
ATTI ACCADEMIA NAZIONALE LINCEI CLASSE SCIENZE FISICHE MATEMATICHE NATURALI

RENDICONTI LINCEI
MATEMATICA E APPLICAZIONI

Giovanni Bellettini, Matteo Novaga

Barriers for a class of geometric evolution
problems

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche,
Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni,
Serie 9, Vol. 8 (1997), n.2, p. 119–128.
Accademia Nazionale dei Lincei

<http://www.bdim.eu/item?id=RLIN_1997_9_8_2_119_0>

L’utilizzo e la stampa di questo documento digitale è consentito liberamente per motivi
di ricerca e studio. Non è consentito l’utilizzo dello stesso per motivi commerciali.
Tutte le copie di questo documento devono riportare questo avvertimento.

Articolo digitalizzato nel quadro del programma
bdim (Biblioteca Digitale Italiana di Matematica)

SIMAI & UMI
http://www.bdim.eu/

http://www.bdim.eu/item?id=RLIN_1997_9_8_2_119_0
http://www.bdim.eu/


Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e
Naturali. Rendiconti Lincei. Matematica e Applicazioni, Accademia Nazionale dei
Lincei, 1997.



Rend. Mat. Ace. Lincei 
s. % v. 8:119-128 (1997) 

Calcolo delle variazioni. — Barriers for a class of geometrie evolution problems. Nota 
di GIOVANNI BELLETTINI e MATTEO NOVAGA, presentata (*) dal Socio E. Magenes. 

ABSTRACT. — We present some general results on minimal barriers in the sense of De Giorgi for geo
metrie evolution problems. We also compare minimal barriers with viscosity solutions for fully nonlinear ge
ometric problems of the form ut + F(t,x,Vu,V2u) = 0. If F is not degenerate elliptic, it turns out that we 
obtain the same minimal barriers if we replace F with F + , which is defined as the smallest degenerate ellip
tic function above F. 

KEY WORDS: Barriers; Nonlinear partial differential equations of parabolic type; Mean curvature flow; 
Viscosity solutions. 

RIASSUNTO. — Barriere per una classe di problemi geometrici di evoluzione. Vengono presentati alcuni ri
sultati di Carattere generale sulle minime barriere nel senso di De Giorgi per evoluzioni geometriche di in
siemi. Vengono anche confrontate le minime barriere con le evoluzioni ottenute usando le soluzioni nel sen
so della viscosità, per problemi geometrici completamente non lineari della forma ut + F(t,x,Vu,V2u) = 0. 
Se F non è ellittica degenere, si osserva che si ottengono le stesse minime barriere se, al posto di F, si consi
dera la funzione F + , definita come la più piccola funzione ellittica degenere maggiore o uguale a F. 

0. INTRODUCTION 

In [8] De Giorgi introduced a notion of weak solution, called minimal barrier, for a 
wide class of evolution problems. An interesting example that falls within this general 
definition is the mean curvature flow; in this case, since singularities may appear at a fi
nite time even starting from smooth compact data, it is particularly important to have a 
(possibly unique) notion of weak evolution. In the literature there are many different 
generalized approaches to geometric evolutions; in particular we mention the pioneris-
tic work of Brakke in the context of geometric measure theory, the viscosity approach 
of Evans-Spruck [10], Chen-Giga-Goto [5], Giga-Goto-Ishii-Sato [11], the method of 
the distance function of Soner [16], the variational approach of Almgren-Taylor-
Wang [1] and its generalization by means of the minimizing movements of De Gior
gi [7], the elliptic regularization method [14] and the set-theoretic subsolutions of II-
manen [13], the minimal barriers [8] and the penalization method on higher derivatives 
of De Giorgi [9]. 

The aim of this Note is twofold. Firstly in Sect. 3 we present some general proper
ties of minimal barriers for geometric evolutions: in particular, concerning geometric 
fully nonlinear parabolic problems of the form 

(0.1) ^+F(t,x,Vu,V2u) = 0, 

we study under which conditions on F the disjoint sets property and the joint sets prop
erty hold (see Definition 4.1). Moreover, denoting by 3fF the family of all smooth local 
geometric supersolutions of (0.1) (see Definition 2.8), and denoting by 9K(E, &F) the 

(*) Nella seduta del 7 febbraio 1997. 
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minimal barrier starting from an open set E çRn (see Definition 2.2), we observe (The
orem 3.2) that 9il(E, &F) = 9K(E, <̂ F + ), where F+ is defined as the smallest degener
ate elliptic function greater than or equal to F (see (1.1)). Secondly, in Sect. 5 we show 
(see Theorems 5.2, 5.3) that minimal barriers are equivalent to viscosity solutions for 
geometric problems of the form (0.1) under the assumptions on F made by Giga-Goto-
Ishii-Sato in [11]. More generally, it turns out that the minimal barrier corresponds to 
the maximal between all viscosity subsolutions assuming a given initial datum (Corol
lary 5.3). All proofs will appear in [2,3]. 

1. NOTATION 

In the following we let I : = [t0, 4- oo [? for a fixed t0eR; in Sect. 5 we will take 
t0 = 0. We denote by &(Rn ) the family of all subsets of RP, n ^ 1. If C is a subset of Rn 

such that C *Rn and C * 0, we set dc(x):= distU, C) - dist(x,R*\C), and for any 
Q > 0 

C~ := {xeRn:dist(x,Rn\C) > Q} , CQ
+ := {x e Rn : dist(x, C) < Q} . 

Given a map 0: J —» (P(Rn)y where / Ç 2? is a convex set, if 0(/) ^ 1?* and 0(*) ^ 0 
for any tejwe let J 0 : / X Rn —» i? be the function defined as 

J 0 U, x) : = dist (x, 0(/)) - dist (x,R*\0(f)) = J0W (x). 

Given 0 ! , 02* J—> {P(Rn), by 0 i C 0 2 (resp. 0 i = 02) we mean (/>i(t) C(/)2(t) 
(resp. 0 iU) = 02 U)) for any £ e / . 

Given a function ^: J X Rn —>Rwe denote by #* (resp. #*) the lower (resp. upper) 
semicontinuous envelope of v. 

For x e IT and R > 0 we set £R(x): = {3; e Rn : J? - x | < R } and S* ~ 1 := {x e IT : 
\xI = 1}. If cx, c2 e Ry we let ci/\c2=

z m i n ^ , c2) and ̂  V c2 = m a x ^ , c2). We de
note by Sym(«) the space of all symmetric real (n X #.)-matrices. Given/? E 1T\{0}, 
we set Pp :=Id-p®p/\p\2. We also set J0 := / X JT X (1T\{0}) X Sym(«). 

Given a function F: J0->R, we denote by F* (resp. F*) the lower (resp. upper) 
semicontinuous envelope of F. 

For any (/, x,p, X) E / 0 , we define 

'Fc(t,x,p,X): = -F{t,x, -p, - X ) , 

(1.1) . F + ( / , x , p , X ) : = s u p { F U , x , p , y ) : y ^ X } , 

F-(t,x,p, X):= inf {F(/,x,p, F): 7 ^ X} . 

We say that F is locally Lipschitz in X if for any (t, x, p) E I X Rn X ( Rn \{ 0}) the func
tion F(t,x,p, •) is locally Lipschitz. 

We recall that F is geometric [5, (1.2)] if F{t,x, XpvXX + op ®p) = AF(t, x,p, X), 
for any A > 0, CTEJR, (t,x9p9X) E / 0 . 

For all definitions and results concerning viscosity solutions we refer to [6] and ref
erences therein. In the appendix we list some assumptions used in the paper, following 
the notation of [11]. 
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2. DEFINITIONS OF BARRIERS AND MINIMAL BARRIERS 

Definitions 2.1, 2.2 are a particular case of the definitions proposed in [8]. 

DEFINITION 2.1 (barriers). Let $be a family of functions with the following property: 
for anyfe. & there exist a,b eR,a < b, such thatf: [a, b] —> &{Rn). A function 0 is a bar
rier with respect to & if and only if there exists a convex set Lei such that 0 : L —» (P{Rn) 
and the following property holds: iff: [a,b]çL-^ &lRtt) belongs to &andf{a) C(j){a) then 
f{b) C(p{b). We denote by $>{$) the family of all barriers 0 such that L = I {that is, barriers 
on the whole of I). 

DEFINITION 2.2 (minimal barrier). Let EçRn be a given set. The minimal barrier 
911{E, 3r,t0): I—> £P{Rn) {with origin in E at time t0) with respect to the family $ at any 
time t el is defined by 

(2.1) ME, &, t0)(/):= fl {(/>{t): 0 :1 -> 8>{Rn ), 0 e £ (# ) , </>{t0) D E} . 

DEFINITION 2.3 (maximal inner barrier). Let E çRn be a given set. The maximal inner 
barrier K{E, $, t0): I —» £P(R*) {with origin in E at time t0) with respect to the family $ at 
any time t el is defined by 

(2.2) Jt{E, &, t0){t) := U{ip{t): y: I - » S>{Rn), V e â(tf), V(t0)çE} , 

where &{&) is as in Definition 2.1 with the set inclusion ç replaced by D. 

The connections between 9K{E, $, t0) and N(E, &,t0) enee explained in Theorem 
4.3. 

The following regularization was introduced in [4] and turns out to be very 
useful. 

DEFINITION 2.4 (regularizations of barriers). Let E ç Rn. If t e I we set 

DKAE,&,t0){t):= U 3KC(E-9&,t0)(t), 311* {E, &, t0){t) := fl 3TC(E+, # f 0 ) t o , 
Q>0 W Q>0 * 

Jf*(E, 5- /„)(/):= U X(Ee-,&,t0)(t), X*(E,&,t0)(t):= fi X(EQ
+ , $, t0)(t). 

Q>0 * Q>0 W 

Once we have a unique evolution of any subset E of Rn, we have a unique evolution 
of any initial function u0. 

DEFINITION 2.5. Let u0: Rn —» R be a given function. The two functions 
9Ku0,?r>9Ku0>?r'- IXRn-^RU{±oo} are defined by 

IXo,*( / , x) := inf {X e R: 31l{{u0 < A}, &, t0 ){t)Bx} , 

I DRUo> #{t, x) := inf {X e R: 3TC* {{u0 < A}, &, t0 ){t) 3x} . 

Besides the concept of barrier, we can also consider the concept of local 
barrier. 

DEFINITION 2.6 (local barriers). A function 0 is a local barrier with respect to $ if and 
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only if there exists a convex set Lei such that (p : L —» tP(Rn ) and the following property 
holds: for any x e Rn there exists R > 0 (depending on 0 and x) so that if f: [ay b] C L —> 
-+ {P(Rn) belongs to tfandf(a) ç <p(a) D BR(x)ythenf(b) c (j)(b). We denote by &Xoc(&) the 

family of all local barriers 0 such that L = I [that is, local barriers on the whole of I). 

DEFINITION 2.7 (local minimal barrier). Let EcRn be a given set. The local minimal 
barrier 3ltloc (E, &y t0): I —» tP(Rn) (with origin in E at time t0) with respect to the family $ 
at any time t el is defined by 

DJlloc(E, $, t0)(t) := fi {<p(t): <t>:I^8>(Rn ), 0 e % * ( # ) , 0(/o) ?E} . 

Note that a similar definition to Definition 2.6 can be given by localizing also with 
respect to time. The connection between barriers and local barriers is explained in The
orem 3.1. 

The definitions of barriers for geometric evolutions described by a function F for 
problems of the form (0.1) are a particular case of the previous definitions, by choosing 
a suitable family #>, and read as follows. Let F: J0->R be an arbitrary function. 

DEFINITION 2.8. Let a,b eR, a < b, [a, b] ci and let f: [a, b] —> 8>(Rn). We write 
fe&F (and we saJ that fis a smooth local geometric supersolution of (0.1)) if and only if the 
following conditions hold: f(t) is closed and df(t) is compact for any t e [a, b\ there exists 
an open set AçW such that dfeCœ([a,b] X A)y df(t) cA for any t e [a, b\ and 

(2.4) - ^ > * ) + Ht,xyVdf(tyx)yV
2df(tyx)) 2*0, £ e [*,£], x e df(t). 

We write f e tfp (resp. / e &f , / e &y ) if the strict inequality (resp. the inequality ^ , the 
equality) holds in (2.4). 

It turns out that, if F is bounded on compact subsets of/0, then &(dfF) coincides 
with the class of all barriers with respect to the subfamily of ff-p consisting of all 
/ : [a,b]—> &(Rn) such tha t / e &F and/U) is compact for any t e [a, b]. Notice also that 
Rn\3Z* (Ey tfFy t0)=N* (Rn\Ey 3fe, t0)y andR"\3Z* (E, $Fy t0)=M* (Rn\Ey 3fe, t0). 

3. GENERAL RESULTS ON BARRIERS 

The following lemma shows some general properties of the minimal barrier, such 
as comparison and semigroup property. If r e R, by 9il(E, &y r) we mean the minimal 
barrier constructed by taking barriers on the interval [r, + oo [ containing E at the 
time x. 

LEMMA 3.1. Let EcRn. Then the following properties hold. 

(1) 3Z(E, &, t0) exists and is unique; 

(2) 9Jl(E,&,t0)e&(&); 

(3) E1cE2=*31l(Elytf,t0)c31l(E2y&yt0); 

(4) 3Z(E,&,t0)(t0)=E; 
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(5) / / / : [a, b]çI->8>(Rn), / e &, then 

(3.1) f{t) ç 3IC(f{a), &, a){t), * e [a, b] ; 

(6) ^ ç g ^ ^ ( E , ^ , / 0 ) ç ^ ( £ , §,'o); 

(7) assume that the family $ satisfies the following property, given f: [a,b]çI—> 
—» tP(Rn),fe 3, t e]a, b[, thenf\ [<M], / | ^ ^ E #\ TA<?# 3K(E, «̂ , £0) verifies the semigroup 
property, i.e., 3K(E, &, t0)(t2) = 3Z(3ÏC(E9 &, /0)(*i), <̂> 'i)( '2) */ 'o ^ h ^ t2. 

The following proposition shows in particular that the minimal barrier coincides 
with the smooth evolution qf (0.1) whenever the latter exists (see (3.2)). 

PROPOSITION 3.1. Assume that F does not depend on x, is geometric, uniformly elliptic 
and of class C00. Then for any E çRn we have M(E, &p ) = 9Jl(E, &F). Moreover for any 
/ : [a, £] ç I -> 8>{Rn), fe $p , we have 

(3.2) f{t) = ?K{f{a),$p,a){t), ts[a,b]. 

For simplicity of notation, from now on we drop the dependence on t0 of the mini
mal barrier. 

Under suitable assumptions on F, the families &F and &F give raise to the same 
minimal barriers, as explained in the following useful remark. 

REMARK 3.1. Assume that F: ( Rn \ { 0 } ) X Sym ( n ) —» R is continuous and locally Lips
chitz in X. Then for any E ç Rn we have 3Z* (E, tfp ) = 3Z* (E, &F), M* (E,tfp) = 
= 911* (E, $p), and the same holds for local minimal barriers. 

The following result shows the connection between barriers and local barriers. 

THEOREM 3.1. Assume that F: (Rn\{0}) X Sym(n) -*R is continuous and locally 
Lipschitz in X. Then Œioc(3p) = tBitfp). In particular, for any EcRn we have 
mE,df) = 3Mloc(E93f). 

The following theorem provides a sort of canonical representation for minimal bar
riers when F is not degenerate elliptic (i.e., for evolutions without comparison princi
ple), and it is one of the main results of this Note. 

THEOREM 3.2. Assume that F: (Rn\{0}) X Sym(n) -^R is continuous, locally Lips
chitz inXandF+ < + *> in (IT \{0}) X Sym(«). Then &{&p) = &(#£+). In particu
lar, for any EcRn we have 3Z(E, 3f ) = 9Z(E, 3rF+). 

4. THE DISJOINT SETS PROPERTY AND THE JOINT SETS PROPERTY 

The following properties play an important rôle in the theory of minimal 
barriers. 

DEFINITION 4.1. Let F, G: (Rn\{0}) X Sym(#) —>R be two functions, and let $p, 
$Q be the corresponding families of smooth local geometric supersolutions. We say that the 
disjoint sets property with respect to ( %fF, $G ) holds if, for any E ç Rn, we have 
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3TC* (E, &F) fi 3K* (Rn\E, &G) = 0. We say that the joint sets property with respect to 
(&F, &G) holds if, for any EcRn, we have 911* (E, $F) U 3\l* {Rn \E, &G) = Rn. 

The following theorem characterizes the disjoint sets property and the joint sets 
property in terms of the functions F and G describing the evolution. 

THEOREM 4.1. Assume that F, G : (R*\{0}) X Sym (n) -» R are continuous and local
ly Lipschitz in X. Assume that F+ < + oo and G+ < + & in {Rn\{0}) X Sym(/z) and 
that F+ , G + are continuous. The following two statements hold. 

(i) The disjoint sets property with respect to ($F,$G) holds if and only if 
G+^(F + )C. 

(ii) The joint sets property with respect to (&F, $Q) holds if and only if 

The following theorem was proved in [4] in the case of driven motion by mean 
curvature. 

THEOREM 4.2. Assume that F: (Rn\{0}) X Sym (n) —> R is continuous and degenerate 
elliptic. Then, for any E çRn we have 

3lt* (E, &P) = Rn\3K* (Rn\E, &Fe), 31L* (E, &p) = Rn\DJl* (Rn\E, &Pe). 

The following result shows the connection between minimal barriers and maximal 
inner barriers. 

THEOREM 4.3. Assume that F : (R*\{0}) X Sym(/z) —»Ris continuous and degenerate 
elliptic. Then for any E ç Rn we have 

tf* (E, 3f ) = 3TC* (E, &F), tf* (E, 0 ) = 3IL* (E, $F). 

5. COMPARISON BETWEEN THE MINIMAL BARRIER AND THE LEVEL SET FLOW 

From now on we take I = [0, + oo [ (i.e., t0 = 0) and all barriers we consider are 
barriers on [0, + oo[. The following theorem is proved in [11, Theorem 4.9]. 

THEOREM 5.1. Assume that F: J0->R is geometric and satisfies either (F1)-(.F4), (F8), 
or (Fl), (F3), (F4), (F9), (FIO) (see the Appendix). Let v0:R

n -*Rbe a continuous func
tion which is constant outside a bounded subset ofRn. Then there exists a unique continuous 
viscosity solution (constant outside a bounded subset of Rn) of (0.1) with v(0,x) = 
= v0(x). 

Theorems 5.2 and 5.3 clarify the relations between minimal barriers and viscosity 
subsolutions for geometric evolutions. 

THEOREM 5.2. Assume that F: J0-~>R is geometric and satisfies (Fl), (F3), (F4), (F6'), 
(F7), (F9), (FIO). Let u and v be, respectively, a viscosity sub- and supersolution o/(0.1) in 
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]0, + o o [ x F . Then for any XeR we have 

(5.1) {x<=Rn:u*{-,x) <l}c=&{tfF)) 

(5.2) { x e r ^ M ' ^ l ^ l e ^ ) ; 

(5.3) {xeRn:v*{%x) > X} e &{tfFc)y 

(5.4) {x eRn:v* (•, x) ^ X} G &(&Pe ) . 

Moreover (5.1), (5.2) still hold if we assume that F+ in place of F satisfies all previous as
sumptions {and we replace (0.1) with (5.7) below). 

The next theorem is a sort of converse of Theorem 5.2. 

THEOREM 5.3. Let u,v:[0, + °°[X Rn ->R be functions such that u* < + oo {resp. 
v*> - oo ) in [0, 4- oo [ x Rn. Assume that F:J0-^R is geometric, lower {resp. upper) 
semicontinuous and satisfies (F4). Suppose that for any X e R 

(5.5) {x G Rn : u* (•, x) < X} e ffl(^ ), 

(5.6) {resp. {xeRn: v* (•, x) > X} e ffi(#£ )) . 

If F satisfies (F2), (F8') J#e» u {resp. v) is a viscosity subsolution {resp. supersolution) of 
(0.1) in ]0, + oo [ x Rn . I /F + (rasp. F~ ) satisfies (F4), (F8') /Ae» « (resp. i;) « <? viscosity 
subsolution {resp. supersolution) of 

(5.7) ^+F+{t,xyVu,V2u) = 0 
at 

(5.8) (rap. y- +F-{t,x,Vu,V2u) = 0 

in ]0, + o o [ x F . 

The following result shows the connection between minimal barriers and the con
tinuous viscosity solution whenever the latter exists and is unique, and generalizes a re
sult of [4]. 

COROLLARY 5.1. Assume that F: J0-^R is geometric and satisfies (Fl), (F3), (F4), 
(F6'), (F7), (F9), (FIO). Let EcRn be a bounded set and denote with v:[0, + oo[x 
X Rn —>R the unique uniformly continuous viscosity solution of (0.1) with v{0,x) = 
= VQ{X):= { — 1 ) V dE(x) A 1. Then for any t G [0, + oo [ we have 

(5.9) 3TC* (£, 3? )(t) = 3TC* (E, &F)(t) = {x<=Rn: v{t, x) < 0} , 

(5.10) 3d* (E, ^ )(/) = ^ v (E, ^p )(/) = {x G JT : *(f, x) ^ 0} , 

&?»«? 9KV0)#F = t\ Moreover if F = Fc fl&<?» 3TC* (E, ^F)\aTC,v (E, #>) G &(#>). 

The following results generalize Corollary 5.1. 

COROLLARY 5.2. Assume that F: J0-^Ris geometric, lower semicontinuous and satisfies 
(F4). Assume that F+ satisfies (Fl), (F3), (F4), (F6'), (F7), (F9), (FIO). Then 
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for any bounded set EçRn and any / e [ 0 , +oo[ we have 3\1*{E, &F)(t) = 
= 3JI* (E, 3f )(t) = {xeRn: v(t*) < 0}, 3K* (E, &P)(t) = 9K* (E, 3? )(t) = {xeRn: 
v(t,x) ^ 0}, where v is the unique uniformly continuous viscosity solution of {5.1) and 
v(0,x) = v0(x) := ( — 1) \/ dE{x) A 1. In particular, thanks to Corollary 5.1, we have 
3TC* (E, &F) = Dilit (E, &F + ) , Oil* (E, &F) = DÏC* (E, &F+) (compare with Theorem 3.2). 

COROLLARY 5.3. Assume that F: JQ->R is geometric and satisfies (Fl), (F3), (F4), 
(F6'), (F7), (F9), (FIO). Let u0:R

n-*Rbea given function such that «0* < + oo in Rn. 
Define SUQ := {v: v is a viscosity subsolution of (0.1) in ]0, + oo [ x Rn

 y v*(0,x) = 
= UQ (X)}. Ifu0is upper semicontinuous then 3HUo> &F = 3î£«0, &f = s u p { ^ : v G ^u0}' ^n the 

general case we have y&UQ,$F ~ ^u0,^ì = sup{v: v G £«0}-

REMARK 5.1. A similar assertion to Corollary 5.3 (under the same hypotheses) holds 
for supersolutions. Precisely, if u0 is lower semicontinuous (resp. arbitrary) such that 
u^> ~ °° *# Rn we have that, for any (t,x) E [0, + oo [ x Rn

 y the function 
sup{//: 9Jl({u0 > JU}, &F)(t) 3x} (resp. sup{ju: 3Z* ({u0 > JU}, &F)(t) 3x}) coincides 
with the infimum of u(t,x), where u varies over all viscosity supersolutions of (0.1) in 
]0, + oo [ x Rn such that u * ( 0, x) = u0(x) (resp. u*(0,x) = u0i(x)) and same assertions 
with &F replaced by &^ . 

The following remark shows the connections between the minimal barrier and the 
viscosity evolution without growth conditions on F (see [15,12]) and for unbounded 
sets E. 

REMARK5.2. Assume that F': (l?"\{0}) X Sym(#) —» Ris geometric and satisfies (F'1), 
(F2). Let u and v be, respectively, a viscosity sub- and supersolution of 

(5.11) % + F(Vu,V2u) = 0 
at 

in 10, + oo [ x Rn, in the sense of {15, Definition 1.2]. Then (5.1)-(5.4) hold. Moreover, if 
u:[0, + oo [ x Rn —> R is a function such that u * < + oo in [0, + oo [ x Rn and satisfies 
(5.5) for any X sR, then u is a viscosity subsolution of (5.11) in ]0, + oo [ x Rn. Finally, 
Corollary 5.1 still holds, even if E is unbounded. 

In particular we have the following result. 

COROLLARY 5.4. Assume that F: (Rn\{0}) X Sym(n) —>R is geometric and satisfies 
(Fl), (F2). Let E ç Rn and let v. [0, + oo [ x Rn —> 1? be the unique uniformly continuous 
viscosity solution of (5.11) with v(0,x) = v0(x) := dE(x)(in the sense of [15, Definition 
1.2]). Then for any te[0, + oo [ we have (5.9) and (5.10). In particular 
mck (E, &F)(t)\9K* (E, &F)(t) = {x e Rn : v(t, x) = 0} and 3ilV0} &F = v. 

6. APPENDIX 

We list here some assumptions used in this Note. We follow the notation of [11, pp. 
462-463]; we omit those properties in [11] which are not useful in our context. 
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(FI) F: J0-*R is continuous; 

(F2) Fis degenerate elliptic, i.e., F{t,x,p,X) ^ F(t,x,p, Y) for any (t,x,p,X) ej0, 
YsSym{n), Y^X; 

(F3) -oo <F*(f,*, 0, 0)=F*(t,x, 0, 0 ) < +oo for all f e [ 0 , + » [ , x e J T ; 

(F4) for every R > 0 , sap{\F(t,x,p,X)\: \p\, \X\ s= R, (t,x,p,X) ej0} < +00 ; 

(F6) for every R > Q > 0 there is a constant c = cR>Q such that 

|F(/ ,*,>,x)-F(/ ,*,^y)|^c(| />-? | + | x - y | ) 
for a l l * e [ 0 , +<*[,x<=R", Q^ \p\, \q\ ^ R, \X\, \Y\ ^ R; 

(F6') for every R > Q > 0 there is a constant c = cRg such that 

\F(t,x,p,X)-FU,x,q,X)\**c\p-q\ 

for any f e [ 0 , + » [ , x e R " , g ^ | p | , |<?| =S R, |X| =S R; 

(F7) there are Q0 > 0 and a modulus CTJ such that 

F*(t,x,p,X)-F*(t,x, 0, 0) $ ffid^l + | X | ) , 

F,( / ,*, />,X) - F * ( / , * , 0, 0) Ss -oAÌPÌ + | X | ) , 

provided / e [0, + 00 [, x <= R", |p |, |X| =S Q0; 

(F8) there is a modulus o2 such that 

|F(/,x,/>,X) ~F(t,y,p,X)\ *£ \x-y\ \p\a2(l + \x-y\) 

for y eR", (t, x, p, X) s J0 ; 

(F8') for any R > 0 there is a modulus aR such that 

\F(t,x,p,X) - F(t,y,p,X)\^\x -y\ \p\aR(l + \x -y\) 

toryeR", {t,x,p, X) s / 0 , |X| =S R; 

(F9) there is a modulus a2 such that 

F , ( / , x , 0, 0) - F * ( / , y , 0, 0) Ï* - a 2 ( | x - y | ) 

for any / e [0, + 00 [? x, y e JR" ; 

(FIO) suppose that 

/Id 0 \ < / X 0\< ( Id - I d \ 

-*(o idPlo yj$ v(-id id) 
with //, v ^ 0. Let R ^ 2v V/* and let g > 0; then 

F*( / ,x ,p ,X) - F * (',?,/>, - 7 ) ^ - | x - y | | p | ô ( l + \x-y\ + v\x-y\2) 

for (*, x) G [0, + o o [ x ^ , £ ^ \p\ ^ R, with some modulus â = âRjQ inde
pendent of t, x, y, X, Y, /u, v. 
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