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Analisi matematica. — Time and space Sobolev regularity of solutions to homogeneous para-
bolic equations. Nota di Gabriella Di Blasio, presentata (*) dal Corrisp. G. Da Prato.

Abstract. — We give necessary and sufficient conditions on the initial data such that the solutions of
parabolic equations have a prescribed Sobolev regularity in time and space.

Key words: Parabolic equations; Sobolev regularity; Interpolation spaces.

Riassunto. — Regolarità di Sobolev nel tempo e nello spazio per soluzioni di equazioni paraboliche. In
questo lavoro si caratterizzano i dati iniziali per cui le soluzioni di equazioni paraboliche hanno un’assegnata
regolarità di Sobolev rispetto al tempo e allo spazio.

1. Introduction

Let Ω ⊂ Rn be an open bounded set with regular boundary @Ω and let E be a
second order uniformly elliptic operator in Ω; i.e.,

(1.1) Eu :=
n∑

i;j=1

(ai;j (x)uxi
)xj

+
n∑

i=1

(bi(x)u)xi
+ c(x)u :

See [1, 2] for the precise assumptions on Ω and the coefficients of E . We want to
study the Sobolev regularity, with respect to time and space, of the solutions of the
following problem:

ut (t; x) = Eu(t; x) ; (t; x) ∈ ]0; T ] × Ω(1.2)

u(t; x) = 0 ; (t; x) ∈ ]0; T ] × @Ω(1.3)

u(0; x) = u0(x) ; x ∈ Ω :(1.4)

Here we consider second order operators and Dirichlet boundary conditions only
for clarity of exposition. Using the same methods we could study operators of order
2m with more general boundary conditions.

It is known (see e.g. [8]) that for p > 1 the solution u of (1.2)-(1.4) satisfies

ut ; Eu ∈ Lp(]0; T [×Ω)

if and only if u0 ∈ H 2−2=p;p
∗ (Ω), where H α;p

∗ denote Sobolev or Besov spaces (see (2.4)).
In this paper we give necessary and sufficient conditions on u0 such that the solutions

of (1.2)-(1.4) have the Sobolev time regularity

(1.5) @ku=@t k ∈ W α;p(0; T ; Lp(Ω))

for given k ∈ {0; 1; · · · }, 0 < α ≤ 1 and 1 ≤ p < ∞. Here W α;p(0; T ; Lp(Ω)), if

(*) Nella seduta del 13 marzo 1998.
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α < 1, denotes the Sobolev space of functions u ∈ Lp(]0; T [×Ω) satisfying

(1.6)
∫ T

0

∫ T

0
‖u(t; ·) − u(s; ·)‖p

Lp (Ω) |t − s|−1−αp ds dt <+ ∞ :

In addition we prove that property (1.5) is equivalent to a Sobolev space regularity
for the solutions u of (1.2)-(1.4), i.e. we prove

(1.7) @ku=@t k ∈ W α;p(0; T ; Lp(Ω)) ⇔ @ku=@t k ∈ Lp(0; T ; H 2α;p
∗ (Ω)) :

Therefore we give also a characterization of the initial data such that problem (1.2)-
(1.4) admits solutions with prescribed Sobolev space regularity.

2. Sobolev regularity

Let E and Ω be defined as in section 1 (all the results of this section, with obvious
modifications, remain valid if we consider the case Ω = Rn). We study problem (1.2)-
(1.4) in a Lp setting, 1 ≤ p < ∞, with respect to time and space.

We say that a function u ∈ Lp(]0; T [×Ω) is a solution of (1.2), (1.3) if for each
ε > 0 the function t → u(t; ·) is differentiable, in the sense of distributions, from
[ε; T ] into Lp(Ω) and ut ∈ Lp(]ε; T [×Ω). In addition u satisfies u(t; ·) ∈ H 1;p

0 (Ω) and
Eu(t; ·) ∈ Lp(Ω) for a.e. t ∈]ε; T [ and ut (t; x) = Eu(t; x) for a.e. (t; x) ∈]ε; T [×Ω.

Given u0 ∈ Y , for some function space Y , we say that a solution u of (1.2)-(1.3)
satisfies (1.4) if limt→0 u(t; ·) = u0(·) in Y . Here we are interested in characterizing
those spaces Y of initial data for which the solutions of (1.2)-(1.4) exhibit Sobolev
regularity in time up to 0, i.e.,

@ku=@t k ∈ W α;p(0; T ; Lp(Ω))

for given k ≥ 0 and 0 < α ≤ 1 (see (1.6)).
We proceed as follows. We denote by Λ the realization of E , with homogeneous

Dirichlet boundary conditions, in the space Lp(Ω),

(2.1)
{

D(Λ) = {u ∈ H 1;p
0 (Ω) : Eu ∈ Lp(Ω)}

Λu = Eu

where Eu is understood in the sense of distributions. It is known that the operator Λ

generates an analytic semigroup on Lp(Ω) (see e.g. [9]) and that, if p > 1, we have

(2.2) D(Λ) = H 1;p
0 (Ω) ∩ H 2;p(Ω) :

Using (2.1) we can rewrite the initial boundary value problem (1.2)-(1.4) as a Cauchy
problem in the space Lp(Ω) (see e.g. [9])

(2.3)
{

u′(t ) = Λu(t ) ; t ∈ ]0; T ]

u(0) = u0 :

As Λ generates an analytic semigroup we can study (2.3) using the theory of abstract
parabolic equations (see Appendix). To do this we recall the characterization of some
interpolation and extrapolation spaces generated by Λ. Without loss of generality we
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assume, for simplicity in notation, that there exists ω < 0 such that each λ in the
spectrum of Λ satisfies Re λ < ω.

Let h = 1; 2 and 0 < θ < h. We denote by (Lp(Ω); D(Λh))
θ=h;p the real interpo-

lation spaces of Lp(Ω) and D(Λh), generated by the K-method (see e.g. [3, sec. 3.2]).
For h = 1 we have the characterization

(2.4)

(Lp(Ω); D(Λ))θ;p = H 2θ;p
∗ (Ω) :=

:=





H 2θ;p(Ω) ; θ ∈ ]0; 1=2[

{u ∈ B1;p(Ω) :
∫

Ω

|u(x)|p
d (x; @Ω)

dx <+ ∞}; θ = 1=2

H 2θ;p
0 (Ω) ; θ ∈ ]1=2; 1[:

Here H 2θ;p(Ω) are the Sobolev spaces of fractional order, B1;p(Ω) is the Besov space
and d (x; @Ω) is the distance from x to @Ω. For p = 2 we have

(2.5) H 1;2
∗ (Ω) = H 1;2

0 (Ω) :

Property (2.4) is a consequence of (2.2) if p > 1 and it is proved in [5] if p = 1.
If h = 2 the description of the spaces (Lp(Ω); D(Λ2))θ=2;p, is more complicate. As

an example let us consider the simple case Ω = Rn, E = ∆− I and p > 1. In this case
we eliminate the boundary condition (1.3) and have D(Λ) = H 2;p(Rn). Hence

(Lp(Rn); D(Λ2))θ=2;p = (Lp(Rn); H 4;p(Rn))θ=2;p = Lip (2 θ; 4; p; Lp(Rn))

where Lip (2 θ; 4; p; Lp(Rn)) are the generalized Lipschitz spaces (see e.g. [3, Theorem
4.3.4]).

We now define the spaces H 2θ;p
∗ (Ω) also for nonpositive exponent −1 < θ ≤ 0. We

set for u ∈ Lp(Ω)

(2.6) ‖u‖2θ;p :=

{ ‖Λ−1u‖
H

2+2θ;p
∗

; if θ ∈ ] − 1; 0 [

‖Λ−1u‖(Lp (Ω);D(Λ2))1=2;p
; if θ = 0

and denote by H 2θ;p
∗ (Ω) the completion of the space {u ∈ Lp(Ω) : ‖u‖2θ;p <+ ∞} with

respect to ‖ · ‖2θ;p.

It can be seen that if θ < 0 then Lp(Ω) ⊆ H 2θ;p
∗ (Ω) and hence H 2θ;p

∗ (Ω) are called
extrapolation spaces. The relationship between Lp(Ω) and H 0;p

∗ (Ω) is not known in
general. For p = 1; 2 we have (see [6]) H 0;1

∗ (Ω) ⊆ L1(Ω) and

(2.7) H 0;2
∗ (Ω) = L2(Ω) :

If p �= 1; 2 the characterization of H 0;p
∗ (Ω) is known only in the case Ω = Rn and

we have H 0;p
∗ (Rn) ⊆ Lp(Rn) if p ≤ 2 and Lp(Rn) ⊆ H 0;p

∗ (Rn), if p ≥ 2 (see [10]). We
refer to [6] and [7] for more details and proofs.

We now can apply the results of the Appendix to problem (2.3). From (2.4), (2.6)
and Theorem 3.1 we obtain the following.

Theorem 2.1. Let 0 < α ≤ 1. The following properties are equivalent
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(i) Problem (1:2)-(1:4) admits a solution u ∈ W α;p(0; T ; Lp(Ω)),
(ii) u0 ∈ H 2α−2=p;p

∗ (Ω)) .
In addition if (i) or (ii) holds, then we also have u ∈ Lp(0; T ; H 2α;p

∗ (Ω)) if α < 1 or
u ∈ Lp(0; T ; D(Λ)) if α = 1.

From (2.4) and Theorem 3.2 we obtain the next result.

Theorem 2.2. Let 0 < α ≤ 1 and n ∈ {1; 2; · · · }. The following properties are equivalent

(i) Problem (1:2)-(1:4) admits a solution u satisfying @nu=@t n ∈ W α;p(0; T ; Lp(Ω))
(ii) u0 ∈ D(Λn−1) and E n−1u0 ∈ H 2+2α−2=p;p

∗ (Ω), if α < 1=p, E n−1u0 ∈ (Lp(Ω);
D(Λ2))1=2;p, if α = 1=p ; u0 ∈ D(Λn) and E nu0 ∈ H 2α−2=p;p

∗ (Ω), if α > 1=p.

In addition if (i) or (ii) holds, then @nu=@t n ∈ Lp(0; T ; H 2α;p
∗ (Ω)), if α < 1 or

@nu=@t n ∈ Lp(0; T ; D(Λ)), if α = 1.

Finally in the case p = 2 and α = 2−1, using (2.5), (2.7) and Theorems 2.1, 2.2
we obtain

Theorem 2.3. For each k ≥ 0 the following properties are equivalent.

(i) Problem (1:2)-(1:4) admits a solution u satisfying @ku=@t k ∈ W 1=2;2(0; T ; L2(Ω))
(ii) u0 ∈ D(Λk).

In addition if (i) or (ii) holds, then we also have @ku=@t k ∈ L2(0; T ; H 1;2
0 (Ω)).

3. Appendix

Let A : D(A) ⊂ X → X be the infinitesimal generator of an analytic semigroup on
a Banach space X and consider the following abstract parabolic equation

(3.1) u′(t ) = Au(t ) ; t > 0 :

By a solution of (3.1) in the sense of Lp, 1 ≤ p < ∞, we mean a function u ∈
∈ W 1;p(ε; T ; X ) ∩ Lp(ε; T ; D(A)) satisfying u′(t ) = Au(t ) for a.e. t ∈ ]ε; T [ and for
each ε > 0.

We want to characterize those spaces Y of initial data for which the solutions of
(3.1) satisfying the initial condition

(3.2) lim
t→0

u(t ) = x in Y

exhibit Sobolev regularity up to 0 for given k ≥ 0 and 0 < α ≤ 1, i.e.

u ∈ W k+α;p(0; T ; X ) :

Here W k+α;p(0; T ; X ), if α < 1, is the space of functions u ∈ W k;p(0; T ; X ) satisfying
∫ T

0

∫ T

0
‖u(k)(t ) − u(k)(s)‖p

X |t − s|−1−αp dt ds <+ ∞ :

The characterization of such initial data requires the introduction of two families of
spaces, called interpolation and extrapolation spaces. For simplicity we assume, without
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loss of generality for our pourposes, that A generates a semigroup of negative type.
Hence there exists A−1 ∈ L(X ).

For given h = 1; 2 and 0 < θ < h we denote by (X; D(Ah))θ=h;p the real interpo-

lation spaces of X and D(Ah), generated by the K-method (see e.g. [3, sec. 3.2]), and
by ‖ · ‖

θ;h;p the corresponding norm. We set

(3.3) ‖x‖θ;p :=





‖A−1x‖1+θ;1;p ; if θ ∈ ] − 1; 0[

‖A−1x‖1;2;p ; if θ = 0

‖x‖θ;1;p ; if θ ∈ ]0; 1[

and define Xθ;p as the completion of the space { x ∈ X : ‖x‖θ;p <+ ∞ } with respect
to ‖ · ‖θ;p. Then Xθ;p = (X; D(A))θ;p if θ ∈ ]0; 1[ whereas if θ < 0 we have X ⊆ Xθ;p.
For this reason X

θ;p, with θ < 0, are called extrapolation spaces (see [4]). If θ = 0, the
space X0;p may be an intermediate or extrapolation space. In the case where X is a
Hilbert space and A is selfadjoint, we have

(3.4) X0;2 = X :

See [6] and [7, Sect. 3] for a detailed description and proofs of the properties of these
spaces.

The following theorems characterize the space Y in (3.2) for which the solutions of
(3.1), (3.2) have Sobolev regularity.

Theorem 3.1. Let 0 < α ≤ 1. The following properties are equivalent.

(i) Problem (3:1), (3:2) admits a solution u ∈ W α;p(0; T ; X )
(ii) x ∈ Xα−1=p;p.

In addition if (i) or (ii) holds, then we also have u ∈ Lp(0; T ; Xα;p) if α < 1 and
u ∈ Lp(0; T ; D(A)) if α = 1.

Proof. See [7, Theorem 5.9].

Theorem 3.2. Let 0 < α ≤ 1. For each n ≥ 1 the following properties are equivalent.
(i) Problem (3:1), (3:2) admits a solution satisfying u ∈ W n+α;p(0; T ; X )
(ii) An−1x ∈ X1+α−1=p;p if α < 1=p, An−1x ∈ X1;2;p if α = 1=p, Anx ∈ Xα−1=p;p if

α > 1=p.
In addition if (i) or (ii) holds, then we also have u(n) ∈ Lp(0; T ; X

α;p) if α < 1 and

u(n) ∈ Lp(0; T ; D(A)) if α = 1.

Proof. See [7, Theorem 5.10].

Finally, if X is a Hilbert space and A is selfadjoint the results for the case p = 2
and α = 2−1 may be written as follows.

Theorem 3.3. Let X be a Hilbert space and let A be selfadjoint. Then for each k ≥ 0 the
following properties are equivalent.

(i) Problem (3:1), (3:2) admits a solution satisfying u ∈ W k+1=2;2(0; T ; X )
(ii) x ∈ D(Ak).

In addition if (i) or (ii) holds, then we also have u(k) ∈ L2(0; T ; X1=2;2).
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Proof. The results follow from Theorems 3.1, 3.2 and from (3.3), (3.4).

This work is partially supported by MURST 40% «Equazioni differenziali» and by MURST «Equazioni

differenziali: metodi analitici, geometrici e funzionali e applicazioni».
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