with
lim|t |→∞ z(t ) = 0: If S (q) = 0 and q ∈ E , then q is a homoclinic solution to system (1).

Let q be a homoclinic solution of the system isolated up to time translations. Let
a = LA(cq̇χ[−T;T ]), where c > 0 is chosen so that |a|E = 1. Define F̂ = a⊥ and

Π̂ : Y → F̂ the projection given by Π̂(x) = x − (x; a)a: Consider G∗ : F̂ → F̂ defined by

G∗(x) = Π̂S (q + x) =

= Π̂
[
(q + x) − LA

(
∇W (q + x) − Jψ(q + x)(q̇ + ẋ)

)]
= Π̂
(

S (x) − Kq(x)
)
;

where

Kq(x) =

=LA

[(
∇W (q +x)−∇W (q)−∇W (x)

)
−J
(
(ψ(q +x)−ψ(q))q̇ + (ψ(q +x)−ψ(x))ẋ

)]
:
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We have Kq(0) = 0. In addition, it is easy to see that Kq : Y → Y is compact and that
Kq(Y ) ⊂ E .

Note also that there is ρ > 0 such that Π̂◦S : F̂ → F̂ is a diffeomorphism from B̂(ρ)
onto a neighborhood of 0 in F̂ containing B̂(ρ=2). Let δ satisfy Π̂Kq(B̂(δ)) ⊂ B̂(δ=2)

and consider Ĝ : B̂(δ) → F̂ defined by Ĝ(x) = x − (Π̂ ◦ S )−1Π̂Kq(x) := x − K̂q(x): We

have K̂q(0) = 0, and K̂q(Y ) ⊂ E . Hence all the zeros of Ĝ must belong to E and thus
be homoclinic solutions of the system. Now, q being an isolated homoclinic, 0 is an
isolated zero of Ĝ. Moreover K̂q is a compact operator. We can then introduce the
following definition

Definition 1. We shall say that q is a topologically nondegenerate homoclinic if there is

0 < ν ≤ δ such that Ĝ has no zero in B̂ (ν)\{0} and deg(Ĝ; B̂ (ν); 0) �= 0.

(We could prove without difficulty that this definition is independent of the choice
of a satisfying (a; q̇ ) �= 0). It is easy also to see that a nondegenerate homoclinic
according to definition (S2) is also «topologically nondegenerate».

We point out that in certain cases one can say that a variationally obtained iso-
lated (up to time translations) homoclinic is topologically nondegenerate. For instance,
an isolated local minimum for f , or, under some further assumptions, an isolated
mountain-pass critical point corresponds to a topologically nondegenerate homoclinic
(see [5, 4 and references therein]).

Theorem 3. Assume (W 1), (P1), (v1). Moreover assume that (S0) satisfies assumptions
(A1-A2) and that both homoclinic solutions in (A1) are topologically nondegenerate. Then there
is ε1 > 0 such that, for 0 < |ε| < ε1 the same conclusion as in Theorem 1 holds. In particular
h0

top > C ε for a suitable positive constant C > 0.

3. Finite dimensional reduction

In this section we outline some steps of the proof of our main result.
The multibump homoclinic solutions of (1) are obtained as critical points of the

following action functional, which by (W 1) and (v1) is well defined and of class C 2

on E :

f (q) =

∫

R

1
2
|q̇ |2 +

1
2

Aq · q − q̇ · v(q) − W (q):

The idea to prove such results goes as follows. A «pseudo-critical» manifold Zk for the
functional f is constructed by gluing together translates of the homoclinics q(·−θi) and
q̃ (· − θj ) near the equilibrium with solutions of the boundary value problem. Then we
show that, when the bumps are sufficiently separate, that is when

(5) min
i

(θi+1 − θi) > D;

a shadowing type lemma enables to construct near Zk a k-dimensional constrained
manifold Mk such that the critical points of the restriction g (Θ) of f to Mk gives rise to
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a k-bump homoclinic solution. The geometric properties (H 1-H 4) on the homoclinics
q and q̃ ensure the existence of critical points of g (Θ) satisfying (5). We point out
that when max(θi+1 − θi) is too large, θ cannot be a critical point of g ; therefore we
need to estimate carefully the minimal distance D for which we obtain the constrained
manifold Mk .

Now we define the transversality constant C1 quoted in assumptions (H 2-H 4).
Let τ be some positive real number such that |q̇ (t )| ≥ 3|q̇ (t )|=4 on the interval
J = (t − τ; t + τ ). Let a0 be the unique element of Y which tends to zero for
|t | →+ ∞ such that − ä0 + Aa0 = q̇χJ : We assume that for R large enough

(6) max
(
||dS (q)h − µa0||; R |(h; a0)|

)
≥ C1||h|| ’ (h;µ) ∈ Y ×R:

We shall assume that (6) holds also for q̃ . We prefix the following definition.

Definition 2. A manifold M ⊂ Y is called a natural constraint for the functional f if
’x ∈ M d (f|M )(x) = 0 implies that df (x) = 0.

We now define the «pseudo-critical» manifold. In order to glue q and q̃ we need
a proposition related to the λ-lemma on existence and uniqueness of orbits connecting
two points α;β in a small neighborhood Br of 0. By a fixed point argument we can
prove that:

Lemma 1. For all 0 < r < r1 with r1 = 1=10Λ, for all α;β ∈ R2 with |β| = |α| = r , for
all d > 2=λ2 there exists a unique trajectory of (1) qd (t ) such that qd (0) = β and qd (d ) = α.

In the sequel we will call also γ(β;α; d ) = qd the connecting solution given by
Lemma 1.

Consider the k parameter family of continuous functions QΘ defined in the follow-
ing way:

QΘ =





Q 1(t ) if t ∈ (−∞; s1];

γ(Q 1(s1); Q 2(u2); d1)(· − s1) if t ∈ [s1; u2];

: : :

Q i(t ) if t ∈ [ui; si];

γ(Q i(si); Q i+1(ui+1); di)(· − si) if t ∈ [si; ui+1];

: : :

Q k(t ) if t ∈ [uk; + ∞);

where ui = θi − Ti , si = θi + Ti and

Q i(t ) =

{
q(· − θi) if ji = 0

q̃ (· − θi) if ji = 1:

The k-dimensional manifold Zk = {QΘ; Θ ∈ Rk; d > 2=λ2} is a k-dimensional
«pseudo-critical» manifold for f . This means that ||S (QΘ)|| → 0 as d →+ ∞.
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In the next «shadowing type» lemma we repeat the same arguments as in [1], based
on the contraction-mapping theorem in order to build a natural constraint Mk for f ,
close to Zk .

Lemma 2. For 0 < r < r1 and d > D = max
{

2
λ2

; 2(ln(18=C1)=λ2) − 2(T − TC1
)),

1
λ2

ln
(

40Λr
C 2

1

)
; 1

λ2
ln
(

40
C1

)}
then there is a C 1 function w (with ||w(Θ)|| → 0 as d →+ ∞)

such that Mk =
{

QΘ + w(Θ) | d > D
}

is a natural constraint for f .

By Lemma 2 we are led, in order to find k-bumps homoclinics to look for critical
points of the functional f restricted to the k-dimensional manifold Mk . Since (1)
is autonomous the function of Θ ∈ Rk given by f (QΘ + w(Θ)) depends only on
d1; : : : ; dk−1. Let us define g (d1; : : : ; dk−1) = f (QΘ + w(Θ)): A zero of the function

G : Rk−1 → Rk−1 defined by G (d1; : : : ; dk−1) =
(

@g
@d1

; : : : ; @g
@dk−1

)
(d ) gives rise to an

homoclinic solution of (1). Careful estimates show that

Lemma 3. For all 0 < r < r1, d > D there results that
∣∣∣∣∣∣

(
@

@di

g

)
(d ) −

2∑

j=1

λ2
j

(sinh(λj d ))2


α̂i+1

j β̂
i

j cosh (λj d ) −
(α̂i+1

j )2 + (β̂
i

j )
2

2



∣∣∣∣∣∣
≤

≤ 15
2
λ1λ2Λr3e−λ2d ;

where α̂i+1 = (QΘ + w(Θ))(ui+1) and β̂i = (QΘ + w(Θ))(si).

Theorem 1 is then proved showing that, by the previous lemma, hypothesis (H 1-H 4)
imply | deg(G; U ; 0)| = 1; where U =

∏k−1
i=1 (D; J ) ⊂ Rk−1 and J > D > D are some

real number which can be explicitly estimated.

The proof of Theorem 3 uses the same pattern. However, since the homoclinic
solutions are no longer necessarily nondegenerate, our constrained manifold is of di-
mension greater than k for the k-bump solutions (roughly its dimension is kl , where l
is the max of the dimensions of the solution spaces for the linearised equation at q and
q̃ respectively). The assumption of topologically nondegeneracy on the homoclinics still
allows to find critical points of the functional restricted to the constrained manifold.

The methods described above can be generalized to systems like (1) with q ∈ Rn.
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