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Meccanica dei solidi. — A maximum reduced dissipation principle for nonassociative
plasticity. Nota (*) di Castrenze Polizzotto, presentata dal Socio G. Maier.

Abstract. — The concept of reduced plastic dissipation is introduced for a perfectly plastic rate-
independent material not obeyng the associated normality rule and characterized by a strictly convex plastic
potential function. A maximum principle is provided and shown to play the role of variational statement
for the nonassociative constitutive equations. The Kuhn-Tucker conditions of this principle describe the
actual material behaviour as that of a (fictitious) composite material with two plastic constituents, each of
which is associative in some suitably enlarged stress and strain spaces. The proposed principle is shown to
identify with the classical one in case of associative plasticity. A simple illustrative example is reported.

Key words: Plasticity; Nonassociative yielding laws; Variational principles.

Riassunto. — Un principio della massima dissipazione plastica ridotta nell’ambito della plasticità non
associativa. Per un materiale perfettamente plastico (privo di effetti viscosi) di tipo non associativo e carat-
terizzato da una funzione potenziale plastico strettamente convessa, si introduce il concetto di dissipazione
plastica ridotta. Si propone un principio di massimo e si mostra che esso rappresenta una formulazione
variazionale delle equazioni costitutive della plasticità non associativa. Le condizioni di Kuhn-Tucker re-
lative al suddetto principio descrivono il comportamento costitutivo del materiale reale come quello di un
materiale (fittizio) composito con due costituenti ciascuno dei quali è di tipo plastico associativo in taluni
spazi di tensioni e di deformazioni opportunamente ampliati. Il principio proposto si identifica con quello
classico nel caso di plasticità associativa. Si riporta una semplice applicazione illustrativa.

1. Introduction

The constitutive behaviour of elastic-plastic rate-independent material models can be
described through two convex stress functions, i.e. the yield function, f (σ) ≤ 0, and the
plastic potential function, g (σ). The material behaves elastically for stress states such
that f (σ) < 0, whereas, for stress states on the yield surface, f (σ) = 0, it may undergo
a plastic strain increment the direction of which coincides with that of the gradient of
the equipotential surface passing through σ. Many material models, especially metals
and alloys, obey the so-called associative normality rule; that is, they deform exhibiting
plastic strain increments normal to the yield surface, such that g ≡ f for this class
of materials; material models (e.g. geomaterials) for which g �≡ f are referred to as
nonassociative material models [1, 8, 11, 14].

Within associative plasticity, a fundamental inequality is available which can be inter-
preted either as Drucker’s stability postulate [5], or as the maximum (plastic) dissipation
theorem of Mises, Taylor and Hill [7, 11]. This inequality, which is referred to as the
maximum dissipation theorem (or principle) in the following, provides a firm theoretical
basis to a great deal of developments of the classical plasticity theory, e.g. assessment of

(*) Pervenuta in forma definitiva all’Accademia il 19 settembre 1997.
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solution uniqueness, limit plastic and shakedown analyses, steady-state stabilized response
under periodic loads, convergence questions.

For materials not obeying the associative normality rule, the maximum dissipation
theorem does not hold, nor something similar to it is available. This lack of a basic
inequality, as powerful as the above one, has likely prevented the nonassociative plasticity
theory from being developed as the associative plasticity theory has been. For instance,
just to mention a few significant points, fundamental theorems analogous to those of the
classical limit plastic analysis are not available for such materials, and the limit loads of
a structure made of this material can only be loosely bracketed by limit loads computed
by applying the classical theorems to fictitious associative materials with suitably chosen
yield functions according to the methods of Radenkovic [18], de Josselin [4], Palmer
[16], Salençon [19]. Similar considerations can be made for shakedown analysis and for
the evaluation of the limit shakedown loads using methods of Pycko and Maier [17],
Corigliano et al. [2]. Additionally, whereas variational statements to characterize the
solution uniqueness and stability can be established within associative plasticity basing on
appropriate positive definite, or positive semi-definite, functionals [9], such procedures
are no longer valid for nonassociative plasticity, where only weaker statements have been
proposed, e.g. by Mróz [15], Maier [12].

The present paper has the purpose to provide, within nonassociative plasticity and
under the restriction of strictly convex potential function g , a suitable central inequality
as a basis to establish a maximum reduced dissipation theorem. The concept of reduced
(plastic) dissipation (Drd ) is introduced as the difference between the actual dissipation
(D) and the auxiliary dissipation (D∗), i.e. Drd = D − D∗. Drd turns out to be a one-
degree homogeneous function of plastic strain rates (ε̇p), and its first partial derivative
at any regular point ε̇p �= 0 equals the reduced stress, σrd , this stress being the difference
between the actual stress (σ) and the auxiliary stress (σ∗), i.e. σrd = σ − σ∗, (but the
derivatives of D and D∗ differ from σ and σ∗ by an additive nondissipative stress, s,
i.e. @D=@ε̇p = σ + s; @D∗=@ε̇p = σ∗ + s). All three dissipation functions, Drd ; D
and D∗, are nonnegative and, in general, nonconvex.

The above theorem will be shown to constitute a variational statement of the nonas-
sociative constitutive plastic flow laws, in the sense that the related Kuhn-Tucker con-
ditions provide these flow laws, but cast in an equivalent associative-type format; that
is, the material behaviour is described in the enlarged space of the actual and auxiliary
stresses, by two distinct sets of associative plastic flow laws. One of these is stress-guided,
i.e. it operates in the actual stress σ-space with the (actual) yield function f (σ) ≤ 0 and
some (fictitious) conventional plastic strain rates, ε̇pc , normal to f (σ) = 0; the other is
strain-guided, i.e. it operates in the (fictitious) auxiliary stress σ∗-space with some aux-
iliary (linear) yield function f ∗(σ∗) ≤ 0 and the actual plastic strain rates, ε̇p, normal
to f ∗(σ∗) = 0. A liaison is placed between the two above stress spaces through the
requirement that the conventional plastic strain rate, ε̇pc , satisfies a specific conjugation
rule (centred upon the Hessian matrix, G, of the potential g ). In case of associative
plasticity, the proposed theorem will be shown to coincide with the classic maximum
dissipation theorem, with Drd = D, D∗ = 0 and ε̇pc = ε̇p.
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The outline of the paper is the following. After some preliminary considerations
in Section 2, the central inequality of this work is established in Section 3. Section 4
is devoted to the derivation of the maximum reduced dissipation principle and to the
related Kuhn-Tucker conditions with their mechanical interpretations. Some essential
properties of the reduced dissipation are established in Section 5. Section 6 reports a
simple application and conclusions are drown in Section 7.

Notation. A compact notation will be used, with vectors and tensors denoted by bold
face symbols. The dot (·) and colon (:) products between vectors and tensors denote
the simple and double index saturation operations, as for instance: u ·v = uivi; σ : ε =

= σij εji; σ : A : σ = Aijhk σji σkh , (n ·σ)i = σjinj , (A : σ)ij = Aijhkσkh , where the indices
denote Cartesian components and the repeated index summation rule is applied. The
upper dot means time derivative, e.g. ȧ = @a=@t . The symbol := means equality by
definition. Other symbols will be defined in the text, where they appear for the first
time.

2. Preliminary considerations

A rate-independent perfectly plastic material not obeying the associated normality
rule can be characterized by constitutive equations as

(1a) ε̇p = λ̇q(σ); q(σ) := @g=@σ

(1b) f (σ) ≤ 0; λ̇ ≥ 0; λ̇f (σ) = 0

where λ̇ is the plastic (or consistency) coefficient, f = f (σ) is the yield function and
g = g (σ) is the plastic potential function. The following assumptions are made as for
the latter functions:

– f (σ) is convex and smooth and the yield surface f (σ) = 0 contains the origin,
i.e. f (0) < 0.

– g (σ) is strictly convex and smooth, (at least) twice differentiable with respect to all
its arguments, the latter arguments being coincident with the arguments of f (σ).

– The gradient q(σ) is vanishing at the stress origin, i.e. q(0) = 0, (hence q(σ) �= 0
’σ �= 0, by the strict convexity of g ).

– g (σ) takes finite values at any point σ located at a finite distance |σ| from the origin
and satisfies the following properties:

(2a) ’σ : f (σ) ≥ 0 ⇒ g (σ) ≥ 0

(2b) Cg ⊆ Cf ; with Cg = Cf only if g ≡ f;

where Cg and Cf denote the convex sets of stress points enclosed by the reference
equipotential surface, g (σ) = 0, and the yield surface, f (σ) = 0, respectively, i.e.

(2c) Cg := {σ : g (σ) ≤ 0}; Cf := {σ : f (σ) ≤ 0} :
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– g (σ) being specified to within an additive constant, the reference equipotential sur-
face, g (σ) = 0, is allowed either to find itself in internal contact with the yield
surface, f (σ) = 0, or to degenerate into a single point, i.e. the origin σ = 0 (in
which case it is g (σ) > 0 ’ σ �= 0), or even to be located somewhere in between,
inside the yield surface.

According to eqs. (1a; b), the plastic strain rate vector ε̇p is normal to the equipo-
tential surface g (σ) = const passing through the stress point σ, whereas the load-
ing/unloading rule is governed by (1b) through the yield function. Since g intervenes
in (1a; b) with its gradient q, any additive constant to g is without consequences to
the material behaviour description. On choosing g (σ) ≡ f (σ), it is Cg = Cf , and a
material model with associated normality rule is generated.

An insight to (1a; b) enables one to state the following. If ε̇p �= 0, it is λ̇ > 0
and f (σ) = 0. Due to the assumptions made on g , the equation system (1a) can be
solved for σ to have σ = σ(ε̇p=λ̇). The latter equation, with ε̇p fixed and λ̇ > 0
variable, is the parametric equation of a line Λ(ε̇p) in the stress space, locus of points
σ where the gradient q(σ) is parallel to ε̇p, fig. 1. Λ departs from the stress origin
(where λ̇ =+ ∞) and progresses on one side as λ̇ decreases, intersecting the reference
equipotential surface, g (σ) = 0, at some point M0 and then the yield surface, f (σ) = 0,
at some point M . (The gradient magnitude |q(σ)| at points σ ∈ Λ(ε̇p) increases with
|σ|, while remaining finite). As the line Λ(ε̇p) only depends on the direction of ε̇p

and not on its magnitude, and since σ must be on the yield surface, f = 0, it follows
that the stress σ corresponding to a given ε̇p is the intersection M of Λ(ε̇p) with the
yield surface (fig. 1), and that σ turns out to be a zero-degree (positively) homogeneous
function of ε̇p. The yield condition f (σ(ε̇p=λ̇)) = 0 provides the λ̇ value corresponding
to point M as a one-degree homogeneous function, λ̇(ε̇p), by which σ = σ(ε̇p) can be
obtained. On the other hand, for ε̇p = 0, it is λ̇ = 0 and f (σ) ≤ 0, whereas Λ(ε̇p) is
indeterminate.

Equations (1a; b) comply with the second principle of thermodynamics [10], as in
fact the relevant plastic dissipation D = σ(ε̇p) : ε̇p is always nonnegative, i.e.

(3) D(ε̇p) =
(
λ̇σ : q(σ)

)∣∣∣
ε̇p

≥ λ̇(ε̇p)g
(
σ(ε̇p)

)
≥ 0;

where eq. (2a) and the inequality g (σ) < σ : q(σ) ’σ �= 0 have been used; additionally,
the equality sign between the second and third members holds if, and only if, ε̇p = 0.
D(ε̇p) is homogeneous to degree one like for associative plasticity, but it is (in general)
nonconvex and its partial derivatives (where they exist) do not provide the stresses
σ(ε̇p), as it will be shown later on. Equation (3) suggests one to consider the reduced
dissipation function

(4) Drd := D(ε̇p) − D∗(ε̇p) ≥ 0

where D∗ is the auxiliary dissipation, defined as

(5) D∗ = D∗(ε̇p) := λ̇(ε̇p)g
(
σ(ε̇p)

)
:

Both Drd and D∗ are nonnegative, vanish for ε̇p = 0, and are degree-one homogeneous.
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Fig. 1. – Yield surface f (σ1; σ2) = 0 and equipotential surfaces g (σ1; σ2) = const in two-dimensional
stress space.

In next Section, Drd will be shown to play a variational role for the nonassociative flow
laws (1a; b). Note that, with the choice g ≡ f , one has Drd = D; D∗ = λ̇f = 0.

3. Central inequalities

Let σ and σ′ be two distinct stress states of the material. By the convexity of g (σ),
one can write

(6) g (σ′) − g (σ) ≥ q(σ) : (σ′ − σ)

which holds for any pair (σ; σ′), with the equality sign only if σ = σ′. Assume that
the latter stress σ and some λ̇ > 0 and ε̇p satisfy eqs. (1a; b). Thus, multiplying both
sides of (6) by λ̇ gives the inequality

(7) (σ− σ′) : ε̇p − [g (σ) − g (σ′)]λ̇ ≥ 0

which holds for arbitrary σ′. Note that the equality sign in (7) holds if, and only if,
either σ = σ′, or ε̇p = 0 (hence λ̇ = 0), or both.

Inequality (7) can be further transformed by distinguishing two cases as to the way
σ′ is chosen:

i ) σ′ ∈ Cg , i.e. g (σ′) ≤ 0, in which case λ̇g (σ′) ≤ 0. Then, inequality (7) implies
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the following:

(8) (σ− σ′) : ε̇p − λ̇g (σ) ≥ 0;

which, since λ̇g (σ) ≥ 0, can be rewritten as

(9) (σ− σ′) : ε̇p ≥ 0 ’ σ′ ∈ Cg :

Inequality (9) coincides with Drucker’s inequality for g (σ) ≤ 0 taken as the relevant
yield function.

ii ) σ′ �∈ Cg , i.e. g (σ′) > 0. Then, let (σ′; λ̇
′
) belong to the set K (ε̇p) defined as:

(10) K (ε̇p) :=
{

(σ′; λ̇
′
) : f (σ′) ≤ 0; λ̇

′ ≥ 0; λ̇
′
q(σ′) = ε̇p

}
:

Equation (10) means that σ′ lays on the Λ(ε̇p) line, somewhere in between the origin
O and M , fig. 1, (right on M if λ̇

′
= λ̇). Since |q(σ′)| < |q(σ)| for |σ′| �= |σ|, by the

equality λ̇
′|q(σ′)| = λ̇|q(σ)| it is λ̇

′
> λ̇, hence λ̇

′
g (σ′) > λ̇g (σ′), and inequality (7)

implies:

(11) (σ− σ′) : ε̇p − [λ̇g (σ) − λ̇
′
g (σ′)] ≥ 0 ’ (σ′; λ̇

′
) ∈ K +(ε̇p)

where

(12) K +(ε̇p) :=
{

(σ′; λ̇
′
) ∈ K (ε̇p) : g (σ′) > 0

}
;

which means that σ′ lays on the Λ(ε̇p) line somewhere in between M0 and M , fig. 1,
(the extreme M0 being not allowed).

It is worth noting that for g ≡ f inequality (9) transforms into Drucker’s inequality
of associative plasticity, whereas inequality (11) just disappears because the set K +(ε̇p)
turns out to be empty (i.e. M0 ≡ M in fig. 1).

For subsequent use, it is convenient to assemble inequalities (9) and (11) into a
single one. To this purpose, the Macauley operator is introduced, i.e. 〈x〉 = (x + |x |)=2
for any scalar x , together with the step function H (x) defined as

(13) H (x) :=

{
1 for x > 0 ;

0 for x ≤ 0 :

With this notation, inequalities (9) and (11) can be given the following unified format:

(14) (σ− σ′) : ε̇p −
[
λ̇g (σ) − λ̇

′〈g (σ′)〉
]
≥ 0 ’ (σ′; λ̇

′
) ∈ KC

where

(15) KC :=
{

(σ′; λ̇
′
) : f (σ′) ≤ 0; λ̇

′ ≥ 0; [ε̇p − λ̇
′
q(σ′)]H (g (σ′)) = 0

}
:

The set in which σ′ is allowed to vary in eq. (14) is constituted by the union of
the convex set Cg enclosed by the reference equipotential surface, and the segment
M0M ⊂ Λ(ε̇p), fig. 1. It can be easily verified that inequality (14) identifies: either
with (9) for σ′ ∈ Cg , in which case 〈g (σ′)〉 = H (g (σ′)) = 0, the first constraint of (15)
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is satisfied due to property (2b), whereas λ̇ g (σ) > 0; or even with (11) for σ′ �∈ Cg , in
which case 〈g (σ′)〉 = g (σ′) and H (g (σ′)) = 1.

4. Maximum reduced dissipation principle

Inequality (14), remembering (4) and (5), can be given the form

(16) Drd = σ : ε̇p − λ̇g (σ) ≥ σ′ : ε̇p − λ̇
′〈g (σ′)〉; ’(σ′; λ̇

′
) ∈ KC

where Drd = Drd (ε̇p) is the reduced dissipation corresponding to ε̇p. Since KC in-
cludes the pair σ; λ̇ pertaing to Drd of (16), it follows that inequality (16) expresses a
maximum principle for Drd (ε̇p), namely (dropping the primes for simplicity):

(17) Drd (ε̇p) = max
(σ;λ̇)

ψ(σ; λ̇) ≡ σ : ε̇p − λ̇〈g (σ)〉 s:t: (σ; λ̇) ∈ KC

where «s.t.» stands for «subject to». Either (16) and (17) will be referred to as the
maximum reduced dissipation principle (or theorem) in the following.

Since λ̇ = |ε̇p|=|q(σ)| by the third constraint of eq. (15) assumed to be effective,
the function ψ = ψ(σ; λ̇) of eq. (17) can be written in terms of σ as:

(18) ψ = ψ̂(σ) ≡ σ : ε̇p − |ε̇p|〈g (σ)〉
|q(σ)| (ε̇p fixed)

which, as long as g (σ) ≤ 0, is linear. For g (σ) > 0, the derivative of ψ̂ reads:

(19)
@ψ̂
@σ

=
|ε̇p|g (σ)

|q(σ)|3
G : q(σ)

where G is the (positive definite) Hessian matrix of g , i.e. G := @2g=(@σ ⊗ @σ). On
differentiating the identity λ̇q(σ) = ε̇p, with ε̇p �= 0 fixed, one has

(20) dσ = −dλ̇

λ̇
G−1 : q; |dσ| = |dλ̇|

λ̇
(q : G−1 : G−1 : q)1=2

such that the direction cosines of the tangent to Λ(ε̇p) are given by:

(21a)
dσ
|dσ| =

1
Q

G−1 : q

where the condition |d λ̇| = −d λ̇ has been accounted for and moreover

(21b) Q := (q : G−1 : G−1 : q)1=2:

It follows that the tangential derivative of ψ̂ along the curve Λ(ε̇p) is:

(22)
@ψ̂
@σ

:
dσ
|dσ| =

|ε̇p|g (σ)
Q |q| > 0 ’ σ : g (σ) > 0:

Therefore, the function ψ̂ turns out to be monotonically increasing all along the line
Λ(ε̇p) from the value ψ̂ = 0 at the origin σ = 0, and takes its constrained maximum
value at point M , the intersection of Λ(ε̇p) with the yield surface f (σ) = 0, fig. 1.
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It is of interest to derive the Kuhn-Tucker conditions of problem (17). To this aim,
one can apply the Lagrange multiplier method by introducing the augmented function:

(23) L = −σ : ε̇p + λ̇〈g (σ)〉 + λ̇
c
f (σ) + σ∗ :

[
ε̇p − λ̇q(σ)

]
H (g (σ))

where λ̇
c ≥ 0 and σ∗ are the relevant scalar and stress-like Lagrange multipliers. Fol-

lowing known procedures of mathematical programming [3, 13], the necessary Kuhn-
Tucker conditions of problem (17) read:

(24a) ε̇pc := λ̇
c
@f =@σ =

[
1 − H (g (σ))

]
ε̇p + λ̇G : σ∗H (g (σ))

(24b) f (σ) ≤ 0; λ̇
c ≥ 0; λ̇

c
f (σ) = 0

(24c)
[
ε̇p − λ̇q(σ)

]
H (g (σ)) = 0

(24d ) f ∗(σ∗) := q(σ) : σ∗ − 〈g (σ)〉 ≤ 0; λ̇ ≥ 0; λ̇f ∗ = 0:

Here, ε̇pc denotes some fictitious plastic strain rate tensor (with λ̇
c

being the related
plastic coefficient), which obeys the normality rule with respect to the yield surface
f = 0 ( for this reason it is referred to as the conventional plastic strain rate in the
following). Also, f ∗(σ∗) = 0 denotes some fictitious yield surface of the σ∗ stress
space (superposed to the σ space), that is a plane orthogonal to q(σ) and located at a
distance d ∗ = 〈g (σ)〉=|q(σ)| from the origin σ∗ = 0. As long as g (σ) > 0, eq. (24c)
provides the assigned plastic strain rate ε̇p = λ̇q(σ) as normal to the yield plane f ∗ = 0,
i.e. ε̇p = λ̇@f ∗=@σ∗, λ̇ being the relevant plastic coefficient; also, the condition λ̇f ∗ = 0
gives σ∗ : ε̇p = λ̇g (σ) = D∗, which explains the physical meaning of σ∗ as the stress
producing, through the actual plastic strain rate ε̇p, the auxiliary dissipation D∗ (for
this reason, σ∗ is referred as the auxiliary stress in the following).

A better understanding of eqs. (24a-d ) can be achieved by distinguishing two cases,
namely:

a) Associative plasticity, i.e. g ≡ f , in which case 〈g (σ)〉 ≡ 0; H (g (σ)) ≡ 0. Thus,
eq. (17) transforms into

(25) Drd (ε̇p) = max
(σ)

σ : ε̇p s:t: f (σ) ≤ 0;

(the sign constraint λ̇ ≥ 0 becoming meaningless), whereas the Kuhn-Tucker conditions
(24a; b) take on the form:

(26a) ε̇pc := λ̇
c
@f =@σ = ε̇p

(26b) f (σ) ≤ 0; λ̇
c ≥ 0; λ̇

c
f (σ) = 0:

Also, the Kuhn-Tucker condition (24c) drops and (24d ) becomes σ∗ : ε̇p = D∗ = 0;
that is, the auxiliary dissipation vanishes and the auxiliary stress becomes indeterminate,
but normal to ε̇p. In other words, for g ≡ f , problem (17) identifies with the max-
imum dissipation theorem of associative plasticity, the conventional plastic strain rate
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ε̇pc identifies with the actual one, ε̇p, and the reduced dissipation coincides with the
actual dissipation, Drd = D.

b) Nonassociative plasticity, i.e. g �≡ f . Since the solution to problem (17) encopasses
a stress point M on the yield surface, f (σ) = 0, eqs. (24a-d ) hold with g (σ) > 0,
(except when the surface g (σ) = 0 is tangential to f (σ) = 0 and for a particular ε̇p

such that M turns out to be a contact point). In order to simplify the discussion, let
the plastic potential g (σ) be chosen such as g (σ) > 0 ’ σ �= 0 (what can always be
done through a suitable additive constant). With this choice, problem (17) transforms
into

(27) Drd (ε̇p) = max
(σ;λ̇)

[
σ : ε̇p − λ̇g (σ)

]
s:t: (σ; λ̇) ∈ K (ε̇p)

and the Kuhn-Tucker conditions (24a-d ) read:

(28a) ε̇pc := λ̇
c
p(σ);

(
p(σ) := @f =@σ

)

(28b) f (σ) ≤ 0; λ̇
c ≥ 0; λ̇

c
f (σ) = 0

(29a) ε̇p = λ̇@f ∗=@σ∗ = λ̇q(σ)

(29b) f ∗ := q(σ) : σ∗ − g (σ) ≤ 0; λ̇ ≥ 0; λ̇f ∗ = 0

(30) ε̇pc = λ̇@g ∗=@σ∗ = λ̇G : σ∗; g ∗ := (σ∗ : G : σ∗)=2:

Equations (28)-(30) describe two distinct sets of associative flow laws operating in
two superposed stress spaces, respectively. More precisely:
(i ) In the actual stress space, σ, eqs. (28a; b) express the conventional plastic strain

rate tensor, ε̇pc , (with the pertinent plastic coefficient λ̇
c
), as normal to the actual

yield surface, f (σ) = 0;
(ii ) In the superposed auxiliary stress space, σ∗, eqs. (29a; b) express the actual plastic

strain rate tensor, ε̇p, (with its actual plastic coefficient λ̇), as normal to the
auxiliary yield surface (hyperplane), f ∗(σ∗) = 0;

(iii ) Equation (30) establishes a liaison between the two stress spaces with the require-
ment that ε̇pc is normal to the Hessian ellipsoidal surface g ∗ = const passing
through σ∗, and thus ε̇pc and σ∗ are conjugate of each other with respect to this
ellipsoidal surface.

In other words, eqs. (28)-(30) describe the constitutive behaviour of a sort of (fic-
titious) composite material with two plastic constituents (or phases), these constituents
being associative and sharing complementary aspects of the real material; that is, the
stress-guided constituent, which is governed by the actual stress state but deforms in a
fictitious way, and the strain-guided constituent, which deforms as the actual material
but is governed by the (fictitious) auxiliary stress state.

The essential features of eqs. (28)-(30) are geometrically interpreted in fig. 2, where
a set as (σ; λ̇; σ∗; λ̇

c
) is assumed to be the/a solution to eqs. (28)-(30). The stress
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Fig. 2. – Non-associative material behaviour described as a fictitious composite material with two associative
plastic constituents in the superposed two-dimensional stress and strain spaces.

vector σ, drown from the origin O, touches the yield surface at point M , from where
departs the gradient q(σ) of the equipotential surface g (σ) = const passing through M .
According to eqs. (29a; b), the actual plastic strain rate, ε̇p (which obeys a nonassociated
normality rule in the σ-space), on the contrary obeys an associated normality rule in the
σ∗-space, the relevant yield function being the hyperplane f ∗ = q(σ) : σ∗ − g (σ) = 0,
which is normal to the gradient q(σ) and is located at a distance d ∗ = g (σ)=|q(σ)| from
the origin. The auxiliary stress, σ∗, corresponding to ε̇p �= 0, touches the hyperplane
f ∗ = 0 at point N (fig. 2), from where ε̇p departs parallel to q(σ). The conventional
plastic strain, ε̇pc , departing from M normal to f (σ) = 0, is parallel to the normal to
the Hessian ellipsoidal surface g ∗ = const passing through point N . (Note that, if g is
a quadratic function, the Hessian matrix is constant and thus g ∗(σ∗) ≡ g (σ∗), i.e. the
Hessian ellipsoidal surfaces identify with the equipotential surfaces g (σ) = const, but
they are embedded in the σ∗-space).

Equations (28)-(30) imply that the nonassociative constitutive equations (1a; b) are
satisfied, as in fact the following can be remarked.

α) If ε̇p �= 0, it is λ̇ > 0 by (29a) and the second equation in (29b). Since the
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stress σ∗ cannot vanish by (29b), (for σ∗ = 0 it would be λ̇g (σ) = 0, hence g (σ) = 0,
which is impossible), it follows from (30) that ε̇pc �= 0, hence λ̇

c
> 0; f (σ) = 0 by

(28b). Equation f (σ) = 0 and the equation system (29a) are then sufficient to uniquely
determine σ = σ(ε̇p) and λ̇ = λ̇(ε̇p). Next, solving (30) for σ∗ gives

(31) σ∗ = (λ̇
c
=λ̇)G−1 : p(σ)

and substituting the latter in the first (29b), which holds as an equality, yields:

(32) λ̇
c
= λ̇g (σ)=

(
q(σ) : G−1(σ) : p(σ)

)
:

β) If ε̇p = 0, it is λ̇ = 0 by (29a), hence ε̇pc = 0 by (30) and λ̇
c
= 0; f (σ) ≤ 0 by

(28a; b).
Since, therefore, the coeffients λ̇ and λ̇

c
are both either positive, in which case

f (σ) = 0, or vanishing, in which case f (σ) ≤ 0, it can be concluded that the Kuhn-
Tucker conditions of eqs. (28)-(30) imply that eqs. (1a; b) are satisfied; that is, the
complementarity conditions (28b) hold true also if λ̇

c
is replaced by λ̇. Thus, the

fictitious composite associative material described by eqs. (28)-(30) is fully equivalent to
the actual nonassociative material described by eqs. (1).

The above reasoning on the equivalence of eqs. (28)-(30) to eqs. (1) shows that
eqs. (28)-(30) admit, for fixed ε̇p �= 0, a unique solution and that therefore they are
also sufficient conditions to the (nonconvex) problem (17). This result may perhaps be
given a more rigorous justification within the framework of mathematical programming
for generalized convex functions [13], but this point is not discussed here for brevity.

5. Some properties of the reduced dissipation

In this Section, nonassociative plasticity is considered, i.e. g �≡ f . The reduced
dissipation of eq. (4) has been shown to be a homogeneous function of ε̇p to degree
one, like D and D∗. It will be shown by an example (in next Section) that Drd ; D; D∗

are, in general, nonconvex. These three dissipation functions are differentiable for any
ε̇p �= 0, that is

(33) @D=@ε̇p = σ + s; @D∗=@ε̇p = σ∗ + s;

and thus

(34) @Drd =@ε̇p = σ− σ∗;

where s is normal to ε̇p and is thus nondissipative.
In order to prove the above, let D = σ(ε̇p) : ε̇p and D∗ = σ∗(ε̇p) : ε̇p be differenti-

ated with respect to ε̇p. One has:

@D=@ε̇p = σ + Z : ε̇p; Z :=
(
@σ=@ε̇p)T

(35a)

@D∗=@ε̇p = σ∗ + Z∗ : ε̇p; Z∗ :=
(
@σ∗=@ε̇p)T

:(35b)

Because f (σ) = 0 and f ∗(σ∗) = 0 as ε̇p changes, differentiating these two identities
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with respect to ε̇p one obtains the equalities:

(36a) Z : p = 0

(36b) (Z − Z∗) : q(σ) = Z : G : σ∗

which hold for any ε̇p �= 0. But, by eqns. (28a) and (30), it is G : σ∗ = (λ̇
c
=λ̇)p and

thus, by (36a), the r.h. side of (36b) vanishes, hence

(37) (Z − Z∗) : q(σ) = 0

for any ε̇p = λ̇q(σ) �= 0. Equation (37) is equivalent to Z : q(σ)λ̇ = Z∗ : q(σ)λ̇, and
thus one can write

(38) s := Z : ε̇p = Z∗ : ε̇p:

This, through eqs. (35a; b), proves eq. (33), whereas eq. (34) is a straightforward
consequence. Then, multiplying eq. (35a) by ε̇p gives

(39) (@D=@ε̇p) : ε̇p = σ : ε̇p + ε̇p : Z : ε̇p;

that is, D being homogeneous to degree one, it is

(40) ε̇p : Z : ε̇p = s : ε̇p = 0

for any ε̇p �= 0, hence s is normal to ε̇p, fig. 2.

6. Example

A two-dimensional stress state is considered for a simple example. Let one take
f ≡ σ2

1 + σ2
2 − σ1σ2 − σ2

y ; g ≡ σ2
1 + σ2

2. The yield surface is an ellipse, the equipo-
tential surfaces are circles and circles are also the related Hessian equipotential surfaces
(G = 2I2). Using eqs. (28)-(30) and posing

(41) δ := (ε̇p2
1 + ε̇

p2
2 + ε̇

p
1ε̇

p
2)1=2;

one obtains:

σ1 = σy ε̇
p
1=δ; σ2 = σy ε̇

p
2=δ;(42)

σ∗
1 = σy(2ε̇

p
1 − ε̇

p
2)(ε̇p2

1 + ε̇
p2
2 )=4δ3(43a)

σ∗
2 = σy(2ε̇

p
2 − ε̇

p
1)(ε̇p2

1 + ε̇
p2
2 )=4δ3(43b)

(44) D = σy(ε̇
p2
1 + ε̇

p2
2 )=δ; Drd = D∗ = D=2:

With the positions:

(45) ε̇
p
1 = r cosα; ε̇

p
2 = r sinα
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Fig. 3. – Plot representing the contour line D(ε̇p
1; ε̇

p
2)=σy = 1 for a material having f = σ2

1 + σ2
2 − σ1σ2 +

−σ2
y ≤ 0 as yield function and g = σ2

1 + σ2
2 as plastic potential function.

one obtains the contours D=σy = c = const as the curves

(46)
ε̇

p
1 = c cosα

√
1 − (1=2) sin 2α

ε̇
p
2 = c sinα

√
1 − (1=2) sin 2α

(0 ≤ α ≤ 2π)

Figure 3 is the plot of the contour D=σy = c = 1.
The nondissipative stresses s1 and s2 and matrix Z of Section 5 read:

(47) s1 = σy ε̇
p
2(ε̇p2

2 − ε̇
p2
1 )=2δ3; s2 = σy ε̇

p
1(ε̇p2

1 − ε̇
p2
2 )=2δ3

(48) Z =
σy

2δ3

[
ε̇

p
2(2ε̇p

2 − ε̇
p
1) −ε̇p

2(2ε̇p
1 − ε̇

p
2)

−ε̇p
1(2ε̇p

2 − ε̇
p
1) ε̇

p
1(2ε̇p

1 − ε̇
p
2)

]
:

Equations (33), (34), (38) and (39) can be easily verified to be met.

7. Conclusions

The proposed maximum reduced dissipation principle can be regarded as a variational
statement of the constitutive flow laws for nonassociative plasticity, in the sense that
the related Kuhn-Tucker conditions are equivalent to these constitutive equations. It
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constitutes a generalization of the classical maximum dissipation principle of associative
plasticity, which is recovered as soon as the relevant plastic potential identifies with the
yield function.

The aforementioned Kuhn-Tucker conditions, which constitute a set of alternative
constitutive equations for the nonassociative material, describe the material behaviour as
that of a (fictitious) composite material with two plastic constituents, each constituent
being associative within suitably enlarged stress and strain spaces. One constituent is
governed by the actual stresses and experiences the (fictitious) conventional plastic strain
rate vector, which is normal to the actual yield surface; the other constituent is governed
by the (fictitious) auxiliary stresses and experiences the actual plastic strain rate vector,
which is normal to the auxiliary yield (plane) surface, whereas a conjugancy rule places
a liaison between the two stress spaces.

The description of the fictitious composite material model makes use of a number
of new concepts and definitions that seem indeed to be too many. They however
arise in a quite natural way and perhaps represent an inevitable cost to transform the
nonassociative model into an equivalent composite model of associative nature.

The proposed principle holds under the essential hypothesis that the plastic potential
function g be strictly convex. Such restriction seems not to place excessive limitations to
the validity of the proposed principle, which can thus be regarded as a general statement
for the nonassociative material behaviour. The equivalent associative-type constitutive
equations, derived through this principle, need to be checked as for their effectiveness,
particularly in relation to the following points.

a) Study of the conditions for uniqueness and stability of the material states in
comparison to the related nonassociative contitutive equations. The passage to enlarged
stress and strain spaces may likely carry a reacher phenomenology as for nonuniqueness
and instabilities in the material behaviour.

b) In analogy to the classical maximum dissipation principle, which can be assumed
as a starting point to derive the known theorems of limit plastic and shakedown analyses
[6], the proposed principle is expected to provide new means to address the above
analysis problems for materials not obeying the associated normality rule. Developements
of this kind are under study at the present stage.

Extensions of the proposed principle to more general material models can be achieved
without excessive difficulties, but this point is left open to future research work.
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