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Equaz ion i a derivate parziali. — Instantaneous shrinking of the support for solutions 

to certain parabolic equations and systems. N o t a (*) di A N A T O L I I S. K A L A S H N I K O V , presenta­

ta dal Socio O . A. Oleinik. 

ABSTRACT. — The paper contains conditions ensuring instantaneous shrinking of the support for sol­
utions to semilinear parabolic equations with compactly supported coefficients of nonlinear terms and reac­
tion-diffusion systems. 

KEY WORDS: Semilinear parabolic equations; Reaction-diffusion systems; Compactly supported 
solutions. 

RIASSUNTO. — Contrazione istantanea del supporto per soluzioni di alcune equazioni e sistemi parabolici. 
Questo lavoro contiene condizioni che garantiscono contrazione istantanea del supporto per soluzioni delle 
equazioni semi-lineari a coefficienti con supporti compatti e sistemi della classe «reazione-diffusione». 

1. INTRODUCTION 

Let QT be the strip {(x,t)\x eR, 0 < t ^ T} . For an arbitrary nonnegative func­
tion w(x,t) continuous in QT we set 

(1.1) ÇU;w) = sup{|x| \w(xyt) > 0 } . 

DEFINITION 1. Suppose that tu e C(QT), w{x, t) ^ 0, £(0; w) — + o° . We say^that 
instantaneous shrinking of the support (briefly, ISS) occurs for w if £(/; w) < + oo for 
all t in some half-interval (0, r ] , where 0 < r ^ T. 

In [1] the ISS phenomenon has been described for some classes of spatially homo­
geneous and autonomous nonlinear second order parabolic equations. The results ob­
tained in [1] yield the following proposition. 

THEOREM 1 (see [1]). Assume that a function u e CX
2;/ (QT) fi C(QT) fi L °° (QT) 

satisfies the equation 

(1.2) Dtu-D*u + \u\psignu = 0, {x,t)eQT (p > 0) 

and the initial condition 

(1.3) u(x, 0) = / ( * ) , xeR, 

where 

(1.4) / e C ( J 0 n L ° ° ( R ) , / ( * ) > 0 , V X E R , Urn /(*) = 0 . 

Then ISS occurs for u if and only if 

(1.5) p < 1. 

This theorem has been subjected to various generalizations and modifications. 

(*) Pervenuta all'Accademia il 25 giugno 1997. 
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Thus, in [2] the Cauchy problem has been considered for the equation 

(1.6) Ou =Dtu -D?u +g(x, t)\u\psignu = 0 , (x,t)eQT (p > 0) 

and its multidimensional counterpart under hypotheses (1.4), (1.5) and the following 
additional assumptions: 

(1.7) J(x)^M(l + \x\)-a (M>0, a>0) ; 

(1.8) geC(QT)nL™(QT); 

(1.9) g(x9t)&go(l + \x\)-P (g0>0,/3^0). 

It has been proved that ISS occurs for the solution of problem (1.6), (1.3) if and only if 
a( 1 *-p) > /?. In [3] similar results have been obtained for some equations with nonlin­
ear leading terms. 

In [2] and [4] the ISS phenomenon has been studied for certain semilinear parabol­
ic systems. Specifically, the following proposition has been proved. 

THEOREM 2 (see [4]). Assume that a vector-valued function {ux ,u2)e. (Cx
2;/ (QT) H 

PI C(QT) fi L °° (QT)Y satisfies the system 

(1.10) VtUi - Dx
2u; + \ux J*

1 |«2 \
p* sign*,- = 0 , (x,t)e QT (i = 1, 2) 

with the initial conditions 

(1.11) u1(x,0)=fi(x)y xeR ( / = 1 , 2 ) , 

and the following relations hold: 

(1.12) j g - e C W r i L - d J ) ; /»,•( 1 + |x| )~a^ftM ^ Mf-( 1 + |x| )~aS 

Mj&mjX),. a , ->0 (/ = 1, 2) ; 

(1.13) p * £ 0 ( / , / = l , 2 ) ; 

(1.14) 0 < j p 1 1 < l ; 

(1.15) a j l - / > n ) > a2p12 ; 

(1.16) P22 ^ 1 • 
Then ISS occurs for ux and does not occur for u2. 

Moreover, in [4] the best possible upper estimate has been obtained for £(/; u^). It 
has been also shown that ISS for ux may be absent if (1.15) is violated. 

Prof. V. V. Zhikov has posed the following question: is it possible that ISS occurs 
for both ux and u2 in the case where the inequalities 

(1.17) 0<p22<l 

holds instead of (1.16)? We study this question in Section 3 of the present 
paper. 

As a preliminary step, in Section 2 we consider problem (1.6), (1.3), where the 
function g(x, t) possesses the ISS property. We obtain conditions ensuring the occur­
rence of ISS for the solution of the said problem and derive two-sided estimates for this 
solution. We apply the results of Section 2 to the study of problem (1.10), (1.11). Be­
sides that, those results are of interest in themselves. 
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In order to simplify the exposition, we do not state our theorems in their maximal 
generality. Specifically, they can be easily extended to the case of arbitrarily many inde­
pendent variables. Moreover, instead of (1.10), a similar system can be considered con­
taining more than two equations. 

The IS S phenomenon has been studied by a number of authors. Along with the 
above cited works [2-4], where one can find many further references, we call the read­
er's attention to the recent paper [5] containing a vast bibliographical list. As a supple­
ment to it, we also refer to the articles [6-8]. 

2. PARABOLIC EQUATIONS WITH IS S FOR COEFFICIENTS 

Consider equation (1.6) with initial data (1.3). Hypotheses (1.4), (1.5), (1.7), and 
(1.8) being preserved, we replace (1.9) by the following less restrictive assump­
tion: 

(2.D g{x,t)&g0(i + \x\)-m-ht(i + \x\rr+ 

(go > 0, h > 0, ju > 0, a ^ 0,/? ^ 0) . 

Here we have used the notation y+ = max{3;, 0}. 
We set QT}^rj = (£> V) x (0> TL where - 00 ^ § < rj ^ + 00, t > 0. In the sequel, 

we use the following Comparison Principle, which can be obtained, e.g., as a special 
case of Theorem 4 in [3]. 

THEOREM 3. Assume that the functions u{xy t), v(x,t), V(x, t) belong to 

L œ (Qt> ê>, ) n C(QT, f>,) n d (Qt> ê>, ) n c j y (Qr> ê> ,\$), 

where S is a smooth arc, and satisfy the inequalities v ^ u ^ V in QT^V \QTf ^ v, 

Ou ^ Qu ^ aV in QTj |f v \S. Then v(x, t) ^ u(x, t) ^ V(x91) for all (x, t) e Q ^ ~ . 

COROLLARY. If/(x) ^ 0, then the solution u(x, t) of problem (1.6), (1.3) is nonnega­
tive everywhere in QT. 

This statement follows from Theorem 3 if we set t = T, £ = — °°, fj = + °°, 
p(x, *) = 0. 

THEOREM 4. Let « e Qy/ tQr) fi C(QT) fi L00 (QT) be the solution of problem 
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.7), (1.8), (2.1) are satisfied and the 
inequality 

(2.2) a(l-p)> P + ju 

holds. Then IS S occurs for u. Moreover, we have 

(2.3) ZitiuXiht)-1'1, V / e ( 0 , r ] 

and 

(2.4) u(x,t) ^ 2 M ( 1 + \x\)~a, V ( x , / ) e Q r , 
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where 0 < r ^ T and 

(2.5) ju<À<a(l-p)- /3. 

PROOF. Consider the function 

(2.6) V(x,t) = 2M(1 + * ) - « [ ! - M l + x)A]^ 

in the half-strip QT % +00 (a similar function has been used for the proof of Theorem 6 
in [3]). Let us show that there exist parameters 

(2.7) ! > 0 , 

(2.8) œ>2, 

and r E (0, T] such that 

(2.9) u(x, t) ^ V(x, t), V(*, /) e QTf | f + . . 

Let G = Qtfl + 00. From (2.6)-(2.8) it follows that V G CX
2//(G) fl L00 (G). Set 

(2.10) Z(x,t) = l-ht(l+x)x, G+ = {(x,t)eG\Z(x,t)>0}. 

We obviously have 

(2.11) aV(x, t) = 0 , VU, /) e G\G+ . 

For (x, / )e 'G+ we get 

(2.12) aV(x,f) = (2MY(1 + x)~apg(x,t)Za)p - 2Mhù){\ + xf-aZ0)-1-

- 2 M ( 1 +x)-a-2Za)-2{a{a+ 1)Z2 + œX(2a - A + l)fo(l + *)AZ + 

+ û>(û>- l ) l 2 f e ( l + x ) A ] 2 } , V ( X , / ) E G + . 

Note that 

(2.13) fe(l+*)A<l, Z ( x , / ) ^ 1 , V ( x , / ) e G + . 

Set 

(2.14) c = a (a + 1) + <yA(2a - A + 1) + ĉ (a> - 1)A2. 

Using (2.1), (2.3), (2.10), (2.11), and (2.12), we obtain 

(2.15) aV(x,t)^2M(l+x)-*-tZW + (*[(2M)*-lgQ-q)(x,ty\, V(x, t) G G , 

where 

(2.16) ^ U , / ) = ^ ( l + x ) A + ^ ~ a ( 1 - ? ) Z c y ( 1 " ^ - 1 - ( 7 + 

+ c ( i + x ) ^ - a ( 1 - ^ ) " 2 z û > ( 1 - ^ ) - 2 - a . 

By virtue of (2.5), we have 

(2.17) p-a(\-p)-2<k + p-a(l-p)<Q. 

Choose 

(2.18) œ&(2 + o)/(l-p). 

It is evident that (2.18) implies (2.6). Taking into account (2.17), (2.18), (2.13), and 
(2.7), from (2.16) we get 

(2.19) cp{xyt) ^ (hco + c)(l + £)* + /*-«<!-*> < (2M)p-1g0 , 
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if 

(2.20) | ^ [ ( 2 M ) 1 - ^ o " 1 ( A û > + c ) ] 1 / [ a ( 1 - p ) - / , - A ] . 

Let us fix some a> and £ satisfying (2.18) and (2.20), respectively. Then (2.19) holds 
and from (2.15) we obtain 

(2.21) <3LV(x,t)>0, V ( * , / ) e G + . 

From (2.11), (2.21), and (1.6) it follows that 

(2.22) Ou(x, t) ^ aV(x, t), V(x, t) e G 

for any choice of r e (0, T]. 
Using (2.6), (1.3), and (1.7), we get 

(2.23) u(x, 0) < V(x, 0) , Vxe [0 , +oo) . 

Hence, minlVXx, 0) - «(#, 0)10 ^ ;c ^ §} > 0. Therefore, there exists' r1 e (0, T] 
such that 

(2.24) u(x,t) < V(x,t), V ( x , r t E Q t l i 0 ( j . 

By Theorem 3, inequalities (2.22)-(2.24) imply (2.9) if we take r = x^. 
Now, we combine (2.9) with (2.24) and thus arrive at the inequality 

(2.25) u(x,t)^V(x,t), V(* , / )eQ T l , 0 , 

Similarly, we prove that 

(2.26) u{x, t) ^ V(x, t), V(x, f ) E QT2> _ „, 0 

for some r2 G (0, T] . From (2.25), (2.26), and (2.6) it follows that relations (2.3) and 
(2.4) hold for r = min{r!, r 2 } . • 

THEOREM 5. Let u e C^'^ÌQT) ^ C(QT) H L°° (Q r) be the solution of problem 
(1.6), (1.3). Assume that conditions (1.4), (1.5), (1.8) are satisfied and the following in­
equalities hold: 

(2.27) /(*) ^ /» (1 + \x\)~a (m>0,a>0); 

(2.28) 0 ^ ^ U , / ) ^ ^ ( l + | x | ) ^ (gi> 0,13^0). 

Then there exist r G (0, T] and H > 0 such that 

(2.29) ^ U , ^ ) ^ ( ^ / 4 ) ( l + | x | ) - a [ l - ^ ( l + | x | ) a ( 1 ^ ) ^ ] 1
+

/ ( 1 ^ ) , V ( x , / ) e Q r . 

PROOF. By virtue of (1.3) and (2.27), there exist rl G (0, T] such that 

(2.30) u(0,t)&m/2, V ^ G [ 0 , r j . 

Let r e ( 0 , r j . In the half-strip QT o, +oo we compare u(x,t) with the function 

(2.31) ^ ^ ( ^ K H x r t i - ^ i + ^ ^ - ^ f - ^ , 

where H > 0 is to be chosen later. 

From (1.3), (2.27), and (2.31) it follows that 

(2.32) v(x,0)<u(x,0), V X G [ 0 , +oo) . 
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Moreover, by virtue of (2.30), we have 

(2.33) v{Q,t)^m/4<u{Q,t), V*e[0, r j . 

Let us introduce the following notation: 

(2.34) z(x,t) = 1 -Ht(l +x)ail-P)-fi ; 

f£ = Qr ,o , + »; S={(x,t)eE\z(x,t) = 0}; 

[E+ = {(x,t)eE\z(x,t)>0}. 

It is clear that v e L °° (E) D C1 ( I ) fi C2 (E\S) and 

(2.36) <3i;(x,/) = 0, V(x,/) e £ \ ( 5 U E+ ) . 

For (x, ; ) e £ + we get 

(2.37) av(x,t) = (m/4)(l + x)-ap-)izp/{1-p)-

•{Hd-pr'l- 1 + {fi-a(l -p))(a(l +p)+P + l)t(l+x)-2] + 

+ (m/4y-l(l+xfg(x,t)-a(a + l)(l+xf-a{1-P)-2-

-H2p(l -Pr2(a(l -p) -p)2t2{\ +x)ail-i>)-P-2z-1}, V(x,/)eE+ . 

Let us estimate the right-hand side of (2.37) from above. Rejecting two last terms in 
the curly brackets' and taking into account (2.28), we obtain from (2.37): 

(2.38) Ov(x, t) ^ (m/4)( 1 + x)~ap ~ V / ( 1 ~p)• 

'{H(l-p)-1[-ì + r(l3-a(l-p))(a(l+p)+l3^l)]^g1(m/4f-ì}, 

V ( x , * ) e E + . 
Let r2 e (0, T] be so small that the quantity entering the square brackets on the 

right-hand side of (2.38) exceeds - 1 / 2 for T^T2. Then from (2.38) it follows 
that 

(2.39) Ov(x,t) ^ (m/4)(l + x)-ap-Pzp/{1-p)-

• { - [ 2 ( l - p ) ] - 1 H + ^ 1 ( ^ / 4 y - 1 } ^ 0 , V(x9t)eE+, 

if r ^ r2 and 

(2.40) H&2(l-p)g1(m/4)-1: 

We choose some H satisfying (2.40) and set r = min{rly r2}. Then relations 
(2.32), (2.33), (2.36), (2.38) hold, and the application of Theorem 3 yields the 
inequality 

(2.41) u(x,t)^v(x,t) 

for all (x,t)e. Qr 0j + 00. In the same way we prove that (2.41) is valid for all (x, t) e 
G Qr, -oo,o- Thus, we have arrived at (2.29). • 

COROLLARY. If the inequality 

(2.42) a(l-p)**P 

holds along with assumptions (1.4), (1.5), (1.8), (2.27), and (2.28), then ISS does not 
occur for u. 
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In fact, from (2.29) and (2.42) it follows that u(x, t) > 0 for x ER and 
0^t<l/H. 

3. PARABOLIC SYSTEMS 

Now, consider system (1.10) with initial data (1.11). 

THEOREM 6. Let (ul9u2) e (Qt\(QT) H C(QT) nL™(QT))2 be the solution of 
problem (1.10), (1.11). Assume that conditions (1.12)-(1.14) and (1.17) are satisfied. 
Then the following conclusions hold. 

A) If we have 

(3.1) a i ( l -pn) > « 2 d -p22+Pn)> 

then IS S occurs for ux. If in addition we have 

(3.2) axp2l ^ a 2 ( l -P22), 

then IS S does not occur for u2. 

B) If we have 

(3.3) a 2 ( l - P 2 2 ) > « i ( l - P 1 1 + P 2 1 ) , 

then IS S occurs for u2. If in addition we have 

(3.4) a2p12 ^a1(l-pn), 

then IS S does not occur for ux. 

PROOF. Set 

(3.5) gl (x, t) = \u2 (x, t) \p^ , g2 (x, t) = \ux (x, /) Y* . 

Then system (1.10) can be rewritten in the following manner: 

(3.6) GLiUi = DtUi - Dlui + &(x, /)|«,-|p" sign«x- = 0 , (x, t) e QT (/ = 1 , 2 ) . 

By the Corollary of Theorem 3, we get 

(3.7) « , - (x , f )£0, V ( X , / ) G Q T (/ = 1, 2) . 

Let us prove Statement A). Suppose that (3.1) holds. The application of Theorem 5 
with P = 0 to the second equation in (3.6) yields the inequality 

u2(x, t) ^ (m2/4)( 1 + |x| ra> [ 1 - Ht{ 1 + |x| )«2(i-P22)]i+/(i-/>22) ? V(x, f ) G Q t l , 

where t j G (0, T] , H > 0. Hence, 

(3.8) ^ i ( x , 0 ^ ( ^ 2 / 4 r M l + | x | ) - a ^ 1 2 [ l - a ( l + |x | ) a 2 ( 1 -^ 2 ) ]^ / ( i -p22) j 

V ( X , / ) G Q T I . 

Now, we apply Theorem 4 to the first equation in (3.6), setting/? =pn, a = al9 

P — <^2puy^ = a2(l - p22)} a = pn/(l - p22)> and taking into account (1.12), (1.14), 
(3.1), (3.7). It follows that IS S occurs for ux and the estimate 

(3.9) Ul(x,t) ^2M, ( l + | x | ) - t t l , V ( X , ; ) G Q , 2 

is valid with some r2 G (0, r j . 
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Next, suppose that (3.2) holds as well. By virtue of (3.5) and (3.9), we get 

& U , r t ^ ( 2 M 1 ^ i ( l + | x | ) - a ^ 1 , V(* ,*)eQ r 2 . 

Therefore, we can apply Theorem 5 to the second equation in (3.6) with p = p22, 
a = a2, and /? = axp2l. In this case inequality (3.2) has the form (2.42), and the corol­
lary of Theorem 5 enables us to conclude that IS S does not occur for u2. 

This completes the proof of Statement ^4). The proof of Statement B) is quite 
similar. • 

DEFINITION 2. We say that total instantaneous shrinking of the supports (briefly, 
TISS) occurs in problem (1.10), (1.11) if IS S occurs for both components of the 
solution. 

COROLLARY. A necessary condition for TISS to occur in problem (1.10), (1.11) is 
that the following relations hold: 

/) either the inequality 

(3.10) « i ( l - P u ) ^ « 2 ( 1 - P 2 2 + P 1 2 ) , 

or the system of inequalities 

(3.11) al{\ - p n ) > a 2 ( l ~p22 +P12), «2(1-P22) >«ip2i ; 

//') either the inequality 

(3.12) a2(l-p22)^al(\-pn+p2l), 

or the system of inequalities 

(3.13) a2(l -p22) > ax{\ ~pn + p 2 i ) , « i ( l - p n ) > «2P12 • 

Theorem 6 does not supply us with any sufficient condition for TISS to occur, since 
the system of inequalities (3.1), (3.3) is incompatible for ax > 0 and a2 > 0. In fact, 
(3.1) and (3.3) imply the inequality axp21 + a2pu < 0, which is false for any pair of 
positive numbers (aly a2), by virtue of (1.13). Below, we state some sufficient condi­
tions for TISS to occur, under certain additional assumptions about the exponents 

Pu-
First, we note that in the special case of the split system, i.e. in the case where pu = 

= p21 = Oyâll the necessary conditions (3.10)-(3.13) derived above are satisfied for arbit­
rary a 1 > 0 and a2 > 0. On the other hand, in this case, for any positive ax and a2y 

TISS occurs in problem (1.10), (1.11), by virtue of Theorem 1 applied to each equation 
in (1.10). Thus, for the split system, conditions (3.10)-(3.13) are necessary and 
sufficient. 

Now, let us consider the class of system (1.10) specified by the equalities 
(3.14) p21=Pll, P12=P22-

THEOREM 7. Assume that conditions (1.12)-(1.14), (1.17), and (3.14) are satisfied. 
Then TISS occurs in problem (1.10), (1.11) if and only if the following relations 
hold: 

(3.15) P l l + P 2 2 < l 



INSTANTANEOUS SHRINKING OF THE SUPPORT ... 2 7 1 

and 

(3.16) / i W = / 2 ( x ) , V x e R 

without any restrictions on the positive numbers .m\ = m2y M1=M2, and ax = 
= a2. 

PROOF. First, assume that relations (3.15) and (3.16) hold. Set 

(3.17) w(x, t) = Ui(x, t) - u2(x,t). 

Taking into account (1.10), (1.11), (3.7), (3.14), (3.16), and (3.17), we get 

(3.18) Dtw(x, t) - D*w(x, t) = Q, V(x, /) e QT , 

(3.19) w(x, 0) = 0, VxeR. 

Using the Maximum Principle for the heat equation, we obtain from (3.17)-
(3.19): 

(3.20) «i (*, ') '= «2 (*,')> V(x,t)eQT. 

We introduce the notation: 

(3.21) u(x,t)=Uj(x,t) (/ = 1, 2) , p =pn+p22 • 

Formulas (1.10)-(1.12), (3.14), (3.20), and (3.21) imply that the function u(x,t) satis­
fies (1.2)-(1.4). By virtue of (3.15) inequality (1.5) is also valid. Therefore, Theorem 1 
is applicable to our case, and it follows that ISS occurs for u, i.e. TISS occurs in prob­
lem (1.10), (1.11). 

Now, assume that TISS occurs in problem (1.10), (1.11). Then for any t = e > 0 
small enough there exists xE such that 

(3.22) w(xy e) = 0, Vx ^ x e . 

But it is well known that all solutions of the heat equation (3.18) are analytic with re­
spect to x. Therefore, from (3.22) and (3.18) it follows that 

(3.23) w(x,e) = 0, VxeR. 

Since e > 0 is arbitrary and w(x,t) is continuous in QT, identity (3.23) imply 
(3.19). Thus, we have proved (3.16). Moreover, we have already observed that from 
(3.17)-(3.19) the validity of (3.20) follows. Preserving notation (3.21) and taking into 
account relations (1.10)-(1.12), (3.14), (3.20), we again establish that u(x,t) satisfies 
(1.2)-(1.4). By assumption, ISS occurs for u. Keeping this in mind and using Theorem 
1, we arrive at inequality (3.15). • 
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