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Geometria. — Straightening cell decompositions of cusped hyperbolic 3-manifolds. Nota

di Marma Pescmv, presentata (*) dal Socio E. Vesentini.

AsstracT. — Let M be an oriented cusped hyperbolic 3-manifold and let 7 be a topological ideal
triangulation of M. We give a characterization for 7 to be isotopic to an ideal geodesic triangulation;
moreover we give a characterization for 7 to flatten into a partially flat triangulation. Finally we prove
that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic
decomposition, up to isometry.

Key worps: Hyperbolic 3-manifolds; Flat triangulations; Ideal cell decompositions.

Ruiassunto. — Raddrizzamento di decomposizione di 3-varieta iperboliche con cuspidi. In questo arti-
colo studiamo le condizioni necessarie ¢ sufficienti affinché una triangolazione topologica di una 3-varieta
orientata iperbolica con cuspidi possa essere raddrizzata in modo da fornire una triangolazione geode-
tica ideale con tetraedri eventualmente piatti. Inoltre proviamo che raddrizzando decomposizioni topo-
logiche ideali combinatoriamente equivalenti si ottiene la stessa cellularizzazione geodetica a meno di iso-
metria.

0. INTRODUCTION

Let M be an oriented cusped hyperbolic 3-manifold, i.e. an oriented, non-compact,
hyperbolic, complete 3-manifold of finite volume. It is well known that M is isometric
to H’ /T for a suitable group T' of orientation preserving isometries of H”. One of the
unsolved problems in hyperbolic geometry is the existence of straight ideal triangulations
of such a manifold. D. B. A. Epstein and R. C. Penner have proved the existence of
straight ideal cell decompositions [2]; if we retriangulate such a decomposition, we do
not necessarily obtain an ideal straight triangulation, but only a geodesic decomposition
into tetrahedra of non-negative volume; this means that some tetrahedra may be flat.
On the other hand, we know from standard spine theory that there exist topological
ideal triangulations of A [1]. In this work we study equivalent conditions for such a
triangulation to be isotopic to a straight ideal one. Moreover, we observe that under
weaker hypotheses some 3-simplices may flatten when straightened, so that the resulting
triangulation is made up of tetrahedra of possibly null volume.

The starting point of our arguments is the following resule: let A C R’ be the
abstract tetrahedron and let A™ be A with vertices v, v, , v, , v, removed. Let f be an
immersion of A" into M such that f(A") is a tetrahedron of a fixed topological ideal
triangulation 7 of A finally, let fN' : A" = H be a lifting of /. Then it is proved that

[ extends to a continuous function from A to H? such that { f (”i)}i—o s is made

up of points of IH.

(*) Nella seduta del 9 gennaio 1998.
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If we repeat this process for every lifting of f and for every tetrahedron in M, we
obtain a topological ideal T-invariant triangulation 7 of H’. We prove that it is possible
to straighten the triangulation 7 of M if and only if for each tetrahedron f (A*) of 7
one of the following occurs:

1. no hyperbolic plane contains the vertices of f (A) and the orientation on f (A7)
induced by H® coincides with the one induced by R’ through the map f';
2. the vertices of f (A) are distinct and contained in one hyperbolic plane.

If for all the tetrahedra 1) occurs, we obtain an ideal geodesic triangulation; otherwise
we obtain a partially flat ideal geodesic triangulation of M.

Finally we show that if R and R’ are two combinatorially equivalent geodesic ideal
decompositions of M with polyhedra of non-negative volume, then R and R’ are
isometric. As a consequence of this theorem, we have that straightening equivalent
ideal topological triangulations gives isometric ideal geodesic triangulation.

1. STRAIGHTENING OF TETRAHEDRA

Throughout all this paper, M will indicate an oriented cusped hyperbolic 3-manifold,
and T' < Isom™ (H’) will be the group of orientation preserving isometries of H’ such
that M is isometric to H’/T.

We give now the definition of ropological ideal decomposition of M in a constructive
way: let A, ... , A be a finite number of abstract polyhedra; if o, , o, are two distinct
faces of a polyhedron A; or of two different polyhedra A, A, let f , be either the
empty set or a simplicial isomorphism between o, and o, such that, if £ # 0, then
Jooyop # 0 and f_ ) :]f;ll,az); let ~ be the relation on | |”_| A, given by: x ~ y if
there exist o, , 0, such that x € 0,,y € 0, ’ﬁfﬁ»dz) # () and ﬁ01:02)(x) = y; let Q be
the topological space defined as

(La)/~
i=1

let us suppose that the link of every vertex in Q is homeomorphic to a torus; then we
define the topological space Q as Q with vertices removed. Now, if we suppose that
and Q are homeomorphic, we have automatically defined a topological decomposition
without vertices on M, that is a zopological ideal decomposition of M.

DerinrtioN. Let P and P’ be two decompositions of M with the same abstract polybedra
Ao LA and et f L f 0 AT — M be the associated maps. We say that P and P are

isotopic if there exists a homeomorphism
D Mx[0,1] = Mx|[0,1]
of the form
Ox, ) = (6,0, 1)
such that ¢, = id and f = ¢, o f.
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Derinirion. Let P and P’ be two decompositions of M with the same abstract polybedra
Ao A andletf;, f; : N7 — M be the associated maps. We say that P flattens into P’

if there exists a homeomorphism
OP:Mx[0,1) - Mx[0,1)

of the form
D(x, 1) = (¢,(x), 7)

such that ¢, = id and such that ® extends continuously from M x [0, 1] to M x [0, 1] so that
ﬁ/ =¢,0f;

In particular, the case we are interested in is the following: let 7P be any topological
ideal triangulation and P’ a geodesic ideal one. Let us suppose either that P and P’
are isotopic or that P flattens into P’; let ® be the function defining the isotopy or
the flattening. Then in both cases @ A*x[0,1] Parametrizes a deformation of f(A™)
into the geodesic ideal tetrahedron with the same vertices. If f(A”) is straightenable
non-flat, then we obtain a geodesic tetrahedron of positive volume; while if f(A”) is
straightenable flat, we obtain a geodesic flat tetrahedron.

Now consider two decompositions 7, and 7, of M with the same set of abstract
polyhedra A ,... ;A and let f,f : AT — M be the corresponding maps. Let
us suppose 7, and 7, isotopic and let ® : M x [0,1] — M x [0, 1] be the relative
homeomorphism. Let us define a map F,: AT x [0, 1] = M foreach i =1,... ,m
by Fi(x,?) = ¢, (f;(x)) We fix 7 and omit all subscripts. Let us fix a lifting F .
A" x [0,1] — H? of the function F.

Treorem 1 [3]. For every vertex v of A there exists a point w on OH? such that the following
holds: if B is a horoball centred at w there exists a neighbourhood U of v in A such that

F((UNA")x[0,1]) C B

moreover w is the fixed point at infinity of some parabolic element of I'. In particular setting
Fv,)=w one gets a continuous extension of fﬁom A x [0, 1] to H>.

To prove Theorem 1 we will use the following trivial result:

Lemma 2. Let M be topologically decomposed. Let A be an abstract polyhedron which
appears in the glueing, let N* be the version of I\ without vertices and let | : A™ — M be the
natural induced map. Then [ is a proper function.

Proor oF THeorem 1. Let € > 0 be small enough that the e-ends of M are disjoint.
Denote by M, the e-thick part of M, and recall that by finiteness of the volume this
thick part is compact. The function F is proper, being composition of the following
proper functions:

A" x[0,1]3 (x, ) = (f(x), ) e M x [0, 1],

D:Mx[0,1]13(x,2)— (¢,x),2) € Mx[0,1],
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M x[0,1]> (x,t) = x € M;

) Fﬁl(]\/l[e’oo)) is compact in A" x [0, 1], and its complement is an open subset of
A x [0, 1]. Therefore Ffl(]W[
neighbourhood of v. We can assume that U is connected, so that F (U x [0, 1]) is
contained in one of the e-ends. Then

F((UnA")x[0,1])

) contains some set of the form U x [0, 1] with U

€,00)

is contained in some horoball B of H’. Call w the center of B. Let us show that
for every horoball centred at w the first assertion of the proposition holds: let B" be
another horoball centred at w, we can suppose B’ C B; then it is sufficient to choose a
neighbourhood U’ C U of v in A such that U’ x[0, 1] is contained in the complement
of Fﬁl(ME’oo)) in A x [0, 1], and such that

F((U'nA%) %[0, 1])

is contained in B’. Hence the first assertion is established.
By construction w is the fixed point at infinity of some parabolic element of T', and
the last assertion of the proposition follows at once. O

CoroLLary 3. Let T be an ideal topological triangulation of M, let f : A* — M be an
immersion of A" into M such that f(N”) is an element of T, and let f A S H bea lifting
of f. Then f extends to a continuous function f Sfrom A to H such that f (v) € OH?, where
v,, i=0,...,3, are the vertices of .

Proor. It is enough to apply Theorem 1 in the case 7, =7, =7, ¢ =id. O
Let us note that if we take every lifting of /" for every tetrahedron in A, we obtain
a topological ideal T-invariant triangulation of H®.

Coroviary 4. If two ideal polyhedra decompositions of M are isotopic or one flattens into
the other one, then they coincide.

Proor. If the two decompositions are isotopic, it follows from Theorem 1 that their
liftings have the same vertices at infinity; as an ideal geodesic polyhedron in HP is
uniquely determined by its points at infinity, the conclusion follows at once. Suppose
now that one decomposition flattens into the other one; consider the continuous func-
tion F | (3 x(0,1)} We know from the previous theorem that it is constant, so extending it
by continuity on {#} x [0, 1] we have a constant function and the two decompositions
have the same vertices at infinity and the conclusion follows. O

Now let 7 be an ideal topological triangulation of M, let f : A" — M be an
immersion of A" into M such that f(A) is a cell of 7, and let f : A — H’ be the
extension of a lifting of /. Under these hypotheses we give the following definitions:

DerNiTion. A tetrahedron f (A*) in HP is straightenable flat if'all the vertices of f (A)
are contained in a hyperbolic plane, but distinct.

DeriNrTION. A tetrabedron f (A" in HP is straightenable non-flat i
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Fig. 1. — A 3-simplex which cannot be straightened.

1. no hyperbolic plane contains the vertices of f (A), and in particular such points are distinct;
2. the orientation on f (N*) induced by TP coincides with the one induced by R® through the

map [

It is easily checked that the two definitions are independent of the choice of the
lifting, since all the relevant properties are preserved by orientation preserving isometries
3
of H”.

_ Dernvrrion. A tetrabedron f(A") in T is straightenable flat (respectively non-flat) #f
[ (A7) is straightenable flat (respectively non-flat).

Prorosrrion 5 [3]. A topological triangulation T is isotopic to a geodesic ideal decomposition
with tetrabedra of positive volume if and only if every 3-simplex of T is straightenable non-flat.

Proor. The arrow (=) is obvious. Let us prove the necessity of the assertion: let

A, ..., A be the abstract polyhedra involved in the decomposition 7; let f;: AT — M

be the associated maps and let f A= HP be the extension of a lifting of f; for every
7; the hypotheses imply that there exists a homeomorphism

U H % [0, 1] — H x [0, 1]
of the form
U(x, 1) = (¢,(x), 7)
such that:

1. 9,|ygs = id for every ¢,
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2. 1, =id,
3. for every i, (¥, o f )(A) parametrizes a deformation of a topological ideal simplex
with fixed vertices w, o, ... , w, 5,

4. for every 7, (1, o f )(A) is the geodesic ideal tetrahedron of positive volume with
vertices w; o, ... , W, 5.

So the conclusion follows. O

Prorosrion 6. A topological decomposition into n ideal tetrabedra of M flattens into a
geodesic ideal decomposition with tetrahedra of non-negative volume if and only if every 3-
simplex is straightenable, flat or not.

Proor. The arrow (=) is obvious. The proof runs similarly to the previous one,
with the only difference that in this case ¥ is a homeomorphism from H’ x [0, 1) in
H’ x [0, 1) and it is continuous from H’ x [0, 1] in H’ x [0, 1], and, for every i,
(@, o f )(A) is the geodesic ideal tetrahedron with non-negative volume with vertices
inw g ,...,w;. |

2. COMBINATORIALLY EQUIVALENT DECOMPOSITIONS
In this section we prove the following:

Tueorem 7. Let R and R’ be two combinatorially equivalent geodesic ideal decompositions
of M with polyhedra of non-negative volume. Then R and R’ are isometric.

Let us recall that, if (X, d) and (X', d') are two metric spaces then ¢ : X — X’
is a pseudo-isometry if it induces an isomorphism between the respective fundamental
groups and there exist two constants # and / such that /eild(x,y)—l <d'(g(x), g(y) <
kd(x, y) for every x, y in X.

To prove Theorem 7 we use the following result:

Lemma 8. Let o : M — M be a homeomorphism mapping the decomposition R onto R'.
Then there exists a map isotopic to © which maps R onto R’ and such that its lifting to H is a
pseudo-isometry.

Proor. We can suppose ¢ € C' without loss of generality. Let € be small enough
for every component of M, , to be a topological end of M; then it is easy to show
that there exists d(e) such that every component F of Mg s is 2 topological end of

M, and p(F) is contained in a component of ]W( since ¢ is a homeomorphism, it

0,e’
is obvious that for every end F, ¢(F) is contained in a different component of My o
Let F be a component of M ;. and let F' = p(F). We know from Margulis’

Lemma (see [1]) that F is isometric to 7" x [0, co), where T is the torus, with a metric
of the form

dsé}t) = e_thai + di,

where dai represents the Euclidean metric on 7.
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Let us fix geometric coordinates 7" x [0, 00) on F; then we can redefine ¢ on F such
that it is still a C'-homeomorphism respecting the combinatorics of the correspondence
between R and R’, and such that, if we choose suitable geometric coordinates 7" x
[0, 00) on F’', we have

90|1:(x’ ) = (g(x) > t) s

where g: T — 7" is a C'-homeomorphism.

Repeating the process for every component of M, s, we obtain a C'-homeomor-
phism from M to M (which we will indicate with the symbol ¢ again) isotopic to the
starting function by construction.

We show now that the lifting of the new map ¢ is a pseudo-isometry: let ¢, be
<p|M[5(E)‘OO), let K be a compact set in H? such that 7(K) C M coincides with ]\4[5(6),00),

and let @ybe @|,; sir¥ce ¢, is a C'-map and M5 o) and (M, ) are compact,
we have that there exists a constant 4 such that

1) |Doy| . |Dey| <k,
SO
@ |D@|, |Dg,'| < k.

Let ¢, be the restriction of ¢ to F. Since g € C', there exists a constant ¢ such
that

|Dg

. |Dg < e,
so we have that
@ 122l ) =(Dge, )| = max {|Dga] ", 1} < & 41

V (x,2) € Tx[0,00),

Lil<d 41
\Y (y,s)e T x [0, 00).

@ [Per 029 =1(Dg ') 1) = max {| g0

We can suppose & + 1<k, so that from (1)-(4) we get

6) D3|, D' <k,

and

(©) d(@(x), P(x,)) < k d(x , x,) V ox,x €1,
@) d(¢71(9’1) > ¢71(J’2)) <k d()’l ’)’2) VY onne H.

Applying (6) first and then (7), we get

d(ﬁ(xl) ’ Co(xz)) = kild(ﬁil °P(x) g o @(xz)) = kild(xl ’ xz)

(8)
v xl,x26H3,

and the lemma is proved. O
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Proor oF THeorEM 7. Let o : M — M be a homeomorphism such that p(R) =R’
By the previous lemma we can suppose, without loss of generality, that, if @ is a lifting
of ¢, then @ is a pseudo-isometry. Under this hypothesis, as Mostow has showed in
the proof of the rigidity theorem [4], we have the following facts:

1. @|yys is a Mobius transformation of S%;

2. there exists a homotopy F : H® — H’ between @ and the Maobius transformation
f : H® - H extending @lys> and F induces a homotopy between ¢ and an
isometry f: M — M; ie.:

3P:Mx[0,1] - M continuous such that
D(x,0) =p(x), Px,1)=f(x) VxelM;

moreover, using the upper hyperboloid model of the hyperbolic space, F is given
by the following formula:

Pl g — (1= 080 +f ()
11 = )P(x) + 2f (]|

We prove now that / maps R onto R’. For this purpose we need to show that F is
a proper function: we notice that, given x € H’, the set F(x, [0, 1]) is the geodesic arc
joining the points @(x) and f(x) in H°. Being ffl o =id on OH® and being f an
isometry, we can suppose f = id. Therefore it is sufficient to show that, if | o = id,
there is a compact set K’ in H® such that, for every x € K, we have @(x), x and the
geodesic arc joining them contained in K. But this comes easily from the uniform
continuity of @ on H®.

Now let A be an abstract polyhedron and 7 : A* — M an immersion such that
i(A) is a cell in the decomposition R of M. Let us consider a lifting it AY S HP
of i and define the map

L:A"x[0,1] >

as L == Fo(i xid).

To prove the thesis we show that, for every vertex » of A, L extends to {#} x [0, 1]
and is continuous on this set; in fact this would imply that the isometry f = ®( - , 1)
maps the cell i(A*) of R on the correspondent cell of R'. The assertion follows
immediately from the proposition we are going to prove. O

ProrostTion 9. For every vertex v of A there exists a point w in OH? such that the Jfollowing
holds: if B is a horoball centred at w there exists a neighbourhood U of v in A such that

L((UNAY)x[0,1]) C B

moreover, w is the fixed point at infinity of some parabolic element of T'. In particular, setting
L(v, t) = w and repeating the same process for every vertex of I\, one gets a continuous extension

0fL~ﬁ0mA>< [0, 1] to H.
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We omit the proof of Proposition 9 since it is analogous to the proof of Theorem 1.

Corortary 10. Let P and P’ be two topological ideal triangulations of M. Let us suppose
P and P’ combinatorially equivalent.

o [f P is isotopic to a geodesic ideal triangulation P of M with tetrahedra of posmve volume,
then also P’ is isotopic to a geodesic ideal triangulation P and P’ is isometric to P;

o if' P flattens into a geodesic ideal decomposition with tetrahedra of non- negdtzve volume,
then P’ flattens into a geodesic ideal decomposition P’ and P’ is isometric to P.
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