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Geometria. — Straightening cell decompositions of cusped hyperbolic 3-manifolds. Nota
di Marina Pescini, presentata (*) dal Socio E. Vesentini.

Abstract. — Let M be an oriented cusped hyperbolic 3-manifold and let τ be a topological ideal
triangulation of M . We give a characterization for τ to be isotopic to an ideal geodesic triangulation;
moreover we give a characterization for τ to flatten into a partially flat triangulation. Finally we prove
that straightening combinatorially equivalent topological ideal cell decompositions gives the same geodesic
decomposition, up to isometry.

Key words: Hyperbolic 3-manifolds; Flat triangulations; Ideal cell decompositions.

Riassunto. — Raddrizzamento di decomposizione di 3-varietà iperboliche con cuspidi. In questo arti-
colo studiamo le condizioni necessarie e sufficienti affinché una triangolazione topologica di una 3-varietà
orientata iperbolica con cuspidi possa essere raddrizzata in modo da fornire una triangolazione geode-
tica ideale con tetraedri eventualmente piatti. Inoltre proviamo che raddrizzando decomposizioni topo-
logiche ideali combinatoriamente equivalenti si ottiene la stessa cellularizzazione geodetica a meno di iso-
metria.

0. Introduction

Let M be an oriented cusped hyperbolic 3-manifold, i.e. an oriented, non-compact,
hyperbolic, complete 3-manifold of finite volume. It is well known that M is isometric
to H3=Γ for a suitable group Γ of orientation preserving isometries of H3. One of the
unsolved problems in hyperbolic geometry is the existence of straight ideal triangulations
of such a manifold. D. B. A. Epstein and R. C. Penner have proved the existence of
straight ideal cell decompositions [2]; if we retriangulate such a decomposition, we do
not necessarily obtain an ideal straight triangulation, but only a geodesic decomposition
into tetrahedra of non-negative volume; this means that some tetrahedra may be flat.
On the other hand, we know from standard spine theory that there exist topological
ideal triangulations of M [1]. In this work we study equivalent conditions for such a
triangulation to be isotopic to a straight ideal one. Moreover, we observe that under
weaker hypotheses some 3-simplices may flatten when straightened, so that the resulting
triangulation is made up of tetrahedra of possibly null volume.

The starting point of our arguments is the following result: let ∆ ⊂ R3 be the
abstract tetrahedron and let ∆∗ be ∆ with vertices v0; v1; v2; v3 removed. Let f be an
immersion of ∆∗ into M such that f (∆∗) is a tetrahedron of a fixed topological ideal
triangulation τ of M ; finally, let f̃ : ∆∗ → H3 be a lifting of f . Then it is proved that

f̃ extends to a continuous function from ∆ to H3 such that
{

f̃ (vi)
}

i=0;::: ;3
is made

up of points of @H3.

(*) Nella seduta del 9 gennaio 1998.
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If we repeat this process for every lifting of f and for every tetrahedron in M , we
obtain a topological ideal Γ-invariant triangulation τ̃ of H3. We prove that it is possible
to straighten the triangulation τ of M if and only if for each tetrahedron f̃ (∆∗) of τ̃

one of the following occurs:

1. no hyperbolic plane contains the vertices of f̃ (∆) and the orientation on f̃ (∆∗)
induced by H3 coincides with the one induced by R3 through the map f̃ ;

2. the vertices of f̃ (∆) are distinct and contained in one hyperbolic plane.

If for all the tetrahedra 1) occurs, we obtain an ideal geodesic triangulation; otherwise
we obtain a partially flat ideal geodesic triangulation of M .

Finally we show that if R and R′ are two combinatorially equivalent geodesic ideal
decompositions of M with polyhedra of non-negative volume, then R and R′ are
isometric. As a consequence of this theorem, we have that straightening equivalent
ideal topological triangulations gives isometric ideal geodesic triangulation.

1. Straightening of tetrahedra

Throughout all this paper, M will indicate an oriented cusped hyperbolic 3-manifold,
and Γ < Isom+(H3) will be the group of orientation preserving isometries of H3 such
that M is isometric to H3=Γ.

We give now the definition of topological ideal decomposition of M in a constructive
way: let ∆1; : : : ; ∆n be a finite number of abstract polyhedra; if σ1;σ2 are two distinct
faces of a polyhedron ∆i or of two different polyhedra ∆i; ∆j , let f(σ1;σ2) be either the
empty set or a simplicial isomorphism between σ1 and σ2 such that, if f(σ1;σ2) �= ∅, then

f(σ2;σ1) �= ∅ and f(σ2;σ1) = f −1
(σ1;σ2); let ∼ be the relation on

⊔n
i=1 ∆i given by: x ∼ y if

there exist σ1;σ2 such that x ∈ σ1; y ∈ σ2; f(σ1;σ2) �= ∅ and f(σ1;σ2)(x) = y; let Q̃ be
the topological space defined as

( n⊔

i=1

∆i

)/
∼;

let us suppose that the link of every vertex in Q̃ is homeomorphic to a torus; then we
define the topological space Q as Q̃ with vertices removed. Now, if we suppose that M
and Q are homeomorphic, we have automatically defined a topological decomposition
without vertices on M , that is a topological ideal decomposition of M .

Definition. Let P and P ′ be two decompositions of M with the same abstract polyhedra
∆1; : : : ; ∆n and let fi; f ′

i : ∆∗
i → M be the associated maps. We say that P and P ′ are

isotopic if there exists a homeomorphism

Φ : M × [0; 1] → M × [0; 1]

of the form

Φ(x; t ) =
(
φt (x); t

)

such that φ0 = id and f ′
i = φ1 ◦ fi .
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Definition. Let P and P ′ be two decompositions of M with the same abstract polyhedra
∆1; : : : ; ∆n and let fi; f ′

i : ∆∗
i → M be the associated maps. We say that P flattens into P ′

if there exists a homeomorphism

Φ : M × [0; 1) → M × [0; 1)

of the form

Φ(x; t ) =
(
φt (x); t

)

such that φ0 = id and such that Φ extends continuously from M × [0; 1] to M × [0; 1] so that
f ′
i = φ1 ◦ fi .

In particular, the case we are interested in is the following: let P be any topological
ideal triangulation and P ′ a geodesic ideal one. Let us suppose either that P and P ′

are isotopic or that P flattens into P ′; let Φ be the function defining the isotopy or
the flattening. Then in both cases Φ|∆∗×[0;1] parametrizes a deformation of f (∆∗)
into the geodesic ideal tetrahedron with the same vertices. If f (∆∗) is straightenable
non-flat, then we obtain a geodesic tetrahedron of positive volume; while if f (∆∗) is
straightenable flat, we obtain a geodesic flat tetrahedron.

Now consider two decompositions τ1 and τ2 of M with the same set of abstract
polyhedra ∆1; : : : ; ∆n and let fi; f ′

i : ∆∗
i → M be the corresponding maps. Let

us suppose τ1 and τ2 isotopic and let Φ : M × [0; 1] → M × [0; 1] be the relative
homeomorphism. Let us define a map Fi : ∆∗

i × [0; 1] → M for each i = 1; : : : ; m
by Fi(x; t ) = φt

(
fi(x)

)
. We fix i and omit all subscripts. Let us fix a lifting F̃ :

∆∗ × [0; 1] → H3 of the function F .

Theorem 1 [3]. For every vertex v of ∆ there exists a point w on @H3 such that the following
holds: if B is a horoball centred at w there exists a neighbourhood U of v in ∆ such that

F̃
(
(U ∩ ∆∗) × [0; 1]

)
⊂ B;

moreover w is the fixed point at infinity of some parabolic element of Γ. In particular setting

F̃ (v; t ) = w one gets a continuous extension of F̃ from ∆ × [0; 1] to H3.

To prove Theorem 1 we will use the following trivial result:

Lemma 2. Let M be topologically decomposed. Let ∆ be an abstract polyhedron which
appears in the glueing, let ∆∗ be the version of ∆ without vertices and let f : ∆∗ → M be the
natural induced map. Then f is a proper function.

Proof of Theorem 1. Let ε > 0 be small enough that the ε-ends of M are disjoint.
Denote by M[ε;∞) the ε-thick part of M , and recall that by finiteness of the volume this
thick part is compact. The function F is proper, being composition of the following
proper functions:

∆∗ × [0; 1] 	 (x; t ) 
→
(
f (x); t

)
∈ M × [0; 1];

Φ : M × [0; 1] 	 (x; t ) 
→
(
ϕt (x); t

)
∈ M × [0; 1];
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M × [0; 1] 	 (x; t ) 
→ x ∈ M ;

so F −1(M[ε;∞)) is compact in ∆∗ × [0; 1], and its complement is an open subset of
∆ × [0; 1]. Therefore F −1(M[ε;∞)) contains some set of the form U × [0; 1] with U

neighbourhood of v. We can assume that U is connected, so that F
(
U × [0; 1]

)
is

contained in one of the ε-ends. Then

F̃
(
(U ∩ ∆∗) × [0; 1]

)

is contained in some horoball B of H3. Call w the center of B. Let us show that
for every horoball centred at w the first assertion of the proposition holds: let B ′ be
another horoball centred at w, we can suppose B ′ ⊂ B; then it is sufficient to choose a
neighbourhood U ′ ⊂ U of v in ∆ such that U ′×[0; 1] is contained in the complement
of F −1(M[ε;∞)) in ∆ × [0; 1], and such that

F̃
(
(U ′ ∩ ∆∗) × [0; 1]

)

is contained in B ′. Hence the first assertion is established.
By construction w is the fixed point at infinity of some parabolic element of Γ, and

the last assertion of the proposition follows at once.

Corollary 3. Let τ be an ideal topological triangulation of M , let f : ∆∗ → M be an
immersion of ∆∗ into M such that f (∆∗) is an element of τ , and let f̃ : ∆∗ → H3 be a lifting
of f . Then f̃ extends to a continuous function f̃ from ∆ to H3 such that f̃ (vi) ∈ @H3, where
vi; i = 0; : : : ; 3, are the vertices of ∆.

Proof. It is enough to apply Theorem 1 in the case τ1 = τ2 = τ , Φ = id.
Let us note that if we take every lifting of f for every tetrahedron in M , we obtain

a topological ideal Γ-invariant triangulation of H3.

Corollary 4. If two ideal polyhedra decompositions of M are isotopic or one flattens into
the other one, then they coincide.

Proof. If the two decompositions are isotopic, it follows from Theorem 1 that their
liftings have the same vertices at infinity; as an ideal geodesic polyhedron in H3 is
uniquely determined by its points at infinity, the conclusion follows at once. Suppose
now that one decomposition flattens into the other one; consider the continuous func-
tion F̃ |{v}×[0;1); we know from the previous theorem that it is constant, so extending it
by continuity on {v}× [0; 1] we have a constant function and the two decompositions
have the same vertices at infinity and the conclusion follows.

Now let τ be an ideal topological triangulation of M , let f : ∆∗ → M be an

immersion of ∆∗ into M such that f (∆∗) is a cell of τ , and let f̃ : ∆ → H3 be the
extension of a lifting of f . Under these hypotheses we give the following definitions:

Definition. A tetrahedron f̃ (∆∗) in H3 is straightenable flat if all the vertices of f̃ (∆)
are contained in a hyperbolic plane, but distinct.

Definition. A tetrahedron f̃ (∆∗) in H3 is straightenable non-flat if
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Fig. 1. – A 3-simplex which cannot be straightened.

1. no hyperbolic plane contains the vertices of f̃ (∆), and in particular such points are distinct;
2. the orientation on f̃ (∆∗) induced by H3 coincides with the one induced by R3 through the

map f̃ .

It is easily checked that the two definitions are independent of the choice of the
lifting, since all the relevant properties are preserved by orientation preserving isometries
of H3.

Definition. A tetrahedron f (∆∗) in τ is straightenable flat (respectively non-flat) if
f̃ (∆∗) is straightenable flat (respectively non-flat).

Proposition 5 [3]. A topological triangulation τ is isotopic to a geodesic ideal decomposition
with tetrahedra of positive volume if and only if every 3-simplex of τ is straightenable non-flat.

Proof. The arrow (⇒) is obvious. Let us prove the necessity of the assertion: let
∆1; : : : ; ∆n be the abstract polyhedra involved in the decomposition τ ; let fi : ∆∗

i → M

be the associated maps and let f̃ i : ∆ → H3 be the extension of a lifting of fi for every
i; the hypotheses imply that there exists a homeomorphism

Ψ : H3 × [0; 1] → H3 × [0; 1]

of the form

Ψ(x; t ) =
(
ψt (x); t

)

such that:

1. ψt |@H3 = id for every t ,
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2. ψ0 = id,
3. for every i, (ψt ◦ f̃ i)(∆) parametrizes a deformation of a topological ideal simplex

with fixed vertices wi;0; : : : ; wi;3,

4. for every i, (ψ1 ◦ f̃ i)(∆) is the geodesic ideal tetrahedron of positive volume with
vertices wi;0; : : : ; wi;3.

So the conclusion follows.

Proposition 6. A topological decomposition into n ideal tetrahedra of M flattens into a
geodesic ideal decomposition with tetrahedra of non-negative volume if and only if every 3-
simplex is straightenable, flat or not.

Proof. The arrow (⇒) is obvious. The proof runs similarly to the previous one,
with the only difference that in this case Ψ is a homeomorphism from H3 × [0; 1) in
H3 × [0; 1) and it is continuous from H3 × [0; 1] in H3 × [0; 1], and, for every i,
(ψ1 ◦ f̃ i)(∆) is the geodesic ideal tetrahedron with non-negative volume with vertices
in wi;0; : : : ; wi;3.

2. Combinatorially equivalent decompositions

In this section we prove the following:

Theorem 7. Let R and R′ be two combinatorially equivalent geodesic ideal decompositions
of M with polyhedra of non-negative volume. Then R and R′ are isometric.

Let us recall that, if (X; d ) and (X ′; d ′) are two metric spaces then g : X → X ′

is a pseudo-isometry if it induces an isomorphism between the respective fundamental
groups and there exist two constants k and l such that k−1d (x; y)− l ≤ d ′(g (x); g (y)) ≤
kd (x; y) for every x; y in X .

To prove Theorem 7 we use the following result:

Lemma 8. Let ϕ : M → M be a homeomorphism mapping the decomposition R onto R′.
Then there exists a map isotopic to ϕ which maps R onto R′ and such that its lifting to H3 is a
pseudo-isometry.

Proof. We can suppose ϕ ∈ C 1 without loss of generality. Let ε be small enough
for every component of M(0;ε] to be a topological end of M ; then it is easy to show
that there exists δ(ε) such that every component F of M(0;δ(ε)] is a topological end of
M , and ϕ(F ) is contained in a component of M(0;ε]; since ϕ is a homeomorphism, it
is obvious that for every end F , ϕ(F ) is contained in a different component of M(0;ε].

Let F be a component of M(0;δ(ε)], and let F ′ = ϕ(F ). We know from Margulis’
Lemma (see [1]) that F is isometric to T × [0;∞), where T is the torus, with a metric
of the form

ds2
(x;t ) = e−2t dσ2

x + dt 2;

where dσ2
x represents the Euclidean metric on T .
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Let us fix geometric coordinates T ×[0;∞) on F ; then we can redefine ϕ on F such
that it is still a C 1-homeomorphism respecting the combinatorics of the correspondence
between R and R′, and such that, if we choose suitable geometric coordinates T ′ ×
[0;∞) on F ′, we have

ϕ|F (x; t ) =
(
g (x); t

)
;

where g : T → T ′ is a C 1-homeomorphism.
Repeating the process for every component of M(0;δ(ε)], we obtain a C 1-homeomor-

phism from M to M (which we will indicate with the symbol ϕ again) isotopic to the
starting function by construction.

We show now that the lifting of the new map ϕ is a pseudo-isometry: let ϕ0 be
ϕ|M[δ(ε);∞)

, let K be a compact set in H3 such that π(K ) ⊂ M coincides with M[δ(ε);∞),

and let ϕ0˜ be ϕ̃|K ; since ϕ0 is a C 1-map and M[δ(ε);∞) and ϕ(M[δ(ε);∞)) are compact,
we have that there exists a constant k such that

(1)
∣∣Dϕ0

∣∣;
∣∣Dϕ−1

0

∣∣ ≤ k;

so

(2)
∣∣Dϕ0˜|; |Dϕ0˜−1

∣∣ ≤ k:

Let ϕF be the restriction of ϕ to F . Since g ∈ C 1, there exists a constant c such
that ∣∣Dg

∣∣;
∣∣Dg−1

∣∣ ≤ c;

so we have that

(3)

∣∣DϕF

(
x; t

)∣∣2 =
∣∣(Dg (x); 1

)∣∣2 = max
{∣∣Dg (x)

∣∣2; 1
}
≤ c2 + 1

’
(
x; t

)
∈ T × [0;∞);

(4)

∣∣Dϕ−1
F

(
y; s

)∣∣2 =
∣∣(Dg−1(y); 1

)∣∣2 = max
{∣∣Dg (y)

∣∣2; 1
}
≤ c2 + 1

’
(
y; s

)
∈ T ′ × [0;∞):

We can suppose c2 + 1 < k, so that from (1)-(4) we get

(5) |Dϕ̃|; |Dϕ̃−1| ≤ k;

and

(6) d
(
ϕ̃(x1); ϕ̃(x2)

)
≤ k d

(
x1; x2

)
’ x1; x2 ∈ H3;

(7) d
(
ϕ̃−1(y1); ϕ̃−1(y2)

)
≤ k d

(
y1; y2

)
’ y1; y2 ∈ H3:

Applying (6) first and then (7), we get

(8)
d
(
ϕ̃(x1); ϕ̃(x2)

)
≥ k−1d

(
ϕ̃−1 ◦ ϕ̃(x1); ϕ̃−1 ◦ ϕ̃(x2)

)
= k−1d

(
x1; x2

)

’ x1; x2 ∈ H3;

and the lemma is proved.
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Proof of Theorem 7. Let ϕ : M → M be a homeomorphism such that ϕ(R) = R′.
By the previous lemma we can suppose, without loss of generality, that, if ϕ̃ is a lifting
of ϕ, then ϕ̃ is a pseudo-isometry. Under this hypothesis, as Mostow has showed in
the proof of the rigidity theorem [4], we have the following facts:

1. ϕ̃|@H3 is a Möbius transformation of S2;
2. there exists a homotopy F : H3 → H3 between ϕ̃ and the Möbius transformation

f̃ : H3 → H3 extending ϕ̃|@H3 , and F induces a homotopy between ϕ and an
isometry f : M → M ; i.e.:

∃ Φ : M × [0; 1] → M continuous such that

Φ(x; 0) = ϕ(x); Φ(x; 1) = f (x) ’ x ∈ M ;

moreover, using the upper hyperboloid model of the hyperbolic space, F is given
by the following formula:

F (x; t ) =
(1 − t )ϕ̃(x) + t f̃ (x)

|||(1 − t )ϕ̃(x) + t f̃ (x)|||
:

We prove now that f maps R onto R′. For this purpose we need to show that F is
a proper function: we notice that, given x ∈ H3, the set F

(
x; [0; 1]

)
is the geodesic arc

joining the points ϕ̃(x) and f̃ (x) in H3. Being f̃ −1 ◦ ϕ̃ = id on @H3 and being f̃ an
isometry, we can suppose f̃ = id. Therefore it is sufficient to show that, if ϕ̃|@H3 = id,
there is a compact set K ′ in H3 such that, for every x ∈ K , we have ϕ̃(x), x and the
geodesic arc joining them contained in K ′. But this comes easily from the uniform

continuity of ϕ̃ on H3.
Now let ∆ be an abstract polyhedron and i : ∆∗ → M an immersion such that

i(∆∗) is a cell in the decomposition R of M . Let us consider a lifting ĩ : ∆∗ → H3

of i and define the map

L̃ : ∆∗ × [0; 1] → H3

as L̃ := F ◦ (ĩ × id).
To prove the thesis we show that, for every vertex v of ∆, L̃ extends to {v}× [0; 1]

and is continuous on this set; in fact this would imply that the isometry f ≡ Φ( · ; 1)
maps the cell i(∆∗) of R on the correspondent cell of R′. The assertion follows
immediately from the proposition we are going to prove.

Proposition 9. For every vertex v of ∆ there exists a point w in @H3 such that the following
holds: if B is a horoball centred at w there exists a neighbourhood U of v in ∆ such that

L̃
(
(U ∩ ∆∗) × [0; 1]

)
⊂ B;

moreover, w is the fixed point at infinity of some parabolic element of Γ. In particular, setting
L̃ (v; t ) = w and repeating the same process for every vertex of ∆, one gets a continuous extension

of L̃ from ∆ × [0; 1] to H3.
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We omit the proof of Proposition 9 since it is analogous to the proof of Theorem 1.

Corollary 10. Let P and P ′ be two topological ideal triangulations of M . Let us suppose
P and P ′ combinatorially equivalent.

• If P is isotopic to a geodesic ideal triangulation P̃ of M with tetrahedra of positive volume,
then also P ′ is isotopic to a geodesic ideal triangulation P ′̃, and P ′̃ is isometric to P̃ ;

• if P flattens into a geodesic ideal decomposition with tetrahedra of non-negative volume,
then P ′ flattens into a geodesic ideal decomposition P ′̃, and P ′̃ is isometric to P̃ .
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