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Equazioni a derivate parziali. — Monotonicity and symmetry of solutions of p-Laplace
equations, 1 < p < 2, via the moving plane method. Nota di Lucio Damascelli e Filomena

Pacella, presentata (*) dal Corrisp. A. Ambrosetti.

Abstract. — We present some monotonicity and symmetry results for positive solutions of the equation

−div
(
|Du|p−2 Du

)
= f (u) satisfying an homogeneous Dirichlet boundary condition in a bounded domain

Ω. We assume 1 < p < 2 and f locally Lipschitz continuous and we do not require any hypothesis on the
critical set of the solution. In particular we get that if Ω is a ball then the solutions are radially symmetric
and strictly radially decreasing.

Key words: p-Laplace equations; Monotonicity and symmetry of positive solutions; Moving plane
method.

Riassunto. — Monotonia e simmetria di soluzioni di equazioni ellittiche quasilineari. Dimostriamo alcuni

risultati di monotonia e simmetria per soluzioni positive dell’equazione −div
(
|Du|p−2 Du

)
= f (u) con

condizioni di Dirichlet omogenee sul bordo in un dominio limitato Ω. Supponiamo che 1 < p < 2 e che
f sia localmente Lipschitziana e non facciamo alcuna ipotesi sui punti critici della soluzione. In particolare
otteniamo che se Ω è una palla le soluzioni sono radiali e radialmente strettamente decrescenti.

1. Introduction and statement of results

We consider the problem

(1.1)





−∆pu = f (u)

u > 0

u = 0

in Ω

in Ω

on @Ω

where ∆p denotes the p-laplacian operator ∆pu = div(|Du|p−2) Du, p > 1, Ω is a

bounded domain in RN , N ≥ 2, and f is a locally Lipschitz continuous function.
The aim of this Note is to present some monotonicity and symmetry results con-

tained in [4] for 1 < p < 2.
In the case p = 2 several results have been obtained starting with the famous paper

[6] by Gidas, Ni and Nirenberg where, using the so called «moving plane methods»
it is proved, among other things, that if Ω is a ball and p = 2, solutions of (1.1) are
radially symmetric and strictly radially decreasing.

Very little is known about the monotonicity and symmetry of solutions of (1.1)
when p �= 2. In this case the solutions can only be considered in a weak sense since,
generally, they belong to the space C 1;α(Ω) (see [5, 9]).

The main difficulty with problem (1.1), for p �= 2, is that the p-laplacian operator is

(*) Nella seduta del 13 marzo 1998.
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degenerate in the critical points of the solutions, so that comparison principles (which
could substitute the maximum principles in order to use the moving plane method when
the operator is not linear) are not available in the same form as for p = 2. Actually
counterexamples both to the validity of comparison principles and to the symmetry
results are available (see [7, 2]) for any p with different degrees of regularity of f .

Before stating our main theorems let us recall that some partial results about (1.1)
were previously obtained in [1, 3, 7, 8]. While we were completing this paper F. Brock
told us that in [2] he gets the symmetry result in the ball in the case 1 < p < 2 or p > 2
but f monotone. For other symmetric domains he shows that solutions are «locally
symmetric» in a suitable sense defined in [2]. His method does not use comparison
principles but the so called «continuous Steiner symmetrization».

A first step towards extending the moving plane method to solutions of problems
involving the p-laplacian operator has been done in [3]. In this paper the author
mainly proves some weak and strong comparison principles for solutions of differential
inequalities involving the p-laplacian. Using these principles he adapts the moving plane
method to solutions of (1.1) getting some monotonicity and symmetry results in the
case 1 < p < 2. Although the comparison principles of [3] are quite powerful for
1 < p < 2, the symmetry result is not complete and relies on the assumption that the
set of the critical points of u does not disconnect the caps which are constructed by
the moving plane method.

In [4] we use the results of [3] to get monotonicity and symmetry for solutions u
of (1.1) in smooth domains in the case 1 < p < 2 without extra-assumptions on u.

To state our results we need some notations.
Let ν be a direction in RN , i.e. ν ∈ RN and |ν| = 1. For a real number λ we

define

(1.2) T ν

λ = {x ∈ RN : x · ν = λ}

(1.3) Ων

λ = {x ∈ Ω : x · ν < λ}

(1.4) xν

λ = Rν

λ (x) = x + 2 (λ− x · ν) ν ; x ∈ RN

(i.e. Rν
λ is the reflection through the hyperplane T ν

λ )

(1.5) a(ν) = inf
x∈Ω

x · ν :

If λ > a(ν) then Ων
λ

is nonempty, thus we set

(1.6)
(
Ων

λ

)′
= Rν

λ
(Ων

λ
) :

Following [6] we observe that if Ω is smooth and λ > a(ν), with λ − a(ν) small,
then the reflected cap

(
Ων

λ

)′
is contained in Ω and will remain in it, at least until one

of the following occurs:

(i)
(
Ων

λ

)′
becomes internally tangent to @Ω at some point not on T ν

λ
;

(ii) T ν
λ is orthogonal to @Ω at some point.
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Let Λ1(ν) be the set of those λ > a(ν) such that for each µ ∈ (a(ν) ; λ) none of
the conditions (i) and (ii) holds and define

(1.7) λ1(ν) = sup Λ1(ν) :

The main result of the paper is the following.

Theorem 1.1. Let Ω be a bounded smooth domain in RN , N ≥ 2, and u ∈ C 1(Ω) a weak
solution of (1:1) with 1 < p < 2. For any direction ν and for λ in the interval (a(ν) ; λ1(ν)]
we have

(1.8) u(x) ≤ u(xν

λ
) ’ x ∈ Ων

λ
:

Moreover

(1.9)
@u
@ν

(x) > 0 ’ x ∈ Ων

λ1(ν) \ Z

where Z = {x ∈ Ω : Du(x) = 0}.

Easy consequences of Theorem 1.1 are the following.

Corollary 1.1. If, for a direction ν, the domain Ω is symmetric with respect to the hyperplane
T ν

0 = {x ∈ RN : x · ν = 0} and λ1(ν) = λ1(−ν) = 0, then u is symmetric, i.e. u(x) = u(xν

0 )
for any x ∈ Ω, and decreasing in the ν direction in Ων

0 . Moreover @u=@ν > 0 in Ων
0 \ Z .

Note that the class of the domains to which Corollary 1.1 applies is that of all sym-
metric sets Ω with smooth boundary such that the hyperplanes T ν

λ are never orthogonal
to @Ω for λ �= 0.

Corollary 1.2. Suppose that Ω is the ball BR (0) in RN with center at the origin and radius
R . Then u is radially symmetric and @u=@r < 0 for 0 < r < R .

Note that the previous theorem implies also a regularity result since from Du �= 0 in
BR (0)\{0}, by standard regularity results, we deduce that u belongs to C 2 (BR (0) \ {0}

)
.

2. Sketch of the proof of theorem 1:1

From now on p will belong to the interval (1; 2) and u will be a C 1(Ω) solution
of (1.1) with Ω having a smooth boundary. For any direction ν let a(ν), Ων

λ, λ1(ν) be
as defined in Section 1. If a(ν) < λ ≤ λ1(ν) and x ∈ Ων

λ we set

(2.1) uν
λ(x) = u(xν

λ )

where xν
λ is as in (1.4),

(2.2) Z ν
λ = Z ν

λ (u) = {x ∈ Ων
λ : Du(x) = Duν

λ(x) = 0}

(2.3) Z = Z (u) = {x ∈ Ω : Du(x) = 0} :

Finally we define

Λ0(ν) =
{
λ ∈ (a(ν);λ1(ν)] : u ≤ uν

µ
in Ων

µ
for any µ ∈ (a(ν);λ]

}
:
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If Λ0(ν) �= ∅ we set

(2.4) λ0(ν) = sup Λ0(ν) :

A preliminary result which is crucial to prove Theorem 1.1 is the following Propo-
sition which gives a useful information on how the set Z of the critical points of a
solution u of (1.1) can intersect the cap Ων

λ0(ν).

Proposition 2.1. Suppose that u ∈ C 1(Ω) is a weak solution of (1:1), with 1 < p < 2.
For any direction ν the cap Ων

λ0(ν) does not contain any subset Γ of Z on which u is constant
and whose projection on the hyperplane T ν

λ0(ν) contains an open subset of T ν
λ0(ν) (relatively to

the induced topology).

The proof of the previous proposition relies on a careful use of the Hopf’s lemma
[4, Proposition 3.1].

To prove Theorem 1.1 we show that Λ0(ν) �= ∅ and λ0(ν) = λ1(ν). The last thing
will be proved by showing that if λ0(ν) < λ1(ν) then there exists a «small» set Γ of
critical points of u in the cap Ων

λ0(ν) on which u is constant and whose projection on
the hyperplane T ν

λ0(ν) contains an open subset of T ν
λ0(ν). Of course this would be in

contradiction with the statement of Proposition 2.1.
Let us remark that the existence of the set Γ (assuming λ0(ν) smaller than λ1(ν))

will be deduced by applying the moving plane method not only with a fixed direction,
but with all the directions in a neighborhood of a direction ν0. This procedure of
moving simultaneously hyperplanes orthogonal to different directions seems to be new
and could probably be used also in other problems.

We start stating a result which is a different formulation and an extension of The-
orem 1.5 in [3]. It essentially asserts that, once we start the moving plane procedure
we must necessarily reach the position T ν

λ1(ν) unless the set Z of the critical points of
u creates a connected component C of the set where Du �= 0 which is symmetric with
respect to the hyperplane T ν

λ0(ν) and where u coincides with the symmetric function
uν

λ0(ν).

Theorem 2.1. For any direction ν we have that Λ0(ν) �= ∅ and, if λ0(ν) < λ1(ν) then
there exists at least one connected component C ν of Ων

λ0(ν) \Z ν
λ0(ν) such that u ≡ uν

λ0(ν) in C ν .
For any such component C ν we also get

(3.6) Du(x) �= 0 ’ x ∈ C ν ;

(3.7) Du(x) = 0 ’ x ∈ @C ν \
(

T ν
λ0(ν) ∪ @Ω

)
:

Moreover for any λ with a(ν) < λ < λ0(ν) we have

(3.8) u < uν
λ

in Ων
λ
\ Z ν

λ

and finally

(3.9)
@u
@ν

(x) > 0 ’ x ∈ Ων
λ0(ν) \ Z :
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Now, for any direction ν let F
ν

be the collection of the connected components
C ν of Ων

λ0(ν) \ Z ν
λ0(ν) such that u ≡ uν

λ0(ν) in C ν , Du �= 0 in C ν , Du = 0 on @C ν \(
T ν

λ0(ν) ∪ @Ω
)

.

If λ0(ν) < λ1(ν) we deduce from Theorem 2.1 that Fν �= ∅. If this is the case and
C ν ∈ Fν we also have u ≡ uν

λ0(ν) in C
ν
, so that

(
C

ν ∩ @Ω
)
\T ν

λ0(ν) = ∅ since u = 0 on

@Ω, while uν
λ0(ν) > 0 in C

ν \ T ν
λ0(ν), because by the definition of λ1(ν) (see Section 1)

we have that
(
Ων

λ0(ν) \ T ν

λ0(ν)

)′
⊂ Ω.

Hence there are two alternatives: either Du(x) = 0 for all x ∈ @C ν , in which case
we define C̃ ν = C ν , or there are points x ∈ @C ν ∩ T ν

λ0(ν) such that Du(x) �= 0. In

this latter case we define C̃ ν = C ν ∪ C ν
1 ∪ C ν

2 where C ν
1 = Rν

λ0(ν)(C
ν) and C ν

2 =

=
{

x ∈ @C ν ∩ T ν
λ0(ν) : Du(x) �= 0

}
. It is easy to check that C̃ ν is open and connected,

with Du �= 0 in C̃ ν , Du = 0 on @C̃ ν .

Let us finally denote by F̃ν the collection
{

C̃ ν : C ν ∈ Fν

}
and by Iδ(ν) the set

I
δ(ν) =

{
µ ∈ RN : |µ| = 1; |µ− ν| < δ

}
:

As already observed Theorem 1.1 will be proved if we show that λ0(ν) = λ1(ν) for
any direction ν. Therefore suppose that ν0 is a direction such that λ0(ν) < λ1(ν).
Then from Theorem 2.1 follows that Fν0

�= ∅ and, since RN is a separable metric space
and every component is open, Fν0

contains at most countably many components of
Ω

ν0
λ0(ν0) \ Z ν0

λ0(ν0), so F
ν0

= {C ν0
i ; i ∈ I ⊆ N}.

The remaining part of the proof can be summarized in the following three steps
whose proofs are omitted (see [4]).

Step 1. The function λ0(ν) is continuous, i.e. for each ε > 0 there exists δ > 0 such that
if ν ∈ I

δ
(ν0) then

λ0(ν0) − ε < λ0(ν) < λ0(ν0) + ε :

Moreover there exists δ0 > 0 such that for any ν ∈ Iδ0
(ν0) there exists i ∈ I with C̃ ν0

i ∈ F̃ν .

The second part of the previous statement asserts that for any direction ν in a
suitable neighborhood I

δ0
(ν0) there exists a set C̃ ν0

i in the collection F̃ν0
which also

belongs to F̃ν .

Step 2. There exist a direction ν1 ∈ Iδ(ε0)(ν0), a neighborhood Iδ1
(ν1) and an index

i1 ∈
{

1; : : : ; n0

}
such that for any ν ∈ Iδ1

(ν1) the set C̃ ν0
i1

belongs to the collection F̃ν .

From this we deduce that in C̃ ν0
i1

the function u is symmetric with respect to all
hyperplanes T ν

λ0(ν) with ν ∈ Iδ1
(ν1). It is this symmetry property which is exploited in

the next step to conclude the proof of Theorem 1.1.
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Step 3 Let ν1, i1, δ1 be as in Step 2 and set C = C ν0
i1

. Then @C ∩Ω
ν1
λ0(ν1) contains a subset

Γ on which u is constant and whose projection on the hyperplane T ν1
λ0(ν1) contains an open subset

of the hyperplane.

Since Du = 0 on @C ∩Ω
ν1
λ0(ν1) Step 3 gives a contradiction with Proposition 2.1 and

ends the proof of Theorem 1.1.
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