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Equazioni a derivate parziali. — Instantancous shrinking of the support for solutions
to certain parabolic equations and systems. Nota (*) di ANnatoLn S. KarasHNIKOV, presenta-

ta dal Socio O. A. Oleinik.

AsstracT. — The paper contains conditions ensuring instantaneous shrinking of the support for sol-
utions to semilinear parabolic equations with compactly supported coefficients of nonlinear terms and reac-
tion-diffusion systems.

Key worps: Semilinear parabolic equations; Reaction-diffusion systems; Compactly supported
solutions.

Riassunto. — Contrazione istantanea del supporto per soluzioni di alcune equazioni e sistemi parabolici.
Questo lavoro contiene condizioni che garantiscono contrazione istantanea del supporto per soluzioni delle
equazioni semi-lineari a coefficienti con supporti compatti e sistemi della classe «reazione-diffusione».

1. InTRODUCTION

Let Qr be the strip {(x,#)|x € R, 0 <¢ < T}. For an arbitrary nonnegative func-
tion w(x, ¢) continuous in Qr we set

(1.1) &t; w) = sup { |x| |wix, £) > 0}.

Derinrrion 1. Suppose that w e C(Qr), w(x, ) = 0, £(0; w) = + ©. We say that
instantaneous shrinking of the support (briefly, ISS) occurs for w if {(¢; w) < + ® for
all # in some half-interval (0, 7], where 0 <7 < T.

In [1] the ISS phenomenon has been described for some classes of spatially homo-
geneous and autonomous nonlinear second order parabolic equations. The results ob-
tained in [1] yield the following proposition.

TreOREM 1 (see [1]). Assume that a function » € C2,' (Qr) N C(QO7) NL>(Qr)
satisfies the equation

(1.2) D,u —Dfu+ |ul?signu =0, (x,£)eQr (p>0)
and the initial condition

(1.3) u(x,0) =f(x), xeR,

where

(1.4) feCR)NL"(R), f(x)>0, VxeR, lim f(x)=0.

|x| — o
Then ISS occurs for # if and only if
(1.5) p<1.

This theorem has been subjected to various generalizations and modifications.

(*) Pervenuta all'Accademia il 25 giugno 1997.
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Thus, in [2] the Cauchy problem has been considered for the equation
(1.6) Qu = D,u — D}u + glx, t)|u|? signu =0, (x,£)eQr (p>0)

and its multidimensional counterpart under hypotheses (1.4), (1.5) and the following
additional assumptions:

(1.7) Ffx)SM(1+|x])™* (M>0,a>0);
(1.8) 2eC(Qr) NL*(Qr);
(1.9) gle, ) Zgo(1+ |x])™F (g>0,820).

It has been proved that ISS occurs for the solution of problem (1.6), (1.3) if and only if
a(1l = p) > B.In[3] similar results have been obtained for some equations with nonlin-
ear leading terms.

In [2] and [4] the ISS phenomenon has been studied for certain semilinear parabol-
ic systems. Specifically, the following proposition has been proved.

THEOREM 2 (see [4]). Assume that a vector-valued function (#y, 4,) € (2 QrN
N C(Qy) N L= (Qr))? satisfies the system

(1.10)  D,u; — D u; + |uy [P |uy P2 signu; =0,  (x,6)eQr (1=1,2)

with the initial conditions

(1.11) u;(x,0)=fkx), xeR (i=1,2),

and the following relations hold:

(1.12) £,eCR)NL*(R); mi(1+|x|) % <filx) SM(1+|x])"*,
M,zZm>0, ;>0 (=1,2);

(1.13) piZ0 (4,7=1,2);
(1.14) 0<p;<1;
(1.15) ai (1 =py) > aspn;
(1.16) =1,

Then ISS occurs for #; and does not occur for #,.

Moreover, in [4] the best possible upper estimate has been obtained for §(z; #;). It
has been also shown that ISS for #; may be absent if (1.15) is violated.

Prof. V. V. Zhikov has posed the following question: is it possible that ISS occurs
for both #, and %, in the case where the inequalities
(1.17) 0<pn<l1
holds instead of (1.16)? We study this question in Section 3 of the present
paper.

As a preliminary step, in Section 2 we consider problem (1.6), (1.3), where the
function g(x, #) possesses the ISS property. We obtain conditions ensuring the occut-
rence of ISS for the solution of the said problem and derive two-sided estimates for this
solution. We apply the results of Section 2 to the study of problem (1.10), (1.11). Be-
sides that, those results are of interest in themselves.
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In order to simplify the exposition, we do not state our theorems in their maximal
generality. Specifically, they can be easily extended to the case of arbitrarily many inde-
pendent variables. Moreover, instead of (1.10), a similar system can be considered con-
taining more than two equations.

The ISS phenomenon has been studied by a number of authors. Along with the
above cited works [2-4], where one can find many further references, we call the read-
er’s attention to the recent paper [5] containing a vast bibliographical list. As a supple-
ment to it, we also refer to the articles [6-8].

2. ParaBOLIC EQUATIONS wITH ISS FOR COEFFICIENTS

Consider equation (1.6) with initial data (1.3). Hypotheses (1.4), (1.5), (1.7), and
(1.8) being preserved, we replace (1.9) by the following less restrictive assump-
tion:

(2.1)  gle, ) = go(1+ |x]|) AL —he(1 + |x| 1%
(g0>0,b>0,u>0,0=0,820).
Here we have used the notation y, = max{y, 0}. '

We set Q, ¢, = (€, 7) X (0, 7], where — 0 S E <y < + o, 7> 0. In the sequel,
we use the following Comparison Principle, which can be obtained, e.g., as a special
case of Theorem 4 in [3].

TaeoreM 3. Assume that the functions #(x, ), v(x, ), V(x, ¢) belong to

L= (Qr, 5,7]) N C(Qr, g, n) N Cxl (Qr, g, 77) N sz,‘tl (Qt, E,n\s) ’
where § is a smooth arc, and satisfy the inequalities v <« <V in Q. ¢ ,\Qs ¢4,
Qv < Au<aVin Q, ¢, \S. Then v(x,?) Sulx, ) < V(x,¢) for all (x,7)eQ,, £y

CoRroLLARY. If f(ﬁ) = 0, then the solution #(x, #) of problem (1.6), (1.3) is nonnega-
tive everywhere in Qr.

This statement follows from Theorem 3 if we set t=T, = —, =+,
v(x,t) = 0.

Treorem 4. Let u € C2'(Qr) N C(Qr) N L” (Qr) be the solution of problem
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.7), (1.8), (2.1) are satisfied and the
inequality

(2.2) a(l=p)>B+u

holds. Then ISS occurs for #. Moreover, we have

(2.3) Et;u) < (bt)"V% ) Ve (0,1]
and

(2.4) u(x,t) < 2M(1+ |x|)™%, V(x,1)eQ,,
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where 0 < 7 < T and

(2.5) u<i<a(l—-p)-—§p.
Proor. Consider the function
(2.6) Vi, #) = 2M(1 +x)"%[1 — ht(1 + x)*1%

in the half-strip Q; ¢ 1. (a similar function has been used for the proof of Theorem 6
in[3]). Let us show that there exist parameters

(2.7) E>0,
(2.8) w>2,
and 7€ (0, T] such that
(2.9) ulx,t) S Vix, 1), Vx,0)eQe +a-
Let G = Q, ¢ +». From (2.6)-(2.8) it follows that Ve C2,'(G) "L~ (G). Set
(2.10) Z(x,t) =1—=ht(1 +x)*, G, ={(x,1)eG|Z(x,¢)>0}.
We obviously have
(2.11) aVix,t) =0, Vix,t)eG\G, .

For (x,2) € G, we get
(212)  @Vi(x,¢) = (2MP (1 +x) %g(x, t) Z* — 2Mbw(1 + x)* ~Z* "1 —
—2M(1+x)" %722 Hala+ 1) Z? + 0A(2a — A + 1)bt(1 + x)* Z +
+o(w—1)A%[ht(1 +x)*1?}, Vix,t)eG,.

Note that
(2.13) - (1 +xl <1, Zx,t)<1, Vixt)eG, .
Set
(2.14) c=ala+1)+wi(20—1+1)+ oo —1)1%.

Using (2.1), (2.3), (2.10), (2.11), and (2.12), we obtain
(215)  @Vlx,#) = 2M(1 +x)" 2 PZP T P[(2M)? ~ g — @lx, )], V(x,1)eG,
where
(2.16)  @(x,) =hw(1 + x)* tF-ed-p)Zol-p) =10 4
+c(1 +x)ﬂ~a(l—p)—22w(l~p)~2—a )

By virtue of (2.5), we have

(2.17) B—a(l—p)—2<Ai+pB—-all-p)<0.
Choose
(2.18) ow=z(2+0)/(1-p).

It is evident that (2.18) implies (2.6). Taking into account (2.17), (2.18), (2.13), and
(2.7), from (2.16) we get

(2.19) @(x,2) < (hw + c)(1 4+ EF A0 -0 < (2M)P~ gy,
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if
(2.20) E=[(2M)' ~Pgy ! (ho + ¢)]V/ 1 -9 =B =21

Let us fix some w and £ satisfying (2.18) and (2.20), respectively. Then (2.19) holds
and from (2.15) we obtain

(2.21) aVix,t) >0, V(ix,2)eG,.
From (2.11), (2.21), and (1.6) it follows that
(2.22) Au(x,t) < aV(ix,t), Vix,t)eG

for any choice of 7€ (0, T1.
Using (2.6), (1.3), and (1.7), we get

(2.23) u(x, 0) < V(x,0), Vxel0, +x).

Hence, min{V(x, 0) — u(x, 0)|0 <x < £} > 0. Therefore, there exists 7, € (0, T']
such that

(2.24) ulx, 1) <Vix,2), V(x,2)eQ; o¢-

By Theorem 3, inequalities (2.22)-(2.24) imply (2.9) if we take 7 = 7.
Now, we combine (2.9) with (2.24) and thus arrive at the inequality

(2.25) ulx,t) S Vix,t), Vx,2)€Qq 0 +w-
Similatly, we prove that
(2.26) ulx,t) S Vix,2), V(x,2)eQ;, —w o

for some 7, € (0, T']. From (2.25), (2.26), and (2.6) it follows that relations (2.3) and
(2.4) hold for 7 =min{r,,7,}. O

Tueorem 5. Let # € C2,1(Qr) N C(Qr) N L= (Qr) be the solution of problem
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.8) are satisfied and the following in-
equalities hold:

(2.27) f)zm(1+|x[)™* (m>0,a>0);

(2.28) 0<glx,2)sg(1+|x])? (g>0,8=0).

Then there exist 7€ (0, T] and H > 0 such that

(2.29)  ulx,t) = (m/4)(1+ |x])"*[1— HH(1+ |x|)* P B1/OP  V(x,£)eQ,.
Proor. By virtue of (1.3) and (2.27), there exist 7, € (0, T] such that

(2.30) u(0,¢)=m/2, VtelO0,1,].
Let 7€ (0, 7,]. In the half-strip Q; o +» we compare #(x,#) with the function
(2.31) v(x,t) = (m/4)(1 +x)"4[1 — H{(1 + %)@ -») =B/ AP

where H > 0 is to be chosen later.
From (1.3), (2.27), and (2.31) it follows that

(2.32) v(x,0) <u(x,0), Vxel0, +x).
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Moreover, by virtue of (2.30), we have

(2.33) v(0,¢) <m/4<u(0,t), VrelO,7,].
Let us introduce the following notation:
(2.34) 2(x,2) =1 — Ht (1 + x)a(l -p) —ﬂ;

E = + o0 5 S = s , — ;
(2.35) { Qx.0, {(x,?) € E|z(x,¢) = 0}

E, ={(x,¢) e E|z(x,¢) > 0}.
It is clear that v e L* (E) N C'(E) N C?(E\S) and
(2.36) Qu(x,t) =0, V(x,t)eE\(SUE,).
For (x,¢) e E, we get
(2.37)  Qu(x, ) = (m/4)(1+ x)"® ~Pzp/U1=p).
{HO=p) ' [-1+ (B —all=p))a(l+p) + B+ 1)e(1+x)2]+
+(m)4P 11 +x)Pglx, £) — ala + 1)(1 +x)f ~«i-p -2 —
—H?p(1 =p)2(a(l —p) = B2t2 (1 + %) P "F~2z71} | V(x, 1) eE, .
Let us estimate the right-hand side of (2.37) from above. Rejecting two last terms in
the curly brackets and taking into account (2.28), we obtain from (2.37):
(238)  Q(x,t) < (m/4)(1+ x)~® ~BFzp/0-D).

AHOA-p) [ =1+2(B—a(l—p))a(l+p)+ B+ 1)] + g (m/4y '},
V(x,2)eE, .
Let 7, € (0, T] be so small that the quantity entering the square brackets on the

right-hand side of (2.38) exceeds —1/2 for 7 < 7,. Then from (2.38) it follows
that

(239)  Qu(x,2) < (m/4)(1+ x)~® ~Pzp/l1-0).
A-[20—-p1 'H+g (m/4P "'} <0, Vixt)eE,,

if T<7, and

(2.40) H=z2(1-p)g(m/4)7".

We choose some H satisfying (2.40) and set 7 = min{z,, 7,}. Then relations
(2.32), (2.33), (2.36), (2.38) hold, and the application of Theorem 3 yields the
inequality
(2.41) ulx, t) = ov(x,t)

for all (x,#) € Q; o, +=- In the same way we prove that (2.41) is valid for all (x,7) e
€Q; _w o Thus, we have arrived at (2.29). O

Cororrary. If the inequality
(2.42) a(l—-p)sp

holds along with assumptions (1.4), (1.5), (1.8), (2.27), and (2.28), then ISS does not
occur for «.
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In fact, from (2.29) and (2.42) it follows that #(x,z) >0 for x€ R and
0<¢t<1/H.

3. PARABOLIC SYSTEMS
Now, consider system (1.10) with initial data (1.11).
TueorEM 6. Let (41, u,) € (C2(Qr) N C(Qr) N L* (Qr))? be the solution of

problem (1.10), (1.11). Assume that conditions (1.12)-(1.14) and (1.17) are satisfied.
Then the following conclusions hold.

A) If we have

3.1 a1 (1 =py) > ay(1=pyp+pi),
then ISS occurs for #;. If in addition we have
(3.2) apn Zax(1—py),

then ISS does not occur for u,.
B) If we have

(3.3) ay(1=py) > ai(1=py+px),
then ISS occurs for #,. If in addition we have
(3.4) ap2 = ay (1 —py),
then ISS does not occur for #;.
Proor. Set
(3.5) g, 8) =luy(x, )72, gy(x,8) = |uy (x, ) [P

Then system (1.10) can be rewritten in the following manner:

(3.6)  @Qu;=D,u; — D2u; + g; (x, t)|u;|P signu; =0, (x,)eQr (=1,2).
By the Corollary of Theorem 3, we get

(3.7) ui(x,t)=20, Vix?)e QT (=1, 2).

Let us prove Statement A). Suppose that (3.1) holds. The application of Theorem 5
with 8 =0 to the second equation in (3.6) yields the inequality

Uy (x,8) = (my [4)(1+ |x|) %2 [1— HH(1 + |x| )220 22) 1Y/ (Up2) - Y(x ¢) e Q,I ,
where 7; € (0, T], H> 0. Hence,
(3.8)  gi(x,2) = (my /4P (14 |x|)%2P2[1— He(1+ |x| )220t ~p22) pra/ (1 =p22) |
V(x,t) e Qn .
Now, we apply Theorem 4 to the first equation in (3.6), setting p = p;, & = a1,

B=aypp,u=ay(1—py),0=pp/(1—py),and taking into account (1.12), (1.14),
(3.1), (3.7). It follows that ISS occurs for #; and the estimate

(3.9) uy(x,8) S 2M (14 |x])™*, Vix,t)e Q,z

is valid with some 7, € (0, 74].
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Next, suppose that (3.2) holds as well. By virtue of (3.5) and (3.9), we get
G0, ) S (M P2 (1+ |x|)"%2,  V(x, 1) e Q,,.

Therefore, we can apply Theorem 5 to the second equation in (3.6) with p = p,,,
a = a,,and 8 = a;p,; . In this case inequality (3.2) has the form (2.42), and the corol-
lary of Theorem 5 enables us to conclude that ISS does not occur for #,.

This completes the proof of Statement A). The proof of Statement B) is quite
similar. [

Derinrion 2. We say that total instantaneous shrinking of the supports (briefly,
TISS) occurs in problem (1.10), (1.11) if ISS occurs for both components of the
solution.

Cororrary. A necessary condition for TISS to occur in problem (1.10), (1.11) is
that the following relations hold:

7) either the inequality

(3.10) a1 (1 =pu) Say(1—=pp+pn),

or the system of inequalities

(3.11) a;(1=pu) >ax(1=pp+pr), 0(l=pp)>apsy;
#7) either the inequality

(3.12) 0,(1 —pp)sa; (1 —py +pa),

or the system of inequalities

(3.13) (1 =pyp) >a (1 =py+pxa), o (l=py)>azps.

Theorem 6 does not supply us with any sufficient condition for TISS to occur, since
the system of inequalities (3.1), (3.3) is incompatible for a; > 0 and a, > 0. In fact,
(3.1) and (3.3) imply the inequality a1p,; + a,p1, < 0, which is false for any pair of
positive numbers (a;, a5), by virtue of (1.13). Below, we state some sufficient condi-
tions for TISS to occur, under certain additional assumptions about the exponents
by -

First, we note that in the special case of the split system, z.e. in the case where p;, =
= p,; = 0, all the necessary conditions (3.10)-(3.13) derived above are satisfied for arbit-
rary a; > 0 and @, > 0. On the other hand, in this case, for any positive a; and a,,
TISS occurs in problem (1.10), (1.11), by virtue of Theorem 1 applied to each equation
in (1.10). Thus, for the split system, conditions (3.10)-(3.13) are necessary and
sufficient. _

Now, let us consider the class of system (1.10) specified by the equalities

(3.14) P2 =Pu, Pr2=pa-

TueoreMm 7. Assume that conditions (1.12)-(1.14), (1.17), and (3.14) are satisfied.
Then TISS occurs in problem (1.10), (1.11) if and only if the following relations
hold:

(3.15) , Putprn<l
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and
(3.16) filxk)=hHkx), VrxeR

without any restrictions on the positive numbers 7z, =m,, M;=M,, and a,; =
=d,.

Prookr. First, assume that relations (3.15) and (3.16) hold. Set

(3.17) w(x, t) =u(x,t) —uy(x,t).

Taking into account (1.10), (1.11), (3.7), (3.14), (3.16), and (3.17), we get
(3.18) D,w(x,t) — D2w(x,t) =0, Vl(x,¢)eQr,

(3.19) w(x,0)=0, VxeR.

Using the Maximum Principle for the heat equation, we obtain from (3.17)-
(3.19):

(3.20) u (x,8) =uy(x,2), Vx,2)eOr.
We introduce the notation:
(3.21) wlx,t) =u;(x,t) (=1,2), p=pu-+pn.

Formulas (1.10)-(1.12), (3.14), (3.20), and (3.21) imply that the function #(x, ¢) satis-
fies (1.2)-(1.4). By virtue of (3.15) inequality (1.5) is also valid. Therefore, Theorem 1
is applicable to our case, and it follows that ISS occurs for #, z.e. TISS occurs in prob-
lem (1.10), (1.11).

Now, assume that TISS occurs in problem (1.10), (1.11). Then for any # = ¢ > 0
small enough there exists x, such that
(3.22) wix,e) =0, Vx=x,.

But it is well known that all solutions of the heat equation (3.18) are analytic with re-
spect to x. Therefore, from (3.22) and (3.18) it follows that
(3.23) w(x,e)=0, VxeR.

Since & > 0 is arbitrary and w(x, ) is continuous in Qr, identity (3.23) imply
(3.19). Thus, we have proved (3.16). Moreover, we have already observed that from
(3.17)-(3.19) the validity of (3.20) follows. Preserving notation (3.21) and taking into
account relations (1.10)-(1.12), (3.14), (3.20), we again establish that u(x, ¢) satisfies
(1.2)-(1.4). By assumption, ISS occurs for #. Keeping this in mind and using Theorem
1, we arrive at inequality (3.15). 0O
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