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Equaz ion i a derivate parziali. — Instantaneous shrinking of the support for solutions 

to certain parabolic equations and systems. N o t a (*) di A N A T O L I I S. K A L A S H N I K O V , presenta

ta dal Socio O . A. Oleinik. 

ABSTRACT. — The paper contains conditions ensuring instantaneous shrinking of the support for sol
utions to semilinear parabolic equations with compactly supported coefficients of nonlinear terms and reac
tion-diffusion systems. 

KEY WORDS: Semilinear parabolic equations; Reaction-diffusion systems; Compactly supported 
solutions. 

RIASSUNTO. — Contrazione istantanea del supporto per soluzioni di alcune equazioni e sistemi parabolici. 
Questo lavoro contiene condizioni che garantiscono contrazione istantanea del supporto per soluzioni delle 
equazioni semi-lineari a coefficienti con supporti compatti e sistemi della classe «reazione-diffusione». 

1. INTRODUCTION 

Let QT be the strip {(x,t)\x eR, 0 < t ^ T} . For an arbitrary nonnegative func
tion w(x,t) continuous in QT we set 

(1.1) ÇU;w) = sup{|x| \w(xyt) > 0 } . 

DEFINITION 1. Suppose that tu e C(QT), w{x, t) ^ 0, £(0; w) — + o° . We say^that 
instantaneous shrinking of the support (briefly, ISS) occurs for w if £(/; w) < + oo for 
all t in some half-interval (0, r ] , where 0 < r ^ T. 

In [1] the ISS phenomenon has been described for some classes of spatially homo
geneous and autonomous nonlinear second order parabolic equations. The results ob
tained in [1] yield the following proposition. 

THEOREM 1 (see [1]). Assume that a function u e CX
2;/ (QT) fi C(QT) fi L °° (QT) 

satisfies the equation 

(1.2) Dtu-D*u + \u\psignu = 0, {x,t)eQT (p > 0) 

and the initial condition 

(1.3) u(x, 0) = / ( * ) , xeR, 

where 

(1.4) / e C ( J 0 n L ° ° ( R ) , / ( * ) > 0 , V X E R , Urn /(*) = 0 . 

Then ISS occurs for u if and only if 

(1.5) p < 1. 

This theorem has been subjected to various generalizations and modifications. 

(*) Pervenuta all'Accademia il 25 giugno 1997. 
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Thus, in [2] the Cauchy problem has been considered for the equation 

(1.6) Ou =Dtu -D?u +g(x, t)\u\psignu = 0 , (x,t)eQT (p > 0) 

and its multidimensional counterpart under hypotheses (1.4), (1.5) and the following 
additional assumptions: 

(1.7) J(x)^M(l + \x\)-a (M>0, a>0) ; 

(1.8) geC(QT)nL™(QT); 

(1.9) g(x9t)&go(l + \x\)-P (g0>0,/3^0). 

It has been proved that ISS occurs for the solution of problem (1.6), (1.3) if and only if 
a( 1 *-p) > /?. In [3] similar results have been obtained for some equations with nonlin
ear leading terms. 

In [2] and [4] the ISS phenomenon has been studied for certain semilinear parabol
ic systems. Specifically, the following proposition has been proved. 

THEOREM 2 (see [4]). Assume that a vector-valued function {ux ,u2)e. (Cx
2;/ (QT) H 

PI C(QT) fi L °° (QT)Y satisfies the system 

(1.10) VtUi - Dx
2u; + \ux J*

1 |«2 \
p* sign*,- = 0 , (x,t)e QT (i = 1, 2) 

with the initial conditions 

(1.11) u1(x,0)=fi(x)y xeR ( / = 1 , 2 ) , 

and the following relations hold: 

(1.12) j g - e C W r i L - d J ) ; /»,•( 1 + |x| )~a^ftM ^ Mf-( 1 + |x| )~aS 

Mj&mjX),. a , ->0 (/ = 1, 2) ; 

(1.13) p * £ 0 ( / , / = l , 2 ) ; 

(1.14) 0 < j p 1 1 < l ; 

(1.15) a j l - / > n ) > a2p12 ; 

(1.16) P22 ^ 1 • 
Then ISS occurs for ux and does not occur for u2. 

Moreover, in [4] the best possible upper estimate has been obtained for £(/; u^). It 
has been also shown that ISS for ux may be absent if (1.15) is violated. 

Prof. V. V. Zhikov has posed the following question: is it possible that ISS occurs 
for both ux and u2 in the case where the inequalities 

(1.17) 0<p22<l 

holds instead of (1.16)? We study this question in Section 3 of the present 
paper. 

As a preliminary step, in Section 2 we consider problem (1.6), (1.3), where the 
function g(x, t) possesses the ISS property. We obtain conditions ensuring the occur
rence of ISS for the solution of the said problem and derive two-sided estimates for this 
solution. We apply the results of Section 2 to the study of problem (1.10), (1.11). Be
sides that, those results are of interest in themselves. 
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In order to simplify the exposition, we do not state our theorems in their maximal 
generality. Specifically, they can be easily extended to the case of arbitrarily many inde
pendent variables. Moreover, instead of (1.10), a similar system can be considered con
taining more than two equations. 

The IS S phenomenon has been studied by a number of authors. Along with the 
above cited works [2-4], where one can find many further references, we call the read
er's attention to the recent paper [5] containing a vast bibliographical list. As a supple
ment to it, we also refer to the articles [6-8]. 

2. PARABOLIC EQUATIONS WITH IS S FOR COEFFICIENTS 

Consider equation (1.6) with initial data (1.3). Hypotheses (1.4), (1.5), (1.7), and 
(1.8) being preserved, we replace (1.9) by the following less restrictive assump
tion: 

(2.D g{x,t)&g0(i + \x\)-m-ht(i + \x\rr+ 

(go > 0, h > 0, ju > 0, a ^ 0,/? ^ 0) . 

Here we have used the notation y+ = max{3;, 0}. 
We set QT}^rj = (£> V) x (0> TL where - 00 ^ § < rj ^ + 00, t > 0. In the sequel, 

we use the following Comparison Principle, which can be obtained, e.g., as a special 
case of Theorem 4 in [3]. 

THEOREM 3. Assume that the functions u{xy t), v(x,t), V(x, t) belong to 

L œ (Qt> ê>, ) n C(QT, f>,) n d (Qt> ê>, ) n c j y (Qr> ê> ,\$), 

where S is a smooth arc, and satisfy the inequalities v ^ u ^ V in QT^V \QTf ^ v, 

Ou ^ Qu ^ aV in QTj |f v \S. Then v(x, t) ^ u(x, t) ^ V(x91) for all (x, t) e Q ^ ~ . 

COROLLARY. If/(x) ^ 0, then the solution u(x, t) of problem (1.6), (1.3) is nonnega
tive everywhere in QT. 

This statement follows from Theorem 3 if we set t = T, £ = — °°, fj = + °°, 
p(x, *) = 0. 

THEOREM 4. Let « e Qy/ tQr) fi C(QT) fi L00 (QT) be the solution of problem 
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.7), (1.8), (2.1) are satisfied and the 
inequality 

(2.2) a(l-p)> P + ju 

holds. Then IS S occurs for u. Moreover, we have 

(2.3) ZitiuXiht)-1'1, V / e ( 0 , r ] 

and 

(2.4) u(x,t) ^ 2 M ( 1 + \x\)~a, V ( x , / ) e Q r , 
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where 0 < r ^ T and 

(2.5) ju<À<a(l-p)- /3. 

PROOF. Consider the function 

(2.6) V(x,t) = 2M(1 + * ) - « [ ! - M l + x)A]^ 

in the half-strip QT % +00 (a similar function has been used for the proof of Theorem 6 
in [3]). Let us show that there exist parameters 

(2.7) ! > 0 , 

(2.8) œ>2, 

and r E (0, T] such that 

(2.9) u(x, t) ^ V(x, t), V(*, /) e QTf | f + . . 

Let G = Qtfl + 00. From (2.6)-(2.8) it follows that V G CX
2//(G) fl L00 (G). Set 

(2.10) Z(x,t) = l-ht(l+x)x, G+ = {(x,t)eG\Z(x,t)>0}. 

We obviously have 

(2.11) aV(x, t) = 0 , VU, /) e G\G+ . 

For (x, / )e 'G+ we get 

(2.12) aV(x,f) = (2MY(1 + x)~apg(x,t)Za)p - 2Mhù){\ + xf-aZ0)-1-

- 2 M ( 1 +x)-a-2Za)-2{a{a+ 1)Z2 + œX(2a - A + l)fo(l + *)AZ + 

+ û>(û>- l ) l 2 f e ( l + x ) A ] 2 } , V ( X , / ) E G + . 

Note that 

(2.13) fe(l+*)A<l, Z ( x , / ) ^ 1 , V ( x , / ) e G + . 

Set 

(2.14) c = a (a + 1) + <yA(2a - A + 1) + ĉ (a> - 1)A2. 

Using (2.1), (2.3), (2.10), (2.11), and (2.12), we obtain 

(2.15) aV(x,t)^2M(l+x)-*-tZW + (*[(2M)*-lgQ-q)(x,ty\, V(x, t) G G , 

where 

(2.16) ^ U , / ) = ^ ( l + x ) A + ^ ~ a ( 1 - ? ) Z c y ( 1 " ^ - 1 - ( 7 + 

+ c ( i + x ) ^ - a ( 1 - ^ ) " 2 z û > ( 1 - ^ ) - 2 - a . 

By virtue of (2.5), we have 

(2.17) p-a(\-p)-2<k + p-a(l-p)<Q. 

Choose 

(2.18) œ&(2 + o)/(l-p). 

It is evident that (2.18) implies (2.6). Taking into account (2.17), (2.18), (2.13), and 
(2.7), from (2.16) we get 

(2.19) cp{xyt) ^ (hco + c)(l + £)* + /*-«<!-*> < (2M)p-1g0 , 
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if 

(2.20) | ^ [ ( 2 M ) 1 - ^ o " 1 ( A û > + c ) ] 1 / [ a ( 1 - p ) - / , - A ] . 

Let us fix some a> and £ satisfying (2.18) and (2.20), respectively. Then (2.19) holds 
and from (2.15) we obtain 

(2.21) <3LV(x,t)>0, V ( * , / ) e G + . 

From (2.11), (2.21), and (1.6) it follows that 

(2.22) Ou(x, t) ^ aV(x, t), V(x, t) e G 

for any choice of r e (0, T]. 
Using (2.6), (1.3), and (1.7), we get 

(2.23) u(x, 0) < V(x, 0) , Vxe [0 , +oo) . 

Hence, minlVXx, 0) - «(#, 0)10 ^ ;c ^ §} > 0. Therefore, there exists' r1 e (0, T] 
such that 

(2.24) u(x,t) < V(x,t), V ( x , r t E Q t l i 0 ( j . 

By Theorem 3, inequalities (2.22)-(2.24) imply (2.9) if we take r = x^. 
Now, we combine (2.9) with (2.24) and thus arrive at the inequality 

(2.25) u(x,t)^V(x,t), V(* , / )eQ T l , 0 , 

Similarly, we prove that 

(2.26) u{x, t) ^ V(x, t), V(x, f ) E QT2> _ „, 0 

for some r2 G (0, T] . From (2.25), (2.26), and (2.6) it follows that relations (2.3) and 
(2.4) hold for r = min{r!, r 2 } . • 

THEOREM 5. Let u e C^'^ÌQT) ^ C(QT) H L°° (Q r) be the solution of problem 
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.8) are satisfied and the following in
equalities hold: 

(2.27) /(*) ^ /» (1 + \x\)~a (m>0,a>0); 

(2.28) 0 ^ ^ U , / ) ^ ^ ( l + | x | ) ^ (gi> 0,13^0). 

Then there exist r G (0, T] and H > 0 such that 

(2.29) ^ U , ^ ) ^ ( ^ / 4 ) ( l + | x | ) - a [ l - ^ ( l + | x | ) a ( 1 ^ ) ^ ] 1
+

/ ( 1 ^ ) , V ( x , / ) e Q r . 

PROOF. By virtue of (1.3) and (2.27), there exist rl G (0, T] such that 

(2.30) u(0,t)&m/2, V ^ G [ 0 , r j . 

Let r e ( 0 , r j . In the half-strip QT o, +oo we compare u(x,t) with the function 

(2.31) ^ ^ ( ^ K H x r t i - ^ i + ^ ^ - ^ f - ^ , 

where H > 0 is to be chosen later. 

From (1.3), (2.27), and (2.31) it follows that 

(2.32) v(x,0)<u(x,0), V X G [ 0 , +oo) . 
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Moreover, by virtue of (2.30), we have 

(2.33) v{Q,t)^m/4<u{Q,t), V*e[0, r j . 

Let us introduce the following notation: 

(2.34) z(x,t) = 1 -Ht(l +x)ail-P)-fi ; 

f£ = Qr ,o , + »; S={(x,t)eE\z(x,t) = 0}; 

[E+ = {(x,t)eE\z(x,t)>0}. 

It is clear that v e L °° (E) D C1 ( I ) fi C2 (E\S) and 

(2.36) <3i;(x,/) = 0, V(x,/) e £ \ ( 5 U E+ ) . 

For (x, ; ) e £ + we get 

(2.37) av(x,t) = (m/4)(l + x)-ap-)izp/{1-p)-

•{Hd-pr'l- 1 + {fi-a(l -p))(a(l +p)+P + l)t(l+x)-2] + 

+ (m/4y-l(l+xfg(x,t)-a(a + l)(l+xf-a{1-P)-2-

-H2p(l -Pr2(a(l -p) -p)2t2{\ +x)ail-i>)-P-2z-1}, V(x,/)eE+ . 

Let us estimate the right-hand side of (2.37) from above. Rejecting two last terms in 
the curly brackets' and taking into account (2.28), we obtain from (2.37): 

(2.38) Ov(x, t) ^ (m/4)( 1 + x)~ap ~ V / ( 1 ~p)• 

'{H(l-p)-1[-ì + r(l3-a(l-p))(a(l+p)+l3^l)]^g1(m/4f-ì}, 

V ( x , * ) e E + . 
Let r2 e (0, T] be so small that the quantity entering the square brackets on the 

right-hand side of (2.38) exceeds - 1 / 2 for T^T2. Then from (2.38) it follows 
that 

(2.39) Ov(x,t) ^ (m/4)(l + x)-ap-Pzp/{1-p)-

• { - [ 2 ( l - p ) ] - 1 H + ^ 1 ( ^ / 4 y - 1 } ^ 0 , V(x9t)eE+, 

if r ^ r2 and 

(2.40) H&2(l-p)g1(m/4)-1: 

We choose some H satisfying (2.40) and set r = min{rly r2}. Then relations 
(2.32), (2.33), (2.36), (2.38) hold, and the application of Theorem 3 yields the 
inequality 

(2.41) u(x,t)^v(x,t) 

for all (x,t)e. Qr 0j + 00. In the same way we prove that (2.41) is valid for all (x, t) e 
G Qr, -oo,o- Thus, we have arrived at (2.29). • 

COROLLARY. If the inequality 

(2.42) a(l-p)**P 

holds along with assumptions (1.4), (1.5), (1.8), (2.27), and (2.28), then ISS does not 
occur for u. 
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In fact, from (2.29) and (2.42) it follows that u(x, t) > 0 for x ER and 
0^t<l/H. 

3. PARABOLIC SYSTEMS 

Now, consider system (1.10) with initial data (1.11). 

THEOREM 6. Let (ul9u2) e (Qt\(QT) H C(QT) nL™(QT))2 be the solution of 
problem (1.10), (1.11). Assume that conditions (1.12)-(1.14) and (1.17) are satisfied. 
Then the following conclusions hold. 

A) If we have 

(3.1) a i ( l -pn) > « 2 d -p22+Pn)> 

then IS S occurs for ux. If in addition we have 

(3.2) axp2l ^ a 2 ( l -P22), 

then IS S does not occur for u2. 

B) If we have 

(3.3) a 2 ( l - P 2 2 ) > « i ( l - P 1 1 + P 2 1 ) , 

then IS S occurs for u2. If in addition we have 

(3.4) a2p12 ^a1(l-pn), 

then IS S does not occur for ux. 

PROOF. Set 

(3.5) gl (x, t) = \u2 (x, t) \p^ , g2 (x, t) = \ux (x, /) Y* . 

Then system (1.10) can be rewritten in the following manner: 

(3.6) GLiUi = DtUi - Dlui + &(x, /)|«,-|p" sign«x- = 0 , (x, t) e QT (/ = 1 , 2 ) . 

By the Corollary of Theorem 3, we get 

(3.7) « , - (x , f )£0, V ( X , / ) G Q T (/ = 1, 2) . 

Let us prove Statement A). Suppose that (3.1) holds. The application of Theorem 5 
with P = 0 to the second equation in (3.6) yields the inequality 

u2(x, t) ^ (m2/4)( 1 + |x| ra> [ 1 - Ht{ 1 + |x| )«2(i-P22)]i+/(i-/>22) ? V(x, f ) G Q t l , 

where t j G (0, T] , H > 0. Hence, 

(3.8) ^ i ( x , 0 ^ ( ^ 2 / 4 r M l + | x | ) - a ^ 1 2 [ l - a ( l + |x | ) a 2 ( 1 -^ 2 ) ]^ / ( i -p22) j 

V ( X , / ) G Q T I . 

Now, we apply Theorem 4 to the first equation in (3.6), setting/? =pn, a = al9 

P — <^2puy^ = a2(l - p22)} a = pn/(l - p22)> and taking into account (1.12), (1.14), 
(3.1), (3.7). It follows that IS S occurs for ux and the estimate 

(3.9) Ul(x,t) ^2M, ( l + | x | ) - t t l , V ( X , ; ) G Q , 2 

is valid with some r2 G (0, r j . 



2 7 0 A. S. KALASHNIKOV 

Next, suppose that (3.2) holds as well. By virtue of (3.5) and (3.9), we get 

& U , r t ^ ( 2 M 1 ^ i ( l + | x | ) - a ^ 1 , V(* ,*)eQ r 2 . 

Therefore, we can apply Theorem 5 to the second equation in (3.6) with p = p22, 
a = a2, and /? = axp2l. In this case inequality (3.2) has the form (2.42), and the corol
lary of Theorem 5 enables us to conclude that IS S does not occur for u2. 

This completes the proof of Statement ^4). The proof of Statement B) is quite 
similar. • 

DEFINITION 2. We say that total instantaneous shrinking of the supports (briefly, 
TISS) occurs in problem (1.10), (1.11) if IS S occurs for both components of the 
solution. 

COROLLARY. A necessary condition for TISS to occur in problem (1.10), (1.11) is 
that the following relations hold: 

/) either the inequality 

(3.10) « i ( l - P u ) ^ « 2 ( 1 - P 2 2 + P 1 2 ) , 

or the system of inequalities 

(3.11) al{\ - p n ) > a 2 ( l ~p22 +P12), «2(1-P22) >«ip2i ; 

//') either the inequality 

(3.12) a2(l-p22)^al(\-pn+p2l), 

or the system of inequalities 

(3.13) a2(l -p22) > ax{\ ~pn + p 2 i ) , « i ( l - p n ) > «2P12 • 

Theorem 6 does not supply us with any sufficient condition for TISS to occur, since 
the system of inequalities (3.1), (3.3) is incompatible for ax > 0 and a2 > 0. In fact, 
(3.1) and (3.3) imply the inequality axp21 + a2pu < 0, which is false for any pair of 
positive numbers (aly a2), by virtue of (1.13). Below, we state some sufficient condi
tions for TISS to occur, under certain additional assumptions about the exponents 

Pu-
First, we note that in the special case of the split system, i.e. in the case where pu = 

= p21 = Oyâll the necessary conditions (3.10)-(3.13) derived above are satisfied for arbit
rary a 1 > 0 and a2 > 0. On the other hand, in this case, for any positive ax and a2y 

TISS occurs in problem (1.10), (1.11), by virtue of Theorem 1 applied to each equation 
in (1.10). Thus, for the split system, conditions (3.10)-(3.13) are necessary and 
sufficient. 

Now, let us consider the class of system (1.10) specified by the equalities 
(3.14) p21=Pll, P12=P22-

THEOREM 7. Assume that conditions (1.12)-(1.14), (1.17), and (3.14) are satisfied. 
Then TISS occurs in problem (1.10), (1.11) if and only if the following relations 
hold: 

(3.15) P l l + P 2 2 < l 
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and 

(3.16) / i W = / 2 ( x ) , V x e R 

without any restrictions on the positive numbers .m\ = m2y M1=M2, and ax = 
= a2. 

PROOF. First, assume that relations (3.15) and (3.16) hold. Set 

(3.17) w(x, t) = Ui(x, t) - u2(x,t). 

Taking into account (1.10), (1.11), (3.7), (3.14), (3.16), and (3.17), we get 

(3.18) Dtw(x, t) - D*w(x, t) = Q, V(x, /) e QT , 

(3.19) w(x, 0) = 0, VxeR. 

Using the Maximum Principle for the heat equation, we obtain from (3.17)-
(3.19): 

(3.20) «i (*, ') '= «2 (*,')> V(x,t)eQT. 

We introduce the notation: 

(3.21) u(x,t)=Uj(x,t) (/ = 1, 2) , p =pn+p22 • 

Formulas (1.10)-(1.12), (3.14), (3.20), and (3.21) imply that the function u(x,t) satis
fies (1.2)-(1.4). By virtue of (3.15) inequality (1.5) is also valid. Therefore, Theorem 1 
is applicable to our case, and it follows that ISS occurs for u, i.e. TISS occurs in prob
lem (1.10), (1.11). 

Now, assume that TISS occurs in problem (1.10), (1.11). Then for any t = e > 0 
small enough there exists xE such that 

(3.22) w(xy e) = 0, Vx ^ x e . 

But it is well known that all solutions of the heat equation (3.18) are analytic with re
spect to x. Therefore, from (3.22) and (3.18) it follows that 

(3.23) w(x,e) = 0, VxeR. 

Since e > 0 is arbitrary and w(x,t) is continuous in QT, identity (3.23) imply 
(3.19). Thus, we have proved (3.16). Moreover, we have already observed that from 
(3.17)-(3.19) the validity of (3.20) follows. Preserving notation (3.21) and taking into 
account relations (1.10)-(1.12), (3.14), (3.20), we again establish that u(x,t) satisfies 
(1.2)-(1.4). By assumption, ISS occurs for u. Keeping this in mind and using Theorem 
1, we arrive at inequality (3.15). • 
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