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Fisica matematica. — 3-dimensional physically consistent diffusion in anisotropic media
with memory. Nota (*) del Socio Michele Caputo.

Abstract. — Some data on the flow of fluids exhibit properties which may not be interpreted with
the classic theory of propagation of pressure and of fluids [21] based on the classic D’Arcy’s law which
states that the flux is proportional to the pressure gradient. In order to obtain a better representation of
the flow and of the pressure of fluids the law of D’Arcy is here modified introducing a memory formalisms
operating on the flow as well as on the pressure gradient which implies a filtering of the pressure gradient
without singularities; the properties of the filtering are also described. We shall also modify the second
constitutive equation of diffusion, which relates the density variations of the fluid to its pressure variations,
by introducing the rheology of the fluid also represented by derivatives of fractional order operating on the
pressure as well as on the density. Moreover the medium will be considered anisotropic. We shall obtain
the diffusion equation with these conditions in an anisotropic medium and find the Green function for a
point source.

Key words: Diffusion; Filtering; Anisotropy; Memory; D’Arcy.

Riassunto. — Diffusione di fluidi in mezzi anisotropi, con meccanismi di memoria fisicamente accettabili.
Alcuni dati sperimentali sul flusso di fluidi in mezzi porosi mostrano proprietà che non possono essere
spiegate in base alla legge di D’Arcy che stabilisce proporzionalità fra flusso e gradiente di pressione. Per
spiegare questa fenomenologia in questa Nota si modifica la legge di D’Arcy introducendo un formalismo
di memoria, che opera sia sul flusso che sul gradiente di pressione, che genera un filtraggio senza singolarità
fisicamente inaccettabili. Nella Nota si modifica anche l’equazione che lega la variazione di pressione con
quella del fluido mediante l’introduzione di un secondo formalismo di memoria. Entrambi i formalismi di
memoria sono rappresentati da derivate di ordine frazionario. Il mezzo è assunto anisotropico. Si trovano
la trasformata di Laplace della funzione di Green in generale e la sua antitrasformata in casi particolari.

Glossary

1=A (m2s−2) see formula (2),

p(x; y; z; t ) (kg s−2m−1) pressure of the fluid,

q̄ (x; y; z; t ) (kg s−1m−2) fluid mass flow rate in the medium per unit area in the x; y; z direction,
p(x; y; z; 0) = p(0) initial pressure in the medium,
t (s) time,
x; y; z (m) , Cartesian coordinates,
n (dimensionless) fractional order of differentiation (0 < n < 1) ,
hij dimensionless diffusivity tensor,

hi normalized components of the diffusivity tensor,

κ (kg−1m3s1) ratio of the permeability of the medium to the viscosity of the fluid (see formula (1)),

η(kg−1m2s1+n) ratio of the pseudopermeability of the medium (see formula (1′)) to the viscosity of the
fluid,
ρ(x; y; z; t ) (kg m−3) variation of the density of the fluid from its initial value,

ρ0 density of the fluid in the initial condition.

(*) Presentata nella seduta del 13 febbraio 1998.
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Introduction

The basic equations needed to study the flow of fluids in various media have been
set through this century perhaps beginning with Terzaghi [27, 28]; since then a great
progress has been made through the work of Biot [4-7], Biot and Willis [8], Boley and
Tolins [9], Nowacki [23], McNamee and Gibson [22], Booker [10], Rice and Cleary
[24], Bell and Nur [2] and Roeloffs [25] who contributed in various form to set the
equations rigorously representing the interaction between the medium and the flow of
the fluid through it and to obtain solutions of these equations in many interesting
cases.

Most authors who studied diffusion problems used the classic empirical law of D’Arcy
stating proportionality between the fluid mass flow rate and the gradient of the pressure
in the same direction.

Concerning the observations of the diffusion however many problems are still un-
resolved [25]. To overcome these difficulties more general models of diffusion have
been suggested. A set of models is based on memory as in the one dimensional
work of Wyss [29], Mainardi [21] and Caputo [12, 15]. Another set of models is
the classical convection-dispersion model (CDM), where the transport coefficients are
time dependent, which are also based on the D’Arcy’s law; they are well reviewed
in [1].

The diffusion of fluids is based on two constitutive equations: the first is the law
of D’Arcy relating the flux to the gradient of the pressure, the second is the relation
between the density variations of the fluid to those of its pressure.

Because of the inadequacy of current theories in taking into account memory some
authors developed also non-local flow theories (e.g. [19] ) using general principles of
statistical physics under appropriate limiting conditions from which the classical Darcy’s
law is derived for saturated flow.

In order to allow a better interpretation of the observations, in this Note, instead
of introducing in D’Arcy’s law the fractional order derivative operating on the pressure
gradient only, as done in 1-Dimensional previous work of Wyss [29], Mainardi [21]
and Caputo [12, 15], we shall introduce in the 3-Dimensional D’Arcy’s law a mem-
ory formalism represented by derivatives of fractional order operating on the pressure
gradient as well as on the flux. This overcomes a difficulty in the frequency domain
physical interpretation of the results of Wyss [29], Mainardi [21] and Caputo [12, 15],
which we will describe and discuss.

One more aspect of the diffusion which we will consider is that the constitutive
equation relating the variations of the density to those of the pressure, is actually based
on two relations; in fact it results from Hooke’s law between the pressure and the
implied volume changes and from the geometric relation between volume and density.
The law of Hooke is here subject to rheological constraints which we will imply by
including a memory formalism in the law itself [20] operating on the pressure as well
as on the density variations of the fluid. Moreover the medium will be considered
anisotropic.
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The model

Many models, including the CDM type, imply that the permeability of the medium
is variable with time and this phenomenon is taken into account when writing the law
of D’Arcy which states that the fluid mass flow rate q̄ per unit area in the x; y; z
direction is proportional to the gradient of the pore pressure p

(1) q̄ = −ρ0κgradp

where κ , with dimension m3kg−1s , is the ratio of the permeability of the medium to
the viscosity of the fluid and ρ0 is the density of the fluid in its undisturbed condition.

One more constitutive equation, often taken without discussion, relates the pressure
to the variation ρ of the density from its undisturbed condition

(2) ρ(x; y; z; t ) = Ap(x; y; z; t ) :

The continuity relation between the time variation of the density and the divergence of
the flux allows to eliminate flux and density and to reduce the problem to the classic
diffusion equation.

One way to take into account the observed deviations of the flow from those implied
by the classic diffusion equation is to introduce a memory formalism in D’Arcy’s law
and consider that the flow depends on the history of the pressure gradient. A simple
way of doing it is to write equation (1) as follows

(1′) q̄ i = −ρ0η(@n=@t n)gradp

where η , with dimensions kg−1m2s1+n , is the ratio of the pseudopermeability of
the medium to the viscosity of the fluid and the definition of derivative of fractional
order n is

(3) @np(x; t )=@t n = (1=Γ(1 − n))
∫ t

0
(t − u)−n(@p(x; u)=@u)du

with 0 ≤ n < 1 . In the definition (3) there is convergence at t = u for any value of
t since it is assumed 0 ≤ n < 1 . It is clear that the memory formalism introduced
by (1′) to describe the flow of the fluid implies the use of more than one parameter,
namely n and ηρ0 , instead of the only one parameter κ as in D’Arcy’s law. The
Green function of the diffusion resulting from (2) has been obtained in various forms
by several authors (e.g. [29, 21, 15]).

The extensions (1′) of the diffusion equation in 1 dimension used by Wyss [29],
Schneider and Wyss [26], Mainardi [21] and Caputo [15], although mathematically
consistent, does not give satisfactory results, when 0 < n < 1 since, as we shall see,
it implies a filter acting on the pressure gradient whose response curve is nil at zero
frequency and infinite at infinite frequency. The case −1 < n < 0 implies a filter whose
response curve is infinite at zero frequency and nil at infinite frequency. This difficulty
will be overcome with the introduction of the fractional order derivative acting on the
pressure gradient as well as on the flux.
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An aspect of the diffusion which we will consider in this Note is also that the relation
(2), between the density and the pressure, is actually based on two relations; in fact it
results from Hooke’s law between the pressure and the implied volume changes and the
geometric relation between volume and density. The law of Hooke is here subject to
rheological constraints which we will imply by including derivatives of fractional order
in the law itself [20] writing equation (2) as follows

(4) αρ + β@m1ρ=@t m1 = A(ap + b@m2p=@t m2 )

where the parameters α and a are positive and dimensionless, β and b are also positive
but have dimension sm1 and sm2 respectively and 0 < n1 < 1, 0 < n2 < 1. The Laplace
Transform (LT) of (4) to be used later is [11]

(4′) αR + βsm1R = A
(
aP + bsm2P − sm2−1p(0)

)

where R and P are the LT of ρ and of p respectively, p(0) is its initial pressure assumed
independent of the coordinates and s is the LT variable.

One more aspect of the diffusion to consider is the anisotropy which occurs often
in nature especially in fractured and porous media. In this Note we will assume that
the medium is anisotropic and describe the anisotropy with a second order tensor.
However we shall limit ourselves to the case when the anisotropy is independent of
coordinates.

Although the extension (1′) of the diffusion equations may be useful in limited
frequency ranges, as we shall see, a physically more satisfactory and general extension
of the difffusion equation based on D’Arcy’s law may be obtained by writing it in the
following form

(5) γqi + ε@n1qi=@t n1 = −hij (cpj + d@n2pj=@t n2 )

where qi are the components of q̄ , pj are the components of gradp, hij is the sym-
metric dimensionless tensor, assumed independent of the coordinates, describing the
anisotropy of the medium, q̄ (x; y; z; t ) is the flux, p(x; y; z; t ) is the fluid pressures
in the medium and 0 < m1 < 1, 0 < m2 < 1. The parameter γ is positive and
dimensionless while ε, c and d are also positive but have dimensions sn1 , s and s1+n2

respectively.
Since the anisotropy tensor is independent of the coordinates we may rotate the coor-

dinates to the principal directions of the anisotropy and obtain the following simplified
form of (5)

(5′) γqi + ε@n1qi=@t n1 = −hi(cpi + d@n2pi=@t n2 ) (i = 1; 2; 3)

where, in the right hand member, there is no summation relative to the index i, hi are
the principal values of hij and are assumed positive. The rotated coordinates will be
again written as x; y; z .

We shall see in this Note that the introduction of the fractional order derivatives in
both sides of (5) eliminates the singularities at zero and infinite frequencies.
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The LT of (5′) is of interest for the discussion of the filtering acting on the gradient
of the pressure and for obtaining the diffusion equation

(5′′)
Q i = −(c + dsn2 )hiPi=(γ + εsn1 ) +

+ hi

(
sn1−1bqi(x; y; z; 0) + sn2−1dpi(x; y; z; 0)

)
=(γ + εsn1 )

where Q i is the LT of qi .
We shall discuss here the more general form (5′) of D’Arcy’s law whose LT (5′′)

readily shows that, when the initial pressure gradient and flow are nil, that is when
the initial pressure is independent of position, and b or a are not nil, then, assuming
s = iw and interpreting (5′′) as a filter, the response of the filter at zero and infinite
frequency are not nil or singular.

In order to find the pressure distribution in the medium let us associate to (4) and
(5′) the continuity equation

(6) divq̄ + @ρ=@t = 0
whose LT form is

(6′) divQ + sR = 0

where it is assumed ρ(x; y; z; 0) = 0. Substituting (5′′) in (6′) we find

(7) divQ = −sA(a + bsm2 )P=(α + βsm1 ) + Absm2p(0)=(α + βsm1 ) :

As usual in this type of problem we assume that the pressure in the medium is initially
independent of x; y; z and therefore

(8)





pi(x; y; z; 0) = 0 ; q̄ (x; y; z; 0) = 0 ;

@p1(x; y; z; 0)=@x = 0 ; @p2(x; y; z; 0)=@y = 0 ; @p3(x; y; z; 0)=@z = 0 ;

@q1(x; y; z; 0)=@x = 0 ; @q2(x; y; z; 0)=@y = 0 ; @q3(x; y; z; 0)=@z = 0 :

Eliminating Q in (5′′) and (7), with the conditions (8), we find the following equation
governing the diffusion of the pressure in the anisotropic medium with constitutive
equations (4) and (5′)

(9)

[
@2h1P=@x2 + @2h2P=@y2 + @2h3P=@z2] =

= sA(γ + εsn1 )(a + bsm2 )P=(α + βsm1 )(c + dsn2 )−
−A(γ + εsn1 )bsm2p(0)=(α + βsm1 )(c + dsn2 ) :

The solution of the diffusion equation

It is verified that a particular solutions of (9) is

(9′) p(0)bsm2=s(a + bsm2 ) :

The inverse LT of (9′) is the Mittag-Leffler function here presented in a different
form [13]

(9′′) χ(t ) = p(0)(sinπm2=πm2)
∫ ∞

0
exp

(
− (au=b)1=m2 t

)
du=(u2 + 2u cosπm2 + 1) :
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The homogeneous version of equation (9) is

(10)
{

h1@2P (x; y; z; s)=@x2 + h2@2P (x; y; z; s)=@y2 + h3@2P (x; y; z; s)=@z2 = H (s) ;

H (s) = A
[
s(a + bsm2 )(γ + εsn1 )=(α + βsm1 )(c + dsn2 )

]
P (x; y; z; s) :

To solve equation (10) we shall proceed by separation of variables. Let us then set

(11) P (x; y; z; s) = U (x; s)V (y; s)W (z; s)

and assume

(11′)

h1@2U=@x2 = r(s)U ;

h2@2V=@y2 = g (s)V ;

h3@2W=@z2 = l (s)W ;

where, at the moment, r(s), g (s) and l (s) are positive functions of s but otherwise
arbitrary, which yield the solution converging at infinite distance

(11′′)

U (x; s) = B(s) exp
{
− (r(s)=h1)1=2x

}
;

V (y; s) = D(s) exp
{
− (g (s)=h2)1=2y

}
;

W (z; s) = E (s) exp
{
− (l (s)=h3)1=2z

}
;

which yield the solution of (10) if

(12) r(s) + g (s) + l (s) = H (s) :

The solution (11′′) with the condition (12) allows to solve a variety of initial value
problems for a point source. We note that combining the solution (11′) with the
solution diverging at infinity one may solve a variety of initial value problems with a
source more general than a point.

Since we are studying the point source it is no limitation to our problem to assume

r(s) = g (s) = l (s) = H (s)=3 :

The solutions (11′) are then

(11′′′)

U (x; s) = B(s) exp
{
−
[
As(a + bsm2 )(γ + εsn1 )=3h1(α + βsm1 )(c + dsn2 )

]1=2
x
}

;

V (y; s) = D(s) exp
{
−
[
As(a + bsm2 )(γ + εsn1 )=3h2(α + βsm1 )(c + dsn2 )

]1=2
y
}

;

W (z; s) = E (s) exp
{
−
[
As(a + bsm2 )(γ + εsn1 )=3h3(α + βsm1 )(c + dsn2 )

]1=2
z
}

:

Where B(s), D(s) and E (s) are functions admitting inverse LT but otherwise arbitrary.
Assuming B(s) = D(s) = E (s), which is no limitation since we consider a point source
in the origin of the coordinates, we find

(13)
P (x; y; z; s) = B(s) exp

{
−
[
As(a + bsm2 )(γ + εsn1 )=3(c + dsn2 )(α + βsm1 )

]1=2·
·(x=h1=2

1 + y=h1=2
2 + z=h1=2

3 )
}

where B(s) is the LT of a function f (t ) which will be defined with the conditions at
the boundary.
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From here, in order to simplify the computations we shall assume that n1 = n2 =

= m1 = m2 = n, which will save the non singular properties of the filtering introduced,
and seek the LT−1 of (13) in some cases of particular interest and following the same
procedure previously used [15].

A case of special interest is that when γ = α = 0 which we will study in the
following assembling the parameters A, ε and β assuming ε = β = 1. The equation
(13) is then

(14) P (x; y; z; s) = B(s) exp
{
−
[
As(a + bsn)=3(c + dsn)

]1=2
(x=h1=2

1 + y=h1=2
2 + z=h1=2

3 )
}

:

The solution of the homogeneous equation (10), that is the inverse LT of (14), is found
in the appendix A. From the solution of the homogeneous equation (10) we obtain the
solution of the non homogeneous equation (9)

(15)

p(x; y; z; t ) = χ(t ) +
(
LT −1(B(s))

)
∗ (1=π)

∫ ∞

0

{
exp

[
− rt−

+ r1=2(x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ

)
=(M 2 + r2n + 2Mrn cos nπ)

]1=4·

· cos
(
0:5

(
tan−1(rn sin nπ=(L + rn cos nπ)

)
− tan−1(rn sin nπ=(M + rn cos nπ)

)))]
·

· sin
[
r1=2(x=

√
3h1 + y=

√
3h2 + z=

√
3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cos nπ)

]1=4·

· sin
(
0:5

(
tan−1(rn sin nπ=(L+rn cos nπ)

)
−tan−1(rn sin nπ=(M + rn cos nπ)

)))]}
dr

where in χ(t ) it is assumed n = m2.
Formula (15) may be numerically integrated for all values of x; y; z and t . It is to

be noted that, since x; y; z and t are here assumed positive or nil, the integral in (15)
is convergent.

When LT−1B(s) = δ(t ) then formula (15) is the Green function of the problem and
one may solve several problems of diffusion for a point source.

From (14), since f (t ) = LT−1B(s), with f (t ) limited, it is also easily seen with
LT extreme values theorem that p(x; y; z; 0) = 0 f (0) + χ(0) = p(0) for any x; y; z
which verifies that the pressure, at the initial time, is the initial one; for t = ∞ it is
p(x; y; z;∞) = f (∞) + χ(∞) = f (∞).

The inspection of formula (15) shows that for any value of t , however small, and of
x; y; z however large, the value of the integral is always larger than zero which implies
that the signal travels with infinite velocity.

Filtering properties

As we mentioned the memory formalism (5′) implies filtering of the pressure gradient
with response F (w) obtained substituting s = iw, with w frequency, in (5′′) with the
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assigned initial conditions (8)

(16)
|F (w)| = |(c + dsn1 )=(γ + εsn2 )| =

=
∣∣(c2 + d 2w2n1 + 2cdwn1 cosπn1)

/
(γ2 + ε2w2n2 + 2γεwn2 cosπn2)

∣∣1=2
:

In the preceding work of Wyss [29], Mainardi [21] and Caputo [12, 15] it was assumed
that the fluid is perfectly elastic, that (5) is reduced with ε = c = 0 and n1 = n2. This
implies that the filter described by (16) is zero at zero frequency and infinite at infinite
frequency which would be hardly acceptable from a physical point of view.

When n1 = n2 = n and depending on c=γ > d=ε or c=γ < d=ε we have a decreasing
or an increasing response curve respectively as shown in fig. 1 where it is noted that
unless γ = 0 or ε = 0 there are no singularities in the response curves.

d
ε

c
γ

F (w)

(a )

w

d
ε

c
γ

F (w)

(b )

w

Fig. 1. – Response curves of the filter represented by the memory formalism introduced by the model
defined in (5′). In (a) is the case when d=ε > c=γ, in (b) is the case when d=ε < c=γ.

A physically interesting case is when n1 = n2 = n and d = 0 in which the filter
response is finite at zero frequency and nil at infinite frequency which may be of use
in some cases of geoelectric prospecting. The response to an infinite frequency input is
d=ε, the relaxation time is (ε=γ)1=n.
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Another physically interesting case is when n1 = n2 = n and γ = 0 [20], in which
there is infinite, although integrable, response at zero frequency input and a finite
response at infinite frequency input.

In the case when one of the parameters b or d is nil the procedure of appendix A
is still valid and formulae (A7), (A8), (15) may be readily computed arriving to simpler
results.

Conclusions

After the preceding discussion we may then extend also to the diffusion the formal
mathematical analogy between anelastic and dielectric media assuming that the flux is
the dual of the deformation (induction) and the pressure gradient is the dual of the
stress (applied electric field) as shown by Caputo [17].

A particular case is when n1 = n2 = n, β = b = 0, α=a = 1. In this case the
rheology of the fluid is neglected and the solution is obtained from (15) where however
L = γ=ε, K = Aε=d and χ(t ) = 0.

The form of the Green function of the case when no singularities are present in the
response curve of the filter implied by the memory inserted in D’Arcy’s law is more
complicated than that of the case when singularities are present [15]; this is the price
for physical consistency. The same conclusion is valid also for the inclusion of the
rheology in the constitutive equations of the fluid.

The physically consistent solution obtained in the present Note may contribute to
give a satisfactory explanation to the variable velocity of migration of earthquake’s foci
and to the variable velocity of migration, in the crust of the Earth, of the precursory
phenomena of strong earthquakes [13], which are possibly due to the diffusion of
subterranean waters [3].

Appendix A

Assuming

(A1) s = r exp(iθ)

the exponential factor of B(s) appearing in (14) may be written

(A2)
exp

{
−
[
As(a + bsn)=(c + dsn)

]1=2(
x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)}
=

= exp
(
−
(
x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
T exp(iΘ)

)

where

(A3)

T (r; θ) = (Kr)1=2
[
(L2 + r2n + 2Lr cos nθ)=(M 2 + r2n + 2Mr cos nθ)

]1=4
;

Θ(r; θ) = 0:5
(

tan−1(rn sin nθ=(L+ rn cos nθ)) − tan−1(rn sin nθ=(M +rn cos nθ))
)
;

K = Ab=d ; L = a=b ; M = c=d :
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A

B

β

O
F

K

C

E

H

D

Fig. 2. – Path of integration of formula (14).

It is to be noted that

(A4)
T (r;π) = T (r;−π) ;

Θ(r;π) = −Θ(r;−π) :

The LT−1 of the exponential factor of B(s), appearing in (8), is computed integrating
along the closed path of fig. 2, inside which there are no poles of the exponential
because this has no poles in the negative complex plane of s. The integral is therefore
nil because the residuals are nil and we may write

(A5)

(1=2ip) lim
u→∞

[∫ b+iu

b−iu

exp
(

st −
(
x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
·

·
[
As(a + bsn)=(c + dsn)

]1=2
)

ds +

+

∫ E

D

exp
(

st −
(
x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)[
As(a + bsn)=(c + dsn)

]1=2
)

ds +

+

∫ H

F

exp
(

st−
(
x=
√

3h1 +y=
√

3h2 +z=
√

3h3

)[
As(a + bsn)=(c + dsn)

]1=2
)

ds

]
= 0:

Noting that in the integration on DE : θ = π and on FH : θ = −π, then

(A6) θ = ±π ; s = −r ; ds = −dr ; sz=2 = rz=2 ( cos(πz=2) ± i sin(πz=2)
)
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and finally

(A7)

p(x; y; z; t ) = −(1=2iπ)
∫ ∞

0

{
exp

[
− rt−

+ r1=2(x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· cos
(
0:5

(
tan−1(−rn sin nπ=(L+rn cos nπ)

)
−tan−1(−rn sin nπ=(M +rn cos nπ)

)
−π

))]}

·
{

cos
[
r1=2(x=

√
3h1 + y=

√
3h2 + z=

√
3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· sin
(
0:5

(
tan−1(−rn sin nπ=(L+ rn cos nπ)

)
−tan−1(−rn sin nπ=(M +rn cos nπ)

)
−π

))]
+

+ i sin
[
r1=2(x=

√
3h1 + y=

√
3h2 + z=

√
3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· sin
(
0:5

(
tan−1(−rnsin nπ=(L+rncos nπ)

)
−tan−1(−rnsin nπ=(M +rncos nπ)

)
−π

))]}
dr +

− (1=2iπ)
∫ 0

∞

{
exp

[
− rt−

+ r1=2(x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· cos
(
0:5

(
tan−1(rn sin nπ=(L + rn cos nπ)

)
− tan−1(rn sin nπ=(M + rn cos nπ)

)
+ π

))]}
·

·
{

cos
[
r1=2(x=

√
3h1 + y=

√
3h2 + z=

√
3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· sin
(
0:5

(
tan−1 (rn sin nπ=(L+rn cos nπ)

)
−tan−1 (rn sin nπ=(M +rn cos nπ)

)
+π

))]
+

+ i sin
[
r1=2(x=

√
3h1 + y=

√
3h2 + z=

√
3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cosπn)

]1=4·

· sin
(
0:5

(
tan−1 (rn sin nπ=(L+rn cos nπ)

)
−tan−1 (rn sin nπ=(M +rn cos nπ)

)
+π

))]}
dr:

Using (A4) we may then obtain from (A7) the general solution of the homogeneous
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equation (13) in the following simpler form

p(x; y; z; t ) =
(
LT −1(B(s))

)
∗ (1=π)

∫ ∞

0

{
exp

[
− rt−

+ r1=2(x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cos nπ)

]1=4·

(A8) · cos
(
0:5

(
tan−1 (rn sin nπ=(L+rn cos nπ)

)
−tan−1 (rn sin nπ=(M + rn cos nπ)

)))]}
·

· sin
{

r1=2(x=
√

3h1 + y=
√

3h2 + z=
√

3h3

)
K 1=2·

·
[
(L2 + r2n + 2Lrn cos nπ)=(M 2 + r2n + 2Mrn cos nπ)

]1=4·

· sin
(
0:5

(
tan−1 (rn sin nπ=(L+rn cos nπ)

)
−tan−1(rn sin nπ=(M +rn cos nπ)

)))}
dr:
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Note added to proofs. – The relations (4) and (5) are a generalisation of the relations introduced in
elasticity by M. Caputo and F. Mainardi (A new dissipation model based on memory mechanism. Pageoph.,
91, 1971, 134-147) and have been used already, in the frequency domain, by R.L. Bagley and P.J. Torvik
(On the fractional calculus model of viscolelastic behaviour . Journal of Rheology, 30, 1986, 133-155).


