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Analisi matematica. — On the existence of infinitely many solutions for a class of semilinear
elliptic equations in RY. Nota di Francesca Aressio, Paoro Carpirort e Piero MonTEC-
cHiarl, presentata (*) dal Corrisp. A. Ambrosetti.

Asstract. — We show, by variational methods, that there exists a set A open and dense in {# €
c IR : a> 0} such that if € A then the problem —Au + u = A ulf ", ue H'RN), with p
subcritical (or more general nonlinearities), admits infinitely many solutions.

Key worps: Semilinear elliptic equations; Locally compact case; Minimax arguments; Multiplicity of
solutions; Genericity.

Ruassunto. — Sull'esistenza di infinite soluzioni per una classe di equazioni ellittiche semilineari su RY.
Usando metodi variazionali, si dimostra che esiste un insieme A aperto e denso in {a € LOO(RN) 1 a>0}
tale che per ogni 2 € A il problema —Au + u = a(x)\u|1’71 u uc H (RN), con p sottocritico (o con
nonlinearitd pit generali), ammette infinite soluzioni.

1. STATEMENT OF THE RESULT

In this Nore we state a result concerning the existence of infinitely many solutions
for a class of semilinear elliptic problems of the form

() —Au+ u=alx)f(u), ue H'RY)

where 2 € L*(R"), with ess inf 2> 0, and f : R — R satisfies:

(f1) f e C'®),

(f2) there exists C > 0 such that |f(#)] < C(1 + |¢#[) for any ¢ € R, where p €
eEQ,(N+2)/(N-2)if N>3and p>1if N=1,2,

(3) there exists § > 2 such that 0 < 0F(z) < f(#)¢ for any ¢ # 0, where F(z) =
= [y F(5) ds,

(F4) f(®)/t < f'(z) for any ¢ # 0.

Note that f(z) = |t/ ¢ verifies (f1)=(f4) whenever p € (1, (N +2)/(N —2)) if
N>3o0rp>1if N=1,2.

Such kind of problem has been widely studied with variational methods and its
main feature is given by a lack of global compactness due to the unboundedness of the
domain. Indeed the imbedding of H YRY) in 2(RY) is not compact and the Palais
Smale condition fails.

The existence of nontrivial solutions of (P) strongly depends on the behaviour of
a. We refer to [6-9, 15, 18, 27, 28] for existence results in the case in which « is a
positive constant or a(x) — a_ > 0 as x| = co.

(*) Nella seduta del 13 marzo 1998.
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When a is periodic, the invariance under translations permits to prove existence,
[24], and also multiplicity results, as in [1, 5, 13, 22], where, applying a technique
developed in [26], infinitely many solutions (distinct up to translations) are found.

Multiplicity results have been obtained also without periodicity or asymptotic as-
sumptions on «, in some «perturbative» settings, where concentration phenomena occur
and a localization procedure can be used to get some compactness in the problem. We
mention for instance [3, 4, 10-12, 14, 17, 19, 20, 23, 25].

Although some non existence examples are known (see [16]) we show that the
existence of infinitely many solutions for the problem (P)) is a generic property with
respect to 2 € L™ (RY) with 2> 0 ae. in RY. Precisely we prove

Treorem 1.1. Ler f + R — Rosatisfy (f1)-(f4). Then there exists a set A open and dense
inf{ae L™ ®RY) : alx) > 0 ae in RN} such that for every a € A the problem (P,) admits
infinitely many solutions.

In fact, given any a € L=(@RY), with ess infa > 0, for all @ > 0 we are able to
construct a family of functions {a, € CR:we ,@w)} with 0 < o (x) <@ in RY
for which the problem (7, ) admits infinitely many solutions. Then we show that
this class of solutions is stable with respect to small L*-perturbations of the functions
a+ o,

Let us note that the condition essinfz > 0 can be weakened by requiring just
lim inf, a(x) > 0. We refer to [2] for the complete proof of the result.

|x|— o0

2. OUTLINE OF THE PROOF OF THEOREM 1.1

Let us fix @ > 0 and 2 € L=(R") with ess infz > 0 and let us denote F = {be
€ L*(RY) : 4, < b(x) < 4, ace. in RY} where 4, = Less infa and 4, = 2(||d|| ;.. + @).

Let X = H'(R") be endowed with its standard norm ||#|| = (fRN(|Vu|2 + 1) dx)'?
and, for every b € F let us introduce the functional

@, (u) = %Hqu — /]RN b(x) F(u(x)) dx.

By (2) and (£3), ¢, € C'(X,R) for all b€ F and o (wWv=(u, v)—fRN b(x)f (u(x)) v(x) dx
where (u, v) = [on(Vu- Vv 4 wv) dxv. The critical points of ¢, are solutions of the
problem (P,) and we set K, ={uec X : ¢}(x) =0, u#0}.

Moreover let us denote (u, v), = [,(Vu- Vv + wv) dx and |uq, = (u, u)é{z for
all %, v e X and Q measurable subset of RY.

We start by describing the behavior of any functional ¢, near the origin.

Lemma 2.1, ¢, () = |ul|*/2 + o(|u]|®) and ©(w) = (u,-) + o(|ul)) as u — 0,
uniformly with respect to b € F.

Moreover there exists p € (0, 1) such that ift ) is a regular open subset of RY satisfying the
uniform cone property with respect to the cone {x = (x, , ... , x\) € B/(0) : x, > |x|/2} and
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if sup o llull 5 ) <20 then
[ bR < Hully and | [ Bo9f | < Hlulalol
Q Q

for every b € F and for every u, v € X.

According to Lemma 2.1, 0 is a strict local minimum for ¢,. Moreover, by (f3),
for any u € X \ {0} there exists s(#) > 0 such that ¢, (s(x)u) < 0 for every b € F.
Hence, any functional ¢, has the mountain pass geometry with mountain pass level

c(b) = mf sup ¢, (7(5))

:E[O 1]
where I' = {y € C([0, 1], X) : v(0) =0, ¢,(v(1)) <0 V be F}.

Note that ¢(6,) > ¢(b,) if b, b, € F with b (x) < b,(x) ae. in RY. In particular
0 < c(a) < ¢(b) < c(a,) for every b e F.

Remark 2.1. By (f4) for every u € X \ {0} there exists a unique 5, > 0 such that
4;90& (su)|,_ , =0 and hence ¢(6) = inf sup¢,(su) and 1nf<pb > c(b) for any b e F.

=1 >0

Now we state some properties of sequences (#,) C X such that ¢, (#,) — / and
(p/bn(uﬂ) — 0 for some sequence (4,) C F (generalized Palais Smale sequences for the
class F).

Remark 2.2, Letting A=(1- %)ﬁz, by Lemma 2.1 if () C X is a generalized
Palais Smale sequence for the class F, then
(1) (u,) is bounded and limy, (u,) > 0;
(zz) if lim @, () €[0, ) then u, — 0;

(ziz) if lim b,,(”n) >\ then there exists a sequence ) cRY such that lim inf EA B =
> p.

Let us note that (z) follows by the fact that, thanks to (f3), for every 6 € F

@.1) (G = Dllul® < o, + §les@l ull ¥V ueX

Now, the following characterization holds for the generalized Palais Smale sequences
for the class F.

Lemma 2.2, Ler (b) C F, (u) C X and (y) C RY be such that o, (u,) — /,
¢, (u,) = 0 and liminf|| |15, 5y = P- Then there exists u € X with lull 5, 0) = P such that,
up 1o a subsequence,

(D) u,(-+y,) = nwweaklyin X, p,(u) < [ and @) (1) = 0, where b =1im b (- + y) in the
w™-L™ topology,
(i) @, (u,—ul-—y,)) = [ — () and (p;”(u” —u(-—y)) —0.
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According to the above result, it is convenient to introduce some definitions con-
cerning the problems «at infinity» associated to any functional ¢,. Given & € F, let us
denote

H_ (6)={hec I*®R"):3 () cRY sz |y =00, 6(+y)—h w-L7}

and ¢_(b) = 1nf,}€H w ).
Using the fact that A__(4) is sequentially closed with respect to the w"-L™ topology,
it is possible to prove that the value ¢ _(4) is attained. In fact we have:

Lemma 2.3, For every b € F there exist b, € H _(6) and u_ € X \ {0} such that
o, () =c(b,)=c (b) and o) (u_)=0.

In particular we are interested in applying the above result with 6 = 2 + @ as
follows.

By Lemma 2.3, since A (2 + @) = H_(a) + @, there exist a__ € L®@RY) and a
sequence (x]) c RY such that a(- + xj) —a_ w-L~ \xj+1\ - |xj\ t+ o0 and ¢ (2 +
+ @) = c(a +@). Then, for we (0,1) we define j(w) = inf{j e N : |x]| — |)?71\ >
> 4/w} and

a(l —w’lx—x|*/4) for |x — x| <2/w, j>jw)
a,(x) = j e
0 otherwise.
Note that max gy (v) = @ = a(xj) for all j > j(w) and o (x) < —(5) for every

x € R\ Uy B ().
To simplify the notation, for w € (0, 1) we set ¢
addition we denote ¢ =, . and ¢ =c_(a+ Q).

w = Sotz-ﬁ-au’ Icw = ’Ca+aw‘ In

Remark 2.3. By definition of ¢_, if 6 € H _(a) and (3 € I"RY) with0< <@
ae. in RY, then c(b + B) > c(b + @) > ¢... Moreover, if 8 € (0, @), then ¢ _(a +
+ 8) > ¢ (a+ @) = c_. This is proved using suitable estimates on the critical points
of the functionals 0y > being 6 € F.

In the following lemmas we state some properties concerning the sequences (#,) C X
such that ¢, (#,) — 0 and that «carry mass» at infinity, i.e., for which [/, Bow = P
for some sequence |y | — oc.

First, we give an estimate from below of the level of such sequences:

Lemma 2.4, Let (w,) € (0,1), () C X and (y,) C RY be such that go;n(un) — 0,
ly,| = co and 22,1 3, 3y = p for every n € N. Then ¢ < liminfy,, (u,).

Secondly, a compactness result holds for those sequences (#,) C X at a level close
to ¢ and such that (p;”(un) — 0 and every #, has a «mass» located in B, (xj.ﬂ).

Lemma 2.5, There exist by > 0 mm’ wy € (0, 1) such that if (w,) C (0, w,), (1) C X
and (y,) < RY satisfy 9%,,(”” > 7y, € B, (x]n) with j, > j(w,), and
lim sup o, () <c + by, then (un( + yn)) is precompact in X
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The above Lemma suggests to introduce the following sets

Aw,hv)={ueX : o (W <c +h ¢, <v and sup |ully >p}
yEBi(x]')
defined for every w € (0,1), » > 0, v > 0 and j > j(w). Let us note that, by
Lemma 2.5, for w € (0, w,) the functional ¢  satisfies the Palais Smale condition in
each set Aj(w, h,v) with j > j(w) and 0 < h < 4.

Hence, the next goal will be to construct a pseudogradient flow which leaves invariant
suitable localized minimax classes, in order to get the existence of Palais Smale sequences
for ¢ in each set Aj(w, h,v).

To this extent, we need suitable estimates in neighborhoods of the sets Aj(w ,h,v).
In fact the following holds:

Levma 2.6. There exist W € (0, wy), he (o, hy) and T > 0 such that:
(7)) ifuc B4 (A.(w))forsomew € (0,w) and j > j(w), then ||”H1RN\73 L S < 6p,;
L

(1) ifuc (B4p . w))\A (w)n {gow <ec, JrZ}forsomew €(0,w) andj > j(w), then
||”HRN\B L Neo) <P ﬂ”“’“‘/’ w| >,

where A (w) = (w b, 7) and Py =P/8.

By the above listed properties of the sets A (w), we can state the existence of a
pseudogradient vector field acting in A j(w). Precisely:

LEMMA 2.7. There exist € > 0 and T > 0 such that for any € € (0,€) there is
w_ € (0, w) for which lf.A WNK, =0 forsomew € (0,w_) andj > j(w), then there exist
M > 0 and a locally szsc/}ztz continuous function VX=X verifying:

() V;w(u)H <1, ¢ (u) V;w(u)z()for all ue X and V. Lw)=0 forall ue X \ B4p0(Aj(w)),
(1) @;(u)Vw(u)zﬂ. if ueB, (.A (w)ﬂ{cpwgcoo—i—/a/Z}
(iil) ¢, (W) V() > [ if ue (B, (AwW)\B, (4N {p, <, +5h/2},

(lZ/) < > ( )> B, x]) > 0 lf’Hu”RN\I_?L(xJ») > E.

w

Now we construct infinitely many minimax classes of mountain pass type for any
functional ¢ with w > 0 sufficiently small.

First, we point out that, by Lemma 2.3, there exists #__ € X such that ¢_(#_) = ¢
and ¢’_(u_) = 0. Moreover, by Remark 2.1, there exists 7 € I', with rangey_  C
C {su__ : s > 0}, satisfying:

() max_g (1 () = 9 (1),
(i) for every r> 0 there is 4 > 0 such that ¢_ (%) < ¢ _ — b, for any u € range~y_
with ||u—u_|| > 7.

Let us fix M > 0 such that SUP e, (4)(w) ||| < M for all we (0,w), j > j(w) and

max, g 1y |7, ()| < M. This is p0551ble because of (2.1).
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Then, fixing & > 0 small enough (precisely & < (1/8)min{e, 4, . 7ip,} where 4, is
defined in the above property (77) and & and € in Lemma 2.7), let us define

) ={y eT: |7l < M and [1O)lanz, () <& V s€ 10,11},

The classes of mountain pass paths I' (w) satisfy the following properties:

Lemma 2.8, There exists o € (0, w,) such that for all w € (0,0) and j > j(w), setting
’yj(s) =7 - xj) forall s € [0, 1], there results:
(l) ’Y]‘ € F]‘(w)>
(ZZ) ma-xje[()’l] @M(WI(S)) < o + é,
Gib) i (9 & B, (A () then 0, ((9) < c., — by, /2.

In particular I‘j(w) # ) for all w € (0,%) and j > j(w), and we can define the
corresponding minimax values

(w) = inf max ¢_(y(s)).

'yef‘j(w) s€[0,1]

<D

These mountain pass levels are close to the mountain pass level ¢__ in the sense explained
by the following Lemma.

Lemma 2.9. Forallw € (0, W) there exists § (w) > j(w) such that |cj(w) —c | <Eforall
Jj 2 W).

Now we can prove that for w > 0 sufficiently small, the functional ¢ admits
infinitely many critical points. More precisely we show that:

Lemma 2.10. If w € (0,0) then Aj(w) NI, # 0 for every j > j (w).

Proor. Arguing by contradiction, suppose that there exist w € (0,w) and j > j(w)
such that A (w)NK, =0. Let V, : X — X be the pseudogradient vector field given by
Lemma 2.7 and let n € C(R x X, X) be the associated flow, given by the solution of

the Cauchy problem
dn(t, u)
{ L = =V, (2, w)
N0, u) =u.
Note that 77 is well defined and continuous in R x X because the field V., isa bounded,
locally Lipschitz continuous function. Moreover, by the properties of V stated in
Lemma 2.7, for a fixed 7 > 0 large enough, the function njw(u) =n(7, u) satisfies:

i) () =uforal ue X\ B, (AW)),

(
(1) <pw(77jw(u)) <, (u) for all ue X,

(i) o,y () < 0, () — Tipy if u € B, (Aw) N {e, < e+ h/2}

(iv) ||njw(u)\|RN\§l(ﬁ) <eif HuHRN\El()?) <e.

Let now ’33.(5) =1, (’yj(s)) for s € [0, 1], where v; € Fj(w) is defined as in Lemma 2.8.
By the above listed properties (7) and (7v) of e the class F].(w) is invariant under the
deformation M and then ’Ay] S F].(w). We claim that max, (g Q%Wj(f)) < f].(w) — &
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and therefore we get a contradiction with the definition of ¢;(w). Indeed, if ’yj(s) g
¢ Bpo (.A].(w)), by the property (i) of U and by Lemma 2.8 (777), we have @w(&j(s)) <
< gow('yj.(s)) <c — hpO/Z < c_—28 since £ < /Jpo/4. On the other hand, if ’yj(s) c
S Bpo (.Aj(w)), by the property (i) of N, and by Lemma 2.8 (7), we have gow(’yj(s)) <
< 0, () —ppy < ey + E—Tipy < ¢, —2¢, since & < 7ipy/9. Therefore, by Lemma 2.9,
for all s € [0, 1] we conclude that ¢ (’ij(s)) <c¢ —26< cj(w) — & O

We remark that by the arbitrariness of @ > 0 and « € L= (RY) with ess inf 2> 0,
the above result shows that the problem (7)) admits infinitely many solutions whenever
4 belongs to a dense subset of {2 € L*(R"): 2> 0}.

Then Theorem 1.1 follows by the next final Lemma.

Lemma 2.11. Ifw € (0,), there exists By > O such that if ||| joe gny < B, then the

problem (P, . ;) admits infinitely many solutions.

Proor. Given 3 € L= (R") we denote ROES gpw(u)—fRN B(x)F () dx and K,5=
={uc X\ {0} : ¢, ,(w) = 0}. We note that 2 + a, + 8 € F whenever ||| ;o @n) <
< a,.

Letting M be the constant fixed before the definition of F].(w), there exists C = C(M) >
> 0 such that

(2.2) sup @, 5() — o, ()] < C||B| o @y »
Jul <M

2.3) sup (¢, 5(u) — @, (W] < Cl|B| oo @y -
|| <M

We claim that if w € (0,d) and j > j (w) then ICwBﬂAj(w) # 0 whenever ||B]| ;. < 5,
being 3, = (1/2) min{a,, ¢/ C} with & > 0 fixed above.

Indeed, arguing by contradiction, assume that K.,sN Aj(w) = () for some w € (0,)
and j > j(w). Then, using (2.2) and (2.3), one can see that

(1) there exists v; > 0 such that o, s(@ > v, forall e A (w)n{p, <c  + 2h/3}.

w — Too

@) Ll = /2 for all ue (B, (Aw)\ Aw)N{p, <ec, + 5}

By (1) and (2), since a + a, + B € F, it is possible to show the existence of a

pseudogradient vector field V; : X — X satisfying;

() ||V](u)|| < 1, <p;ﬁ(u)V](u) >0 for all # € X and Vj(u) =0 for all w € X\
B, (A,

(@) QL@ Vi(w) > ;>0 if ue B, (Aw)N{p, <c.+h/2}

i) @y @V () 2 [/2 if w € (B, (AW)\ B, (4,@)N{p, <, +h/2},

(i) (. Vi()amz, ) > 0 i lullgnz, ) > &

(% x;)

1 1
w w

Considering the flow associated to the field 17]., we obtain the existence of a continuous
function n: X =X which verifies:

() 77]-(”) =y forall ue X\ B4p0 (Aj(w)),

(iz)’ (pwﬁ(n].(u)) < gpwﬁ(u) for all € X,
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o (1) < 05 (0) = Tipy /2 if w € B, () N{p, < e +h/2},
1)l , o) < € B Nlllpriz, () <&

Then, considering the path 'Vj(s):nj(’yoo(s)(-—xj)), s€[0, 1], by (7)" and (iv)’ 'VjeF].(w).
Then, by (2.2), ()" and (i)', since &< (1/8) min{hpo,ﬂpo}, using Lemma 2.9, we

get max,_ | gpw('Vj(s)) < max, ‘Pw@(%(’)) + &/2 < max{c_ — /JPO/Q, +&,¢c, —
—ip, /2 + 28} < ¢(w), a contradiction. ]
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