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Variational convergence of nonlinear diffusion equations: 
applications to concentrated capacity problems 

with change of phase 

M e m o r i a l * ) di G I U S E P P E SAVARE - A U G U S T O V I S I N T I N 

ABSTRACT. — We study a variational formulation for a Stefan problem in two adjoining bodies, when 
the heat conductivity of one of them becomes infinitely large. We study the «concentrated capacity» model 
arising in the limit, and we justify it by an asymptotic analysis, which is developed in the general framework 
of the abstract evolution equations of monotone type. 

KEY WORDS: Stefan problem; Concentrated capacity; Variational convergence; Subdifferential opera­
tors; Abstract evolution equations. 

RIASSUNTO. — Convergenza variazionale di equazioni di diffusione non lineari: applicazioni ai problemi di 
cambiamento di fase in capacità concentrata. Si studia la formulazione variazionale del problema di Stefan in 
due corpi adiacenti, in uno dei quali la conducibilità termica tende all'infinito. Utilizzando e sviluppando al­
cuni concetti e metodi della teoria della /^-convergenza e delle equazioni di evoluzione astratte negli spazi 
di Hilbert, si riesce a giustificare il modello limite, che rientra nella classe dei problemi in «capacità 
concentrata». 

0. INTRODUCTION 

Let us consider the heat conduction in two adjoining bodies Q x, Q2 in the presence 
or not of a change of phase. If the thermal conductivity of Q2 along the normal direc­
tion to the common boundary F = dQ 1 H dQ2 becomes infinitely large, a possible way 
to study the limit situation is to assume that the temperature in Q 2 depends only on the 
coordinates on the surface r and to model the phenomenon by a system of two coupled 
parabolic (or elliptic, in the stationary case) equations in Qx and on F. 

This is a particular case of the wide class of the «concentrated capacity problems», 
according to the name introduced by Tichonov (1950) for the elliptic/parabolic boun­
dary value problems, which involve second order tangential derivatives on the bounda­
ry. Among the many physical phenomena which can be modeled in this way, we recall 
the diffusion in fractured media [8], the plates and junctions in elastic multi-structu­
res [9], the electric transmission through high conducting materials [33]. 

The interest of studying the Stefan model in a concentrated capacity was pointed 
out by Rubinstein [34] and a mathematical formulation (allowing a change of phase in 
Q 2 ) and many related results in some particular important geometrical situations have 
been given by Fasano, Primicerio, and Rubinstein in [20] (see also [37,2]). 

In a recent series of papers [25-29] (for other references, comments and various re­
lated questions, see also [30]), Magenes established very general uniqueness and exi­
stence results under various assumptions on the heat diffusion in Q1 (in the presence or 

(*) Presentata nella seduta del 13 giugno 1996 dal Socio E. Magenes. 
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not of a change of phase), on the topology of r (which may or may not coincide with a 
connected component of dQx) and on the boundary conditions imposed on dQX\T. 
The basic idea of these papers is to reduce the coupled system in Q x, r to a unique 
evolution equation on r, where the heat conduction properties are described by a suita­
ble choice of a Riemannian metric and the source term takes account of the heat 
exchange between Qx and Py this term is related to the solution itself via a non-local 
operator of Steklov-Poincaré type, which is also non-linear when a change of phase oc­
curs in Q !. It is clear that the study of this operator can be very complicated and requi­
res fine parabolic estimates; in particular, when T has a boundary and Neumann boun­
dary conditions are imposed on the remaining part dQx\r', subtle technical difficulties 
arise (cf. [29]). 

Our approach goes back to the original coupled problem in Qly Q2\ we shall see 
that the natural variational formulation (which can be re-interpreted in the framework 
of abstract evolution equations as developed by Brezis in [5,6]) is well adapted to pass 
to the limit and the resulting problem preserves the same abstract structure. A quite ge­
neral existence, uniqueness and convergence result is then given by applying the same 
abstract theory. 

In this way we can determine how the resulting conductivity properties of T are in­
fluenced by its geometry and the corresponding properties of Q2 : in the simplest case 
of a constant conductivity along the tangent directions, we shall see that the Rieman­
nian metric induced on r does not coincide with the standard one induced by the sur­
rounding space (as it happens in the simplified planar case studied in [20,2]) but it also 
depends on the principal curvatures of r and on the thickness of Q2. 

Our abstract theory is also applied to study another asymptotic limit which leads to 
equations in a concentrated capacity. Following the approach of [22,33], who conside­
red the linear case of the heat equation in a simple geometric situation, the global con­
ductivity and the heat capacity blow up together with the shrinking of Q2 to r. When 
these two processes are suitable balanced, we obtain in the limit a concentrated capaci­
ty on r, without an explicit dependence on its geometry as above (for the modelization 
of different asymptotic behaviors of the conductivity, the capacity, and the thickness of 
the layer, see e.g. [35,7,1,11], and the book [36]; another geometric situation, allo­
wing self-contact domains, is studied in [38]). 

We decided to develop the results we need in an abstract form, since it does not re­
quire more effort and can be employed in many different applications, such as porous 
media equations, homogenization of nonlinear diffusion equations (see [14]), problems 
where the concentrated capacity lies on manifolds of codimension higher than 1, etc. 

From the abstract point of view, this possibility is equivalent to give an answer (as 
we try to do) to the following general question: what are the most general notions of 
convergence for all the data, which are compatible with the type of nonlinear diffusion 
equation we want to study. It is easy to conjecture that the general theory of the varia­
tional convergences (see [3,12 and the references therein]) plays a fundamental role 
here; in particular, the convergence in the sense of Mosco (cf. [31,32]) seems very na­
tural because of the convex structure of the problems. 
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The plan of the paper is the following: in the next section we introduce more preci­
sely the asymptotic problems we shall deal with, starting from that of transmission in 
Qi, Q2 ; OUT main results on the concentrated capacity models are then given in the se­
cond section. The abstract theory is presented in the third part of this paper; the fourth 
one contains the related proofs and the last one is devoted to detail the link between 
abstract and concrete situations; in the appendix we collect some useful properties of 
differential calculus on r, referring to [15,16] for a very complete and detailed deve­
lopment of this argument. 

The variational formulation of the problems and the links with the theory of evolu­
tion equations of monotone type are the common contribution of both authors; the va­
riational convergence tools and the asymptotic analysis have been developed by the fir­
st author. 

1. THE TRANSMISSION PROBLEM 

We are given two disjoint (strongly) Lipschitz open sets Qu Q2 of RN such that 
their common boundary 

(1.1) T:=dQ1DdQ2 

is the closure of a regular (N - 1 )-submanifold T with boundary T' : = T \ F (* ); the re­
maining parts of the two boundaries are denoted by 

(1.2) ri = dQi\Ti 1 = 1,2, 

and the exterior unit normal to dQj is denoted by n{ (of course, nx — — n2on.r); here 
and in the following we assume that the index / takes the integer values 1,2. 

We choose a pair of continuous functions Q{ : Q{ •-» R and a pair of N X N symme­
tric matrices Ai9 continuously depending on x e Q{. We assume that Qj,Aj satisfy in 
their domains 

(1.3) Ai = A]r, and a^Q^M, a\v\2 ^ A{vv ^ M\v\2, W E R N , 

where a, M > 0 are two fixed positive constants. «,- : = Aini are the related conormal 
vectors. 

As usual for the weak formulation of the Stefan problem, we introduce two mono­
tone functions /?,: R*->R satisfying 

(1.4) 0,(0) = 0, lim inf £, OOA > 0 , 

and, for a constant cp > 0, 

(1.5) (PAs)-PAt))(s-t)Zcfi\fa(s)-PAt)\2, V ^ / e R . 

Finally we fix a time interval ]0, T[ , T > 0, and we set 

Qi := Qi x]0 , T[, Zi := r,- x]0, T[, Z:= r x]0, T[, Z' := r x]0 , T[. 

We shall consider the following transmission problem 

(*) The regularity of F (say C2 ) is not necessary to state and solve the next transmission problem, but 
it will be needed by the subsequent developments. In order to fix our ideas, we shall assume that 7~" is not 
empty; in the other case, some technical details become simpler. 



52 G. SAVARÉ - A. VISINTTN 

PROBLEM TP. Given 

we look for 

Oi y Ui - Qi *-* R Mth di = Pi (Uj ) 

which satisfy the parabolic differential equations 

Qiidujdt) - d iv( iW-) =/•, in Qi , 
the transmission conditions 

0i = 02, ddl/dnl = -{d02/dn2) on S, 

the initial Cauchy conditions 

Ui{x, 0) =UQJ(X) in Qïy 

and the lateral boundary conditions of variational type (i.e. Dirichlet, Neumann or mixed) 
on the remaining parts 2é; in order to fix our ideas, we consider the Neumann 
case (2) 

dOi/dûi^gi on Zi. 

The following weak formulation is naturally associated to TP (see [29,13]). 

PROBLEM WTP. If 

(1.6) / . e L 2 ( & ) , &eL2(2,-), u0}leL2(Qi)y 

we say that {(0,-, «/)}/ = 1,2 is a weak solution of TP if 

(1.7) Uì<EL2(Qì), 0 / eL 2 (O , T jH^f l , - ) ) , with 0, = £.(«,.) *.*. /* Q., 

(1.8) 0i U = 02 U in the sense of traces , 

and 

(1.9) 2|f-e/«/^+A-ve/-Vi;l.U^ = 
' a-

= 2 J [ <?i«o,/M*> 0)iv + [/•*;,. Jxafr + igiVi dXN~1 c 
[Qi Qi *,-

for every couple of test functions VJEH1 (0, T;H1(QÏ)) with 

(1.10) V\ I j = v2 \s
 and Vi{% T) = 0 on Q{ , in the sense of traces . 

We have 

PROPOSITION 1.1. Por every choice of the data f, git u0ti satisfying (1.6), there exists a 
unique solution of the previous problem. Moreover 

(1.11) Ui : [ 0, T] *-> L 2 ( £ / ) /$• uniformly bounded and weakly continuous . 

(2) Which is more complicated from the technical point of view (cf. [29]); the other (homogeneous) 
boundary conditions require only small changes. 
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REMARK 1.2. By applying various results on the weak maximum principles, on the ab­
stract evolution equations or on the L ̂ contraction semigroups, we could give several 
other existence and regularity results under different assumptions on the data(3). We 
limit ourselves to this setting, since we are more interested to show how the fundamen­
tal structure of these equations is preserved by the limiting process we shall introduce 
in a moment. • 

The remaining part of this section is devoted to present two particular geometric si­
tuations, where the shape of Q2 and (some of) the data on Q2 are related to a perturba­
tion parameter £ going to 0; the asymptotic behavior of the corresponding solutions is 
the object of our investigation. 

In order to describe the geometric model, we introduce the following definitions 
and assumptions. 

DEFINITION 1.3. For every x G R N let dr{x) be the distance of x from T\ we shall assume 
that 

(1.12) dAx) : = inf \x — y \ is a function of class C2 (Q2 ) . 
y e r 

In particular, this regularity implies that for every point x G Q2 there exists a unique projec­
tion xr on r satisfying 

(1.13) \x-xr\ =dr(x) 

so that we can define a C1 unit vector field n(x), normal to r (see [10, 2.5.4]) 

(1.14) n(x):=Vdr(x) = (x -xr)/dr(x) (4) . 

For every x e Q2we call sx the intersection of Q2 with the straight line passing through x and 
parallel to n{x)\ 

sx : = {3; G Q2 : 3A G R , y = x + Xn(x)} . 

REMARK 1.4. Even if the requirement (1.12) about the regularity of dris not necess­
ary to prove the following Theorem 1.7 (the differentiability of dr would be enough), 
we stated it to unify our assumptions. (1.12) is equivalent to assume that Fis of class C2 

and Q2 is contained in a suitable neighborhood of i"1, depending on its curvatures 
(see [15, 5.5, 5.6]). • 

First of all, we consider the case which originally motivated the introduction of the 
concentrated capacity models. 

(3) E.g. if the time derivative of g{ is a square integrable function on Zif we have 

OieHUlOtTlLHQ^nL^ilOtTlHHQ,)), 

the analogous global result (i.e. near the origin) holding if /3{(«0ti) EH1 [QJ), with px («0 t l) =j32 (u0> 2) on r. 
(4) Observe that n{x) is defined also on r, where it coincides with n1(x) = —n2(x). 
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Case I: blow up of the normal conductivity. 

For every e > 0 we perturb the problem TP by adding to the conductivity matrix A2 

the normal term e ~1 nnr, e > 0; we obtain a family of transmission problems TPf 
where A2 is replaced by 

(1.15) Ai(x): = A2(x) + e-ln(x)nT(x). 

If {(0f, uf )}e > o is the family of the corresponding solutions of TPf, we want to prove 
the existence of their limit (0Z,%) as £ goes to 0 and to characterize it. 

To this aim it is natural to introduce the closed subspace Hi (Q2 ) of H1 (Q2 ), con­
sisting of functions which are constant along sx for XN~ J-a.e. x e T: 

(1.16) H i ( f l 2 ) : = {vEH1(G2)'.n
T-Vv = 0}. 

We also set 

Ll{Q2):=Hl
n{Q2)

L2{Q2), 77M := orthogonal projection of L2(Q2) on L2(Q2), 

and we have 

THEOREM 1.5. L# (0/ , «/ ), e > 0, be the solution of the problems TPf previously defi­
ned; as e goes to 0 

(1.17) 0? ->0 , strongly in L2(Q;) and weakly in L2(0, T; H^fi,-)) 

##*£ ybr é̂ r̂y jftm/ £ e]0, T] 

(1.18) «i(-,')-*«i('>*)> nnui('9t)-*u2(',t), weakly in L2(Q,-), 

^ to convergence of (1.17) £ez>?g <zZyo .tf/wg if u02 belongs to L2(Q2). Moreover, 
{diyUj) is the unique solution of the following {weak) limit formulation. 

PROBLEM WLPJ. Find (0/,«/) satisfying (1.7), (1.8) and 

(1.19) u2GL2(Q2)y 02eH1
n(Q2) for a.e. t e ]0 ,T [ , 

m-/> / t o (1.9) holds for every couple of test functions v{ e H1 (0, T; H 1 (£2/)) with (1.10) 

(1.20) v2eHl(Q2) for a.e. fe]0, T[. 

We postpone to the next section the interpretation of this problem as the weak for­
mulation of a system of two coupled evolution equations, one of which is set on the ma­
nifold r . 

Now we focus our attention to the evident common structure of w TPf and toLPi, in 
order to conjecture an abstract result. 

Let us consider the Hilbert space 

(1.21) H:=L, 2
1 (^ 1 )XL, 2

2 (£2 2 ) (5) 

(5) I.e. the L-spaces with respect to the measures Q{'£, £ being the usual Lebesgue measure on RN. 
By (1.3), they coincides (up to equivalent norms) with the usual L2{Q{). 



VARIATIONAL C O N V E R G E N C E O F NONLINEAR DIFFUSION EQ U A TIO N S: . . . 55 

whose elements we denote by U '. = (ui,u2). On H is defined the (cyclically) monotone 
operator 

(1.22) A:H^Hy A(u):=[p1(u1),p2(u2)i. 

On the linear subspace of H 

(1.23) V:={o = (01,02)eH1(a1)xH1(Q2):01\r=02\r} 

we define the (weakly) coercive bilinear forms 

(1.24) a£(&,V):= J A, Vd1-Vv1 dx + jL2V62-Vv2 + i ^ | ^ V > 

and the time-dependent linear functionals L{t) e V > £e]0, T[ 

JMxtrtVidx + \gi(x>t)vidXN-1(x) (1.25) (L(t\v):=2< 

The weak formulation wTPf consists in the search of 

(1.26) U£EL2( 0, T; H), <9£ e L2 ( 0, T; V) 

such that 

(1.27) 6>£(/) =ylU£U) for a.e. / E ] 0 , T[ 

and (cf. (1.9)) 
r T 

(1.28) | { - (U£, Vi) + <ze(<9£, V)}<fc = (u0, V(0))H + J<L, v><fc 
o o 

for any choice of V e H ^ O , T; V J with V(T) = 0; here U0 := (u0)1,u0)2). When 
£ = 0 we simply have to define 

(1.29) V0 := {® = (0 i , 02)eH1(Qi) X Hi.(fl2): 0! | r = 02 | r } 

and 

(1.30) j 0 (^V' ) := , f i4 1 Ve 1 -Vi ; 1 £&+ ÌA2V62-Vv2dx 

and to repeat the same requirements (1.26), ..., (1.28) (6). 
The possibility of this substitution in the limit is justified by the following basic 

fact: 

PROPOSITION 1.6. For s > 0 define VE : = V and, for s ^ 0, 

ae(O,0) if0eV£y 
(1.31) a£(6>): = 

+ oo // © e H \ y £ . 

(6) Unlike V, V0 is not dense in H; this fact gives rise to non-uniqueness of the component U° of the li­
mit solution. Adding the further condition U° e H0 := V0 , we overcome this difficulty, thanks to a compa­
tibility property between A and (the orthogonal projection /70 of H onto) H0. • 
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Then as e goes to 0, ae converges to a0 in the sense of Mosco (cf. [3, Thm. 3.20 
and sect. 3]). • 

We shall see in the abstract setting of the third section that the combination of this 
convergence (which also allows to vary A, L, and U0 with respect to e) with a kind of 
uniform coercivity on the couple ae>Ae> are the good assumptions to study in a general 
context the asymptotic behavior of a family of nonlinear diffusion equations. 

Case II: blow up of the global conductivity when Q2 shrinks to r. 

We consider a family of contractions in the direction of the vector field —n{x) (see 
definition 1.3): 

(1.32) Ge(x):='ex + (1 - e)xr = xr + edr(x)n(x), 0 < e ^ 1, 

and we call Q£
2> s£ the shrinked sets 

Q£
2:=G£(Q2), s£:=G£(sx). 

As before, we have a family of problems TPfa, where we also have to assign a varying set 
of data in Q2 

(1.33) p i , Ai, fi, «oe, 2 (7) , 

while keeping fixed the remaining ones on Qx. 
The main assumption on the data of /f, «o, 2 is- that they give rise, in the limit, to a 

suitable distribution on the lower dimensional manifold T. More precisely, we assume 
that there exist 

(1.34) QreC°(r), AreC°(r;RNxN); / r e L 2 ( I ) , u0>rsL2(Dy 

such that 

lim e~l \ \f!(x,t)-fr(xr,t)\
2 dxdt = 0, 

Q! 

l i m e - 1 \UQ 2(X) - uor(xr)\
2dx = 0, 

£—>0 J 

(1.35) 

and 

(1.36) 
I with Ar, Qr satisfying (1.3) on r. 

If {(di 9 uf )}e > 0 is the family of the solutions of the problems TPfi, we want to charac­
terize their limit, as e —> 0, or, more precisely, the limit of 

( 0 ï , « f ) in Ql9 and (01,«i) on Z, 

flim sup [|eA|(x) - 4 r ( * r ) | + |£^1U) - ^ r ( x r ) | ] = 0, 

(7) For the sake of simplicity, here we assume gf = 0. 
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where, for 3CN-1-a.e. x e f , 6E
2(x), u2(x) are the mean values on s* of 0E

2y u2 

respectively: 

(1.37) 0|(x):= jee
2(y)dX1(y), ûE

2(x):= ju!(y)dxHy). 

2. THE LIMIT PROBLEMS IN THE CONCENTRATED CAPACITY 

Let us briefly recall some basic definitions on differential calculus and Sobolev spa­
ces on r. The tangent and the normal spaces to r at the point x are defined by 

£ := {veRN:n(x)-v = 0}, Xx := {v s RN : v = An(x), for some X e R } , 

the orthogonal projection on 5^ being given by 

(2.1) PX:RN *->%, Pxv:=[I-n(x)nT(x)]v. 

The principal curvatures KX (x)y ..., KN_1(X) of Tatx are the eigenvalues, besides 0, of 
the differential matrix of n (see [21, p. 355]) 

(2.2) S(x):= -Dn(x)= -D2dr(x), eC°(Q2). 

lip* is a regular extension to Q2 of a function p: r^> R, it is easy to check that the 
tangential gradient 

Vrv:xe r ^ gx , Vrv(x) : = Px [Vi;* (*.)], 

is well defined and it is independent of the extension v *. 
A (regular) tangential vector field is a mapping 

v. r ^ RN such that v{x) e £ , V x e f . 

For this kind of vector fields, we define the divergence on T as 

(2.3) divri>:= divf* - {d{v* -n)/dn), 

v* being an extension of v as before; also in this case, it is possible to check that àivrv 
does not depend on the extension v* (cf. [15, sect. 6]). When v is not tangential, it will 
be useful to define 

(2.4) divr^ := divr(Pxv). 

If v is a regular tangential vector field and w is a regular function, the following Green's 
formula holds on F 

•N-2 (2.5) - (db7rvwdXN~1= IvVrwdX*-1- {w(vn')dW 
r r r 

where n' (x) is the outward unit normal to i"" in the tangent space <%. 

REMARK 2.1. In this framework, the usual Laplace-Beltrami operator, induced by the 
Euclidean metric on r, has the simple form 

A rv '- = divr (Vrv ) . • 

REMARK 2.2. The notions of V r , divr are usually given in an intrinsic way via 
local coordinates, which do not require any embedding of r in an Euclidean space. 
We use this simpler (but, maybe, less elegant) approach, since it is more direct and it 
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shows the strict relation with the differential-geometric properties of the ambient 
space. • 

Now we introduce the usual (Hilbertian) Sobolev spaces on F (for the intrinsic de­
finitions, see [4]). H1 (T) is the usual completion of C* (T) (8) with respect to the norm 
induced by the scalar product 

(u,v)Hi{r) := ku{x)v(x) + Vru(x)-Vrv{x)]dXN-1(x), 
r 

so that Vr becomes a linear and continuous operator between H1 (r) and 

(2.6) L2{r; (Tir)) '= {vzL2{r- RN): v(x) e $XÌ for ^ ^ - a . e . x e f } . 

Hoir) is the closure in Hl(r) of the C^functions with compact support in r and 
H - 1 (JT) is its dual space. Via (2.5) we extend divr to a linear and continuous operator 
from L2(F; ^(D) to H~l (D . If a vector field v e L2 (T\ ^(F)) with dkrv G L2 ( D 
satisfies 

(2.7) - f divrvwdXN- 1 = J v V r ^ J X N - *, Vw e H 1 ( D , 
r r 

we say (in a formal way, but this argument could be made more precise, see [24]) that it 
has a vanishing normal component on f , that is vn' = 0. 

We can finally state our main results on the two problems of the previous section. 
For the sake of simplicity, we assume that 

(Gl) For every x e F, sx is a segment of (regular) length f(x), with 

0 < f0^ f(x) ^ ex< +oo . 

(G2) S(x) is bounded on r and there exists a constant rj > 0 such that 

d e t U - A S U ) ) ^ 7 7 , V x e T , 0 ^ X ^ f(x). 

(G3) & ( x ) = ' 0 o n I 2 . 

THEOREM I. Létf &y assume that (Gl,2,3) hold together to (1.6), and let us denote by 
{6i, Uj ) the limits of the solutions of TPf given by Theorem 1.5. Let {62, u2 ) denote the tra­
ces on Sof(62,u2){

9). Then {(0iy u1),(62,u2)} is the unique weak solution ofthefollo-

(8) Of course, when XN~1(r) = +oo, w e have to choose C1 functions with compact support in T. 
(9) The trace operator maps continuously Hl{Q2) onto Hl(r) and (it can be continuously extended 

by density from) L%{Q2) onto L2(r). 
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wing system of cou pled equations 

< 

' 0 1 = 0 l ( « ! ) 

e^-div^v^)^ 
36»! 

%(x, 0) = #o, i(*) 

0 ! = 6 2 on E ; 

< 

'02 = ^2(u2) 

Qi-^f - d w r ( Â 2 V r ë 2 ) = / 2 -

§-
#2(# , 0) =u0>2M 

in Q i , 

** Qi , 

0# 2^ , 

/» -Q ! ; 

in X, 

301 . _ 

on E' , 

/« r1, 

where f2, u0y 2> Q2>
 and A2 can be explicitly computed from the corresponding values f2f 

#o, 2> Qi, A2, and from the matrix S(x); nf is the conormal vector n' i = A2n'. 

We shall give the general formulae in the last section; let us consider here the spe­
cial case of N = 3, A2 = I. Using more familiar symbols, we call H and K the mean and 
the Gaussian curvatures of r (oriented by n) respectively 

(2.8) H(x):= (l/2)trS(x) = {K^X) + K2(X))/2 , K(x) := K1(X)K2(X) . 

Now for a generic point x e r we introduce the standard parametrization of the seg­
ment sx 

(2.9) xÀ: = x + Xn(x), 0 ^ X ^ f(x), 

and a deformation measure fix on it 

(2.10) dpx{X) := [1 - 2H(x)X + K(x)X2]dX = det (1 - XS(x))dX , A e [0, f(x)]. 

We have 

e(x) e(x) 

(2.11) f2{x,t):= J f2(xx,t)dt*x(X), Q2(x):= J ç ( x A ) ^ x U ) , 

0 0 

e{x) 

(2.12) . 2 0 , 2 W : = (§2U))_ 1 J u0t2(xk)Q2(xk)dij,x(X)i 
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and finally 

(2.13) Â2(x):= j " (I-XS(x))~2d[ixW. 
o 

Thanks to (G 1,2) and to the symmetry of S(x)> Q2 and A2 still verify on r a condition 
analogous to (1.3). 

REMARK 2.3. This problem can be studied independently from the asymptotic ap­
proach (see [25-30]): in this case/2 , u0, 2 > Qi a n d ^2 are a priori given data and-the weak 
formulation [29] has the same structure as in the previous section, formulae (1.21)-
(1.28). Here 

(2.14) H:=L2
Ql(Q2)xLl2(r), 

(2.15) V0 := {0 = (O1,e2)eH1(G1) X H 1 ^ ) : 0X \r=02}, 

(2.16) a0(G,V):= [ Ax V ^ - V ^ dx + [4 2 V r 0 2 -V r ? 2 dXN~ l 

QX r 

and 

(2.17) (L(t),v):= \f1(x,t)v1.dx+ \g1(x9t)v1 dXN~x(x) + lf2(x,t) ^dX*-1^). 
Q1 rl r 

Observe that a careful choice of the (couples of) test functions as in [29] allows us to gi­
ve a precise meaning to each formula of the system of Theorem I in suitable Sobolev 
spaces (of negative order, if it is necessary). If r is C °°, we can use the standard distri­
bution setting. • 

Finally, we consider the case II (and the relative notation) of the previous 
section. 

THEOREM II. Let us assume that (Gl, 2,3) hold together to (1.34) and (1.36); then we 
have 

0 ! - > 0 i strongly in L2(0, T; Hl(Qx)), dE
2^d2 strongly in L2(0, T; H1 ( D ) , 

and, for every fixed t e [0, T], 

uï(-,t)-^u1(-yt) weakly in L2(Q1), û~2(-, t)^û~2(-,t) weakly in L 2 (T) . 
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Moreover, {(01,u1),(02,u2)} is the unique weak solution of the following coupled 
system 

[ex = /?i(«i) in Qi > 

Q1^-àiv(A1VOl)=f1 inQly 

do, 

ui(x, 0) =«o, i(*) 

61 = 02 on Z ; 

f02 = £2(«2) 

dG; 
= 0 

°n ?i > 

in Q\\ 

- i 301 

3«! 

/« 2, 

in E, 

on 2' , 

/« /", 
5» ' 
#2(*> 0) = uor(x) 

where f is the thickness of Q2 defined by (Gl). 

REMARK 2.4. Let us note that in the simplest case of constant coefficients of order of 
magnitude 1/e, i.e. 

(2.18) e ! (* ) :=e 2 / e , Ai(x): = A2/e 

we obtain in the limit 

(2.19) er(x) = e 2 , A r ( x ) = ^ 2 , V x e / \ 

without any deformation due to the curvature of r. In particular, when A2 — I and Q2 

has a uniform thickness, the usual Laplace operator in Q2 induces the Laplace-Beltrami 
operator on r (see Remark 2.1). • 

3. THE ABSTRACT THEORY 

Let H be a (separable) Hilbert space with scalar product (•, •) and norm | • | ; on H 
we are given a l.s.c. convex and positive function 

(3.1) 0 : H ^ [ O , +oo] , 0(0) = 0 , 

with domain D ( 0 ) : = { « E H : 0 ( « ) < + O O } . We shall denote by A its subdifferential, 
defined as 

(3.2) A:H^2H, w EAUO{W,V - u) ^ <p{v) - <p(u), V ^ e D ( 0 ) . 

We consider a symmetric and positive bilinear form a: Va X V̂  ^ R , defined on a sub-
space (not necessarily dense) Va of H. To the couple (Va,a) is uniquely associated the 
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generalized quadratic form Ct: H*-> [0, + °°] (see [12, def. 11.7]) 

[*(«,«) ^ 0 if ue Ya , 
aU):= . 

l + oo otherwise ; 

we shall assume that Va is complete with respect to the Hilbertian norm 

(3.3) \\v\\i:=a(v) + \v\2, 

or, equivalently, that a is l.s.c. with respect to the H-topology [12,12.16]. We call Ha 

the closure of Va in H and Ha' c VJ the dual spaces of Ha and Va respectively (10), (•, •) 
being the duality pairing. 

We want to study the problem 

PROBLEM P(ct, (/);L,u0). Given 

L e L 2 ( 0 , T; V;) andu0eH, 

find 0eL2(0,T;Va) and ueL2(0,T; H) such that 

(3.4) 0(t)eAu(t), for a.e. * e]0, IT, 

T T 

(3.5) f{-(«,*>*) +a(0,v)}dt= (u0,v(0)) + l(L,v)dt, 
0 0 

ybr ##3; c^o/re of v eH1(0,T;Va) with v(T) = 0. 

Before stating our main results, let us make some remarks about this problem. First 
of all, if the more usual density hypothesis of Va into H held, we could identify Ha = H 
with H ' C Y a and (3.5) would be the weak formulation of a Cauchy problem for an ab­
stract differential equation of the type 

(3.6) 4r(A-le)+AeBL, (A-10)(0)BU0, 
at 

where A: Va *-* Va' is the linear operator associated to a and A ~1 is the inverse graph of 
A. Evolution problems of this type have been intensively studied; in particular DiBene-
detto and Showalter [17] (whose bibliography we refer to) gives a very general existen­
ce result, assuming Va compactly embedded in H but allowing A to be a nonlinear (ma­
ximal monotone and bounded) operator. 

In a particular but enlightening case, Brezis [5] exploited the linearity and the coer-
civity oiA to rewrite (3.6) as an evolution equation in y à governed by a subdifferential 
operator; thanks to the general theory of such equations (cf. [6]), this approach gives a 
more detailed insight of the solution of the problem. 

Taking account of both these contributions, we decided to formulate the problem 
in a form which will be well adapted to study the dependence of the solution 6 on a and 

(10) Since we shall deal with different couples of spaces Va C Ha and in general Ha ^ H, we do not iden­
tify any space with its dual; on the contrary, the dense embedding H'a c Vj is admissible, since it correspon­
ds to the transpose of the continuous and dense inclusion of Va in Ha. 
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0, avoiding compactness assumptions and allowing non-coercive bilinear forms a. 
We stress that the general choice of a (possibly) non dense domain Va is motivated 

by the limit procedure we shall perform. It is well known that the most natural notion 
of convergence for evolution problems related to convex functional is that of Mosco 
(see the definition later on and the exposition of [3], based on [31,32]). Since the den­
sity of the proper domain of these functionals is not preserved by the Mosco-conver-
gence, we cannot assume this property without restricting the range of possible applica­
tions. A significant example is showed by Proposition 1.6. 

In order to describe our assumption, we fix a continuous and positive bilinear 
form 

b:HxH^R, i)(u):=b(u,u)&0, V ^ e H , 

and we assume that 

(AA ) (Au - Av, u - v) ^ b(Au - Av), Vz/, v e D(A), 

(Aa) 3a > 0 : a(u) + b(u) ^ a\u\2, VueVa, 

and, on the data, 

(AL,*) L e L 2 ( 0 , T ; V ; ) , u0eD(</>). 

Denoting by /„ : H>->H'a the linear surjection 

(3.7) Ja:H»H:, (Jau,v):={u,v), VueH,veHa, 

we have 

THEOREM 1 (uniqueness). Let us assume that (AA, Aa ) hold and the data satisfy 
{ALUQ ); if (01 ,ul)y (62,u2) are two solutions of the problem P(ct, 0; L, u0 ), then 

(3.8) d1 = e2
y and ]au

l=]au
2. 

Moreover u '- = ]au
l =]au

2 belongs to H1(0,T;Va) and satisfies the initial condition 

u(0)=Jau0. 

We can give some further information about the structure of the set U = 
= U(ct, (p;L,u0) of the (not uniquely determined) components u of the solutions. 

We associate to 0 the convex function 

( 3 . 9 ) & : H ; ^ [ 0 , + O C ] , 4>a(?):=m£{cl>(v):Jav=ï}, D ( 0 j = Ja [D(0)] , 

and we call K(v), veHa , the set where the inf of (3.9) is achieved: 

(3.10) K(ï):={veJ-1(ï):</>(v) = $a(ï)}. 

It is easy to check that K(v) is a closed convex set; moreover it satisfies 

(3.11) AvnVa*0=>v€-K{Jav). 

We have 

PROPOSITION 3.1. Let (0,u) be given as in the previous Theorem 1; then (pa (u) is (essen-
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tially) hounded and a function u e L2 (0, T; H) belongs to U(a, <p; L, u0) if and only 

if 

(3.12) u(t)eK(u(t)), for a.e. / e ] 0 , T [ . 

In particular, the set U of the solutions uofVisa closed convex subset of L2 (0, T; H) 
satisfying 

u e U =>(j)(u(t)) = 0 , («(/)) , for a.e. fe ]0 , T[. 

REMARK 3.2. The second assumption of (AL>UQ) could be replaced by the 
weaker 

0«(/«*o)< + » . • 

A condition ensuring the existence is given by 

THEOREM 2 (existence). With the same assumptions of the previous Theorem, let us sup­
pose that 

(Aà) 0 is coercive on H: lim (j){v) = + oo . 
M-*oo 

Then there exists a solution of problem P(ct, 0; L, u0) and U((X, (p;L,u0) is a bounded 
subset of L°°(0, T;H). 

REMARK 3.3. If (A^ ) hold, then (j)a *
s LS-C- a n d f° r every ? G D(0fl ) the set K(v) is non 

empty and bounded in H. • 

Let us denote by Ua the orthogonal projection onto Ha 

(3.13) na:H^Ha, (nav-vyw) = 0, VweHa. 

Since Ja restricted to Ha is the usual Riesz isomorphism between Ha and Ha
f and 

Ja °na= Jay the knowledge of S G H„' is equivalent to the knowledge of the projection 
IIau sHa, which is therefore uniquely determined by the data of the problem. 

Of course, if Va is dense in H, also u is uniquely determined; one could add the fur­
ther condition 

(3.14) u(t) E H , , for a.e. t E ] 0 , T[ 

in order to fix the solution, but this requirement may be not satisfied in general. Never­
theless, there is a simple compatibility condition, which allows (3.14): 

COROLLARY. Besides {AAya, 0; L, «0 )> ^et us as$ume that 

Wcomp) V * ; G H : <p(nav)^<t>(v). 

Then there exists a unique solution (0, u) of problem P(ct, 0; L, u0) which satisfies (3.14), 
too; it is also continuous with respect to the weak topology of H and it satisfies the initial 
condition u(0) = IIau0. 

REMARK 3.4. It is interesting to note that G4comp) is equivalent to 

(3.15) veH, AveHa=>Av=Anav. • 
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Now we vary the functionals and the data according to a parameter e going to 0 and 
we want to study the dependence of the solution (0,u) on e. So we are given 

a e , (/>e>LE,U0ye, e G [0, £ 0 ] , 

and we set correspondingly 

Ve:=Vae, A£:=d<pE, &e'•= (fa)ae, Je: = he, and so on. 

If ( 6£, u£ ) is a solution of P(ct£, 0 £ ; L £ , « 0 , £ )> £ ^ 0, we look for general conditions on 
the data in order to obtain the convergence of (08, u£ ) to {60, #0-) with respect to a sui­
table topology. Of course we have to impose some kind of continuity property for the 
data at e = 0; we recall the definition of the convergence in the sense of Mosco (see 
e.g. [3, sect. 3.4]). 

DEFINITION 3.5. Let H be an Hilbert space; we say that a family of functions 
F£ : H i-> ] - oo , oo ] M-converges to F0 : H H* ] - oo , + oo ], <w e goes to 0, if the follo­
wing two conditions are satisfied: 

F0(v) ^ liminf F£ (v£ ), for every family v£ weakly convergent to v in H , 
£-*0 

Vf G H, Vs > 0 , 3f£ G H: lim p£ = v strongly in H , F0 (#) = 1™ Fe (ve ) . 
£-»0 £—»0 

In this case we write F0 = M- lim F£. 
£->0 

It is well known [3] that this notion is well adapted to describe the convergence of 
convex variational functionals and it is strictly related to /"-convergence and to the gra­
ph-convergence of the respective subdifferentials ( n ) . We shall assume that 

I a£ and 0 e M-converge to a0 and 0 0 respectively as £ —» 0 , 

Ct£ , /1£ ,0£ satisfy (AaA}(j)) uniformly in JO, e0J. 

In order to make precise the kind of convergence of the functionals L£ (which belongs 
to varying dual spaces) we state the following 

DEFINITION 3.6. Let H be an Hilbert space, a£ : H •-> [0, + oo ] be a family of generali­
zed quadratic forms M-converging to Ct0, and V£ be the domain of a£. We say that a family 
of linear functionals JE£ G V£ strongly converges to j£0 sV0 if 

]im{£e,ve) = {£0,v0), 
£-»0 

for every choice of v£ G V£ such that 

v£ ~^o *'« H #W sup d£{v£) < + oo . 
e > 0 

( n ) More precisely, a family of functionals Fe (as in definition 3.5) M-converges to F0 if and only if it 
.T-converges to F0 both in the strong and in the weak topology of H. If the functionals Fe are l.s.c, normali­
zed (i.e. FE(0) = 0), and convex, then they M-converge to F0 iff the subdifferentials dF£ G-converge to 
3F0. 
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Accordingly to this definition, we shall assume that 

(LIML ) L£ G L2 ( 0, T; VE' ) strongly converges to L0 G L2 ( 0, T; V0' ) , (12) 

and 

(UMWo ) J etto £ £
 vé strongly converges to J0u0j 0 e V0' , sup 0 £ («0> £ ) < + °° • 

£ > 0 

We have 

THEOREM 3. Let us assume that (LIMa Ay$.LyUQ) hold and let us denote by (0E,ue) a 
solution of P( Ct£, 0 £ ; L£, u0 £ ) . TI?>e# 

(3.16) &£ /i uniformly bounded in L°° (.0., T; H ) , 
r 

(3.17) 0£ -<90 /» ^ 2 ( 0 , T ; H ) , lim f h(0E - 00)dt = 0 , 
o 

and for every L °° ( 0, T; H)-weak* cluster point u0 ofue , ̂  £ —> 0, {60,u0) is a solution of 
P(ct0, 0o 5 ^0, «o, o )• Moreover, if (̂ 4comp ) ^ satisfied for every e ^ 0 <zW &£ /!y /fc weakly 
continuous solution belonging to H£ (cf. the previous corollary), rf?e» 

(3.18) n0uE(t)^u0(t) in H , V / e [ 0 , T ] . 

Finally, if 

(3.19) u0)0eH0, lim (pE{u0yE) = 0o(^o,o) 
C->0 

T T 

(3.20) lim Jae(0e(f))<fr = Jao(0oW)A. 
^ 0 0 

REMARK 3.7. In order to obtain (3.20) it would sufficient the weaker (cf. Remark 
3.2) 

(3.21) lim (pe(J£u0yE) = 0o(Jo«o,o)>' 
£ ^ 0 

instead of (Acomp) and (3.19). 

4. PROOFS OF THE ABSTRACT THEOREMS 

First of all we rewrite (3.5) as 
T T 

(4.1) \{-(u,vt) +a(6,v) + b(6,v)}dt = (u0,v(Q)) + U(L,v) + b(6,v)}dt. 
0 0 

Now, replacing a by a + b, we can always assume that 

(Aab) 0^b(u)^a(u), a(u)^a\u\2, V ^ e V , , 

(12) We are implicitely considering the usual extension (cf. [6, Prop. 2.16]) of a quadratic form on 
Ve cH to the time-dependent vectors of L2 (0, T; Ve ) cL 2 (0, T; H). This extension does not affect the M-
convergence properties. 
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if we consider, instead of P, the following more general formulation, depending on the 
parameter i e R . 

PROBLEM P^ (a, (p; L, u0 ). Given 

L e L 2 ( 0 , T; V;) and u0eH, 

find 0 e L2 (0, T; V, ) and ueL2(0,T; H) such that 

(4.2) 0(t) e Au(t) for a.e. t e]0, T[ 

and 
T T 

(4.3) [{ - («, *,)• + .a(09 v)}dt= (u0,v(0)) + |{(L, v) + ^ ( 0 , *)}<& 
0 0 

for any choice of v eH1 (0;T;Va) with v(T) = 0. 

We are going to prove the analogous of Theorem 1 for PA under the hypotheses 

We fix some notation. 

NOTATION 4.1. We denote by A: Va *->Vâ the linear isomorphism 

(4.4) v = Av <=> (?, w) = a(v, w), V^, w eVa . 

When it is possible, the superscripts , will denote the images in H# , Va of the correspon­
dent vectors via Ja and A, respectively. | • | a is the dual norm of H^ : 

(4.5) | v \a := min{ \v\ : Jav = v) — min{(?, w): w eHa, \w\ ^ 1} 

and a'{% •) the dual scalar product on VI, with the associated square norm o! (v)' = 
= a'(v,v) 

(4.6) a' (v,w) .'= {vy w) = (w, v) = a(v, w). 

1F<? extend (j)a to V^ by setting <pa (v) = + o° // £> E Vtf' \H</, #/z<i ^^ call 

(4.7) ^ : V ; H > 2 V - , ^ : = 5 . . 0 4 , 

/& suhdifferential with respect to the scalar product a '. ba : Va X V'a •-» R /!$• róe bilinear 
form 

(4.8) ba(vyw)''= b(v,w), V?, «i e VJ , 

B: H*->H and Ba : Vfl' »-» Vtf' # re /Ae &e^r operators associated to b and ba : 

(4.9) (Bv,w):= b(v,w), Vv,weH; a'(Bav,w)'.= ba(v,w), Vv,weVa. • 

We briefly recall the (easy to prove) properties of £(•), we mentioned in the pre­
vious section: 

LEMMA 4.2. For ^6ry v e D(0^ ) c H J the set K(v) C H defined by (3.10) is closed and 

convex; it is also bounded and non-empty if (AQ ) holds and in this case we have for every 
r^O 

(4.10) 0tf'(?) ^ r=> | v \a ^ œ(r), sup \v\ ^ m(r), 
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where co(') is the «modulus of continuity» of 0 at infinity 

(4.11) (o:[0, +OO[H->[0, + O O [ , ct)(r) := sup {\v\: v e H, (p(v) ^ r} . 

The first step consists in the following result 

T H E O R E M 4 .3 . The function <pa defined in (3.9) is proper, convex, and its sub differential 

A with respect to the scalar product a ' satisfies 

(4.12) w eAv =>w eAv, VveK(v), 

and 

(4.13) w e Va, w eAv =>w eÂv, veK(v), 

where, following 4.1, w and w are related by w = Aw. Moreover, if (A<p ) holds, then (f>a is 
also l.s.c. in Va and coercive with respect to the norm ofH^. In particular A is a maximal 
monotone operator in VI. 

The proof is a series of simple verifications. 
• 0fl is convex: if u,v eD(0 d ) and we choose, for a fixed e > 0, 

ueJ'Hû), veJ'Hv), with 0(«) ^ 0„(«) + e, 0(p) ^ 0,(£) + £, 

then for every r e [0, 1] we have Ja (ru + ( 1 - r)#) = rS + ( 1 - r)v so that 

<j>a(ru+(l -r)v) ^ <t>{ru + (1 -r)v) ^ 

^ T 0 ( « ) + ( 1 - r) 0(t; ) ^ r 0 . (5) + ( 1 - T) 0, (?) + e . 

Since £ > 0 is arbitrary, we conclude. 
• 0fl is proper: (j)a(0) = 0. 
• (4.12): by the definition of subdifferential we know 

(4.14) a ' {w,z -v)^4>a (?) ~ & GO > V? G D(0, ). 

Let us set w '> = A ~lw e Va and let us choose v e K(v); recalling (3.7) and (4.6), for 
every z e H, with /tfz = z, we have 

(4.15) (w,z — v) = (w,z -v) = a' (w,z - v) • 

Combining with (4.14), since 0fl (v) = <p(v) and <i>a(z) ^ 0(z), we deduce 

(w,z-v) ^ 4>a(z) - 0 » ^ 0(z) - 0 » = 0U) - 0(^) , V z e H , 

/>. ^ e yl^. 

• (4.13): we know that w eVa satisfies 

(w,z ~ v) ^ 0(z) - 0(f ), V z e H , 

and, by (4.15), for every zeH we have 

(4.16) . * V ( £ , ? - ? ) ^ 0 ( z ) - 0 ( t > ) , ? : = / ,* . 

Choosing Jflz = ? = v we get f e X(?); keeping z fixed and taking the infimum with 

respect to ze]~l(x) we get 

af{wyz-v) ^ <M?) - 0( f ) , VzeH«; 
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recalling that (p(v) ^ 0^(?) we find 

a' {W,Z- V) ^ 4>a(z) - <j>a(v), V? G H, . 

• 0a is coercive, if (A^) holds: it follows from (4.10). 
• 0^ is l.s.c. if (AQ) holds: we choose a sequence v„eVa converging to v with 

0* (#» ) ^ r> By the previous Lemma, there exist vn e K(vn ) c H such that 

Tavn=vn, <t>(vn) = 4)a{vn)^r) \vn\^co(r). 

We can extract a subsequence (still denoted by vn) weakly convergent to v in H. By 
the (weakly) lower semicontinuity of 0 we deduce (p(v) ^ r and by the continuity and 
the linearity of Ja we have Jav = v. We conclude that 0^ (?) ^ 0(i>) ^ r. • 

Theorem 4.3 shows that we can associate to a solution (0, u) of P^ the new 
couple (0, #), with 0 : = AG, u • = Ja u. This change of unknowns allows us to rewrite P^ 
as a perturbation of the evolution equation in Va associated to the subdifferential ope­
rator A. 

THEOREM 4.4. Suppose that {6,u) is a solution ofV^ (ct, 0; L, u0 ). Then (6,u) solves 
the following abstract Cauchy problem Px((X, 0 ; L, u0) 

'Find ûeLHOiTiH^CiHHOtTiV:) and 0 eL2(0,T;V;) such that 

(4.17) <ïït(t) + d(t)-ÀBa0(t)=L(t), 0(t)sAu(t)} for a.e. / e ] 0 , T [ , 

u(0) = uQ = Jau0 . 

Conversely, if (6,u) is the solution 0/ P^Ct, 0; L, #0)> the corresponding P is solved by 
every couple (0,u) satisfying 

(4.18) 6: = A-l6 and ueL2(0, T;H) with u(t) e K(u(t)), for a.e. fe]0 , T[. 

PROOF. By setting ? : = Av and recalling (4.9), we see that (4.3) is equivalent to 

(4.19) [{ -a' (u,vt) + af (0,v)} dt = a'(u0,v(0))+{a'(L + ÀBa0,d)dt 
o o 

for any choice of v e Hl (0, T; Va) with v(T) = 0. (4.19) is a weak formulation of the 
differential equation and the initial condition of (4.17). Applying (4.12) and (4.13), we 
conclude. • 

By the general theory of nonlinear evolution equation governed by subdifferential 
operators in Hilbert spaces (see [6, Trim. 4.6]) we deduce 

COROLLARY 4.5. When (A^) holds, together to {AahA.L}UQ)> there exists a unique sol­
ution of problem P0(.Ct, 0; L, «0). • 

In order to prove the uniqueness result of Theorem 1 we need the following a priori 
estimate. 
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LEMMA 4.6. Let (O*,ûJ),j = 1, 2, be solutions o/P0(ct, <p; U + ÀBad
}, uJ

0) respect­
ively, with 

U, 4 satisfying (ALtJ and oj e L 2 ( 0 , T; V'a ); 

^e«j if (Aab>A ) £o/J ##J y := A2 + 1, we £<we 

sup e-r'a'iÏÏ-ît2) 

(4.20) " ï 1 1 

2|e-'"ba(0 i-e2)j/ 
s: 

î 

^ a' (ûl - u\) + le-»[baio1 - S2) + a' (L1 - L2)]<//. 
0 

PROOF. We apply the standard monotonicity arguments to (4.17): taking the diffe­
rence of the two equations satisfied by u3 and multiplying (with respect to the dual sca­
lar product a ') by the difference of the corresponding solutions and the weight 2e~yt, 
we obtain 

^{e-*a' (u1 -u2)} + ye~*a'{ul -u2) + 2e~ytba{el -62) ^ 
at 

^2e-yi[Xba(a
1-d2

yu
1-u2)+af(L1~L2

yû
1-u2)]^ 

^ e-*[baiai1 - S2) + X2ba{ûl - u2) + a! [u1 - u2) + a' (L1 - L2)] ^ 

^ e - ^ [ b a ( Ô 1 - 5 2 ) + a ' ( L 1 - L 2 ) + U 2 + l ) a ' ( ? - ? ) ] 

where we used the easy bound (cf. (Aab) and (4.8)) 

(4.21) ba(J>) = b(A-1v)^a(A-lv) = a'G), V£EV; . 

Integrating in time we conclude. • 

We can now conclude the proof of Theorem 1. In fact, if (6J, uJ ) , / = 1, 2, are two 
solutions of problem Pi(ct, 0; L, #0)> we know that 

(4.22) (0y, z? ) solves problem P0 ( a, <p ; L + AB, 0j, «0 ) • 

By Lemma 4.6 we deduce 

£ i = £ 2 , be(0
1-&) = 0, 

and also, due to the positivity of ba, 

BaG
l = Bad

2. 

Finally from the differential equation (4.17) we read 

61 (*) = &(*), for a.e. / e ] 0 , T [ ; 

the conclusion follows now by Theorem 4.4. • 

We establish another estimate. 

LEMMA 4.7. Let us assume G4ab,/i;L,«o) ana" ^et (^>w) be a solution of problem 
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P;t (a, 0; L, u0 ). We have 

ess-sup (p(u(s)) 
* e ] 0 , T[ 

(4.23) 

(l/2)Ja(0) dt 

i l 

( ^ 0(«o) + ( 1/2) f a' (L)<fc + X J 6(0)<fc. 

PROOF. We take the ^'-scalar product of the differential equation (4.17) with G(t) 
and we integrate between 0 and s ^ T, obtaining 

s s s 

(4.24) ïa'(ut,0)dt+ ïa'(0)dt = [a'(L + XBa6,0)dt. 
0 0 0 

We call <pa the lower semicontinuous envelope of (pa in Va' (cf. [18, Ch. I, 2.2; 
12, Ch. 3]): 

(4.25) $a{v)\=kmmi$a(w):a,(w-v)^Q2}, VveVa
f. 

Of course da><pa is a maximal monotone operator which is related to A by [18, 
p. 20] 

(4.26) u E V; , 2(5) * 0 =>2(5) = 3,> 0, (5), 0, (5) = 0, (5). 

Since in (4.24) 9 E J4(«) = <3̂  (pa («), a.e. in ]0, T[, the first integral is equal to (see [17, 
Lemma 2.2]) 

(4.27) 0 , (2 (*) ) -0<(«(O)) , V J E ] 0 , T ] . 

Applying (4.26) again, we deduce that, for a.e. se]0, T[, 
5 s 

$a(u(s)) + la(e)dt = 4Auo) + l((L,0) + M(0))dt 
0 0 

and, by Schwarz inequality, we get (4.23), since for a.e. s e]0, T[ it is « (J ) E K(U(S)) 

and consequently (j){u{s)) = <j>a (u(s)). • 

Lemma 4.6 and 4.7 allow us to prove the following existence result. 

THEOREM 4.8. Let us assume that {Aahy A;L,U0)
 an^ W# ) hold; then there exists a unique 

solution (6,u) of the perturbed problem Pi(ct, 0; L, #0), w /̂irA #&? satisfies 

(4.28) 0 , ( « ) G L » ( O , T ) . 

PROOF. We already noticed that if 04^) holds besides the other assumptions 
(^•ab,A;L,u0 )> t n e n Po admits a unique solution. Thanks to (4.22), it is natural to look for 
the solution of P^ as the limit of a standard fixed-point iterative technique. If we choose 
0° E L2 (0, T; V^ ) and we define by induction 

(0* + 1 , « " + 1 ) : = t h e solution of P0(a, 0 ;L + AB,0*, *0)> 
it is easy to see that this sequence converges to the solution of P% (a, 0; L, &0 ); in fact, 
by Lemma 4.6, un and Ba 6

n are Cauchy sequences in L °° (0, T; Va' ) and L2 (0, T; V,' ) 
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respectively, whereas 
T T 

f ba (é
n )dt= ïh(Gn)dt is uniformly bounded . 

0 0 

The estimate (4.23) of Lemma 4.7 holds uniformly and proves that the sequence Qn is 

bounded in L 2 (0 , T; V/) and therefore un is bounded in H ^ O , T; V,') by (4.17). 
From the uniqueness of the limit point of u" in L °° (0, T; Va ) and the standard mono-
tonicity arguments, we can pass to the limit in (4.17); (4.28) follows by the first of 
(4.23). • 

Also the proof of Theorem 2 and its Corollary is almost completed; invoking Theorem 
4.4, it remains to show that there exists u satisfying (4.18), u being given by the pre­
vious Theorem 4.8. 

Since {AQ) holds, from (4.12) and Lemma 4.2 we know that 

e(t):=A-1d(t)'sD(A-1)9 for a.e. fe]0 , T[, 

so that the minimal selection 

u* 00 G A -1 (0(f)): \u* (t) | = min{ \v\:veA ~l 6{t)} 

is clearly measurable (cf. [6, Prop. 2.6(///)]); since <j)a{u) is bounded, taking into ac­
count (4.13) and (4.10) we deduce that u* belongs to L00 (0, T; H). Finally, if {Acomp) 
holds, then 

u G K{u) =>nau G K(u), 

so that the orthogonal projection on Ha of every solution u G U(ct, 0; L, u0) is a sol­
ution again. Since H^ and HJ are isomorphic via Ja and]aTl'au = u is uniquely determi­
ned and weakly continuous in H^, we conclude. • 

Now we study the limiting behaviour of the solutions as stated in Theorem 3 and 
from now on we assume that (LIMajAt<p.Lfu0) hold. 

First of all, we show some relations between M-convergence of Cte, definition 3.6 
and the pointwise convergence of the operators 

(4.29) %:H^VecH, %v\ = A£-
l]£vy VZ;GH, 

which obviously satisfy 

(4.30) u = $i£v<>ae(u, w) = (v, w), \/WœV£. 

LEMMA 4.9. {(Si£}£^o is a family of uniformly bounded symmetric operators satisfying, 
as e —» 0, 

(4.31) VE-^VQ strongly in H=>di£v£-> dt0v0 strongly in H , 

and 

(4.32) ve ^v0 weakly in H=>di£v£ ^?HoV0 weakly in H. 

Moreover, if a family z£ G V£ strongly converges to ?0
 G ^ o as in Definition 3.6, 
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then 

(4.33) z£ : = A~lze-*zQ \ = Aslz§in H, a£(z£) ->a£(?0) • 

PROOF. From (4.30) and (Aah) we have 

a\u\2^ a£(u) ^a'1 \v\2 , itu = %v. 

Formulae (4.31) and (4.32) follow easily from [12, Corollary 13.7(b) and Def. 

13.3]. 
Finally, if z£ e V£ strongly converges to ?0

 G VQ , then, for every we -*w in H, we 
have 

(z£,we) =ae(z£> %w£) = (z£, $i£w£)-*(zo, 9t0^o) = Uo>^o)> 

i.e. z£^Zo strongly in H; choosing wE . = ze as test function, we get 

&'£(z£) = (?e>Z*)-»(?0>*<>) = *0 (?0 ) • • 

REMARK 4.10. Thanks to the linearity and to the uniform boundedness dt£, the pre­
vious properties also hold for vector valued functions; e.g., for every v£ strongly conver­
ging to v0 in L 2 (0 , T;H) or H ' ( 0 , T;H), 

(4.34) %v£ -* 9ft0̂ o in L2 (0, T; H) or H 1 (0, T; H), respectively. • 

Now we prove that (3.5) is stable with respect to the weak limit of solutions. 

PROPOSITION 4.11. Let us assume that (LIMa> A,^;L,U0) bold and let(u£,6£)be a family 
of solutions ofVx(d£i(t>£\LeiUQ}£)) then there exists a constant C independent of e such 
that 

T 

(4.35) ||0(«£)||L»(O,T) + |kllL-(0.T;H) + \ U ( J{ ««) + M < U + b(dt)\dt^C. 

Moreover, as e—>0, ez r̂y couple of weak cluster points (60,u0) of (6£yu£) in 
L2(0, T;H) satisfies (3.5) for P^(Ct0, 0oî ^o> uo, o); the correponding (60,u0) satisfies the 
differential equation of (4.17) (13). 

PROOF. From definition 3.6, (LIMLUQ ), and Lemma 4.9, we deduce that there exists 
Qata > 0 such that 

T 

0e(«O,c ) + ftg(«o,C) + J a i ( ^ c ) ^ ^ Cdata> Vf E [ 0 , £ 0 ] . 
0 

The uniformity assumption of (LIMa A ^ ) and (4.20) entail that the integral in ]0, T[ of 
h(0£) is uniformly bounded; by (4.23) of Lemma 4.7 we get (4.35). 

Let us now assume that for a decreasing sequence {£„}„eN converging to 0 we 
have 

(4.36) u£n^u0y 0£ft^00) i n L 2 ( 0 , T;H). 

(13) At this level, we do not say anything about 00EA0U0. 
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We fix 

(4.37) weHHO,T;H), with w(T) = 0, 

and we choose the test functions vEn '.=• $ieniv in the weak formulation (3.5) of 
Pi(GCs, 0£>l; ££„> «o,e„)> obtaining for every n eN 

(4.38) j{-(ueH>fRemwt) + (deH9w)} dt 

0 

By Lemma 4.9 (cf. also 4.10) as n —» o° we get 
T T 

J{ - («o , SRoW/) + (00,w)}dt = («o,o, ^o^(0)) + |{(L 0 , 9t0^> + ^ ( ^ o , 9^o^)}^ 
0 0 

for every w satisfying (4.37). Since ?ft0(H) is dense in V0 (see £.& [12, Prop. 12.17]), 
we conclude. • 

The previous Proposition does not say if 60 belongs to A0u0; in order to answer 
this basic question, we have to work a little bit more. 

Let us denote by X the Hilbert space 

(4.39) X:=L2(09T;H) where Ç is the measure d&t) := e~yt dt 9 y : = A 2 + l , 

and let us denote by Ae again the canonical extension of Ae to X (see [6, 2.1.3 
and 2.3.3]). We introduce the multivalued operator We : X*-+2X with the same domain 
of Ae 

(4.40) we WE(u)o36eA£u, such that w = 0 + y%u - XdiEB0 . 

LEMMA 4.12. For ^£ry u,w e X such that w eWEu9 there exists a unique 6 : = 
:= <9£ (#;, u) e.X such that 

(4.41) 0 e y l £ « **J to = Q + Y%U - X%B6 

as in the definition (4.40). 

PROOF. From (AA) we see that 

e1
9d

2eAeu=>b(61 - 02) = 0=>B01=B02 , 

so that 

(4.42) 0e(w9 u):=w- y%u + XfReBd9 V6eAeu , 

is well defined and belongs to X. • 

We have 

LEMMA 4.13. W£ is a maximal monotone operator in X. 
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PROOF. The monotonicity is easy: if w* eV&e(u
l) with 6l := 0£{wl,ul), we 

have 
T 

(4.43) Uw1 -w2,u1-u2)dÇ^ 
o 

r 

> jlycHJe^1 - u2)) + ï ^ 1 - o2) -xb{el - e2, SRe(«
1 - « 2 ) ) ] j ç ^ 

0 

T 

> \[{Y/2)a[{j£{ul-u2)) + (i/2)b(e1 - e2)idç. 
0 

In order to check the maximality, we fix v E X and we have to solve the equa­
tion 

u + W£u Bv . 

We repeat the fixed point argument of Theorem 4.8, solving iteratively(14) 

un + 1 + 0n + 1 + ydi£u
n + 1 =v + meB0\ On + 1eA£u

n + 1. • 

We already said that the M-convergence of a family of convex functionals implies 
the graph convergence of the respective subdifferentials [3, Thm. 3.66]; here is the de­
finition (see [3, 3.58]): 

DEFINITION 4.14. Let H be a Hilbert space and C l £ , £ e [0 ,£ 0 ] , be a family of maximal 
monotone {multivalued) operators of EL We say that d£ G-converges to d0 as £ —> 0 if for 
every 60, u0 e H with 00e (3L0u0 there exist 9£ e £L£u~£ such that 

l i m [ | | 0 e - 0 O | | H + I | « C - « O I I H ] = 0 . • 

LEMMA 4.15. W£ G-converges to W0 as £ —» 0. 

PROOF. We fix w0 e W0(#o) a n d choose 0O : = <90{w0,u0)e. A0u0 as suggested by 
Lemma 4.12. Since Ae G-converges to AQ as £ ^ 0 , we find by the definition 

0£eA£u~£ such that lim [II 0e — 60\\x + II«e — u0\\x] = 0 . 

Setting 

(4.44) w£ :=6£ + ydi£û£-X$i£B~Ô£e W£û£ 

we deduce that w£ —» w0 strongly in X, since the following strong convergences hold by 
Remark 4.10 

$i£û£-*di0u0 , $i£Bë£^$i0B60. m 
We have 

PROPOSITION 4.16. Let w£n e
 rV&£nu£n be given in XX X, {en } n e ^ being a decreasing 

(14) This equation admits a unique solution for every n e N , thanks to the maximal mononotonicity of 
A£ and to the monotone and Lipschitz character of 9^ in X. 
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sequence going to 0, and let us assume that 

(4.45) uEn -*u0 , wEn -*w0 in X, as n-> °o , 

with 
T T 

(4.46) lim sup \(wem,ueH)dÇ^ \{w0,u0)d^. 
n —» oo J J 

0 0 

Then w0e. W0u0 and setting 0£n'.= 0En{wEni uEn) we have 

T 

(4.47) dEn - 0 O : = 0o(wo,uo) in X, Jton f b(0En - d0)d£ = 0 . 
o 

PROOF. The relation w0 e W0u0 is a standard consequence of the maximal monoto-
nicity and the graph convergence of WE. Let us fix 90 := 0o(wo,uo) eA0u0 and 
ïvE,0Eyû~E as in the previous Lemma (we omit for simplicity the index n); we obtain by 
(4.43) 

T , r 

o^ J{b(ee-êe) + a'(/£(«e-«e))}iç^c|(f£;e-s?e,«fi-«e)^. 
0 0 

Splitting the right-hand scalar product and passing to the limit, we get by (4.45) and by 
(4.46) 

T 

lim \[b(0E-ÔE) + a'(JE(uE-ûE))]dÇ = 0. 
£—>0 J 

0 

Since 0E strongly converges to 60 in X, we deduce the second part of (4.47) and conse­
quently BQE->Bd0 in X. By (4.45) and (4.32), we can pass to the limit in the 
equation 

0E = wE-yyiEuE + X%BdE 

and we conclude that 

Q£ ^ o " y%u0 + Xdi0B00 = 0o(wo,uo) = 0O . • 

We conclude now the proof of Theorem 3. We consider a family (0E, uE ) of solutions 
of P^ ( ae, (p E ; LE, % £ ) and we denote by ( 60, «0 ) a weak limit point in X X X of a sui­
table weakly convergent subsequence {6En,uEn)y whose existence is implied by Propo­
sition 4.11. We define 

wE:= 0E + y%uE - X$iEB0E, ee[0, £0], 

and we know that 

wEeWEuE, eE = 0E{wE,uE)y i f £ > 0 . 

Since (4.45) holds, we want to show that (4.46) is satisfied, too. We take the <ze'-scalar 
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product of the equation (4.17) with e~yt]£{uE(t))\ integrating we obtain 

^-aem£u£(T)) + \{w£iue)dl = ± ai(5o, J + j(Le, ^£u£)d^y 
0 0 

which also holds for s = 0 by Proposition 4.11. Since (tREnuEn is uniformly bounded in 
H ^ O , T;H), it converges to di0u0 in the pointwise weak topology of H; in 
particular 

lim inf aen{^EnuEn{t)) ^ aQ{%u0(t)), V / E [ 0 , T ] . 

£—»0 

Since %i£nuEn ^9t0^o *n ^ 2 ( 0 , T; H) we have by {LIML) 

T T 

Jim 1(1.,, 9t„«J# = |<L0, 9U>>#-
~* 0 0 

By Lemma 4.9, we deduce 

and (4.46); by Proposition 4.16 we obtain that 60 EAU0 and by Proposition 4.11 we 
conclude that (60,u0) is a solution of P0(a0 , 0o5 ^o> #0j 0 ) . 

Theorem 1 and (4.47) entail (3.17). 
The convergence (3.18) follows by the uniform boundedness of uE in H, the unique­

ness of the (projection of) the limit by {Acomp )> t n e pointwise convergence of diEuE, and 
the injectivity of 9t0 U0-

In order to check (3.20), we first observe that the related assumptions of Theo­
rem 3 surely imply (3.21), so that we assume this weaker condition. Let us recall that by 
the definition of M-convergence 3.5 we know 

T T 

lim inf [aE{6E)dt^ la0(00)dt. 
~* o o 

Therefore, it remains to check the opposite inequality for the «lim sup». We rewrite 
(4.27), which now holds for every s e [0, T] thanks to (A^ ) (recall that (j)E = 0 e , being 
(pE l.s.c.) 

T T 

^£(uE(T))^ ja£(OE)dt = 0E(uOiE) + j((LEy0E) + Xh(0E))dt. 

Since 

lim <fi£ («0, e ) = 00 («0, 0 ) 
£-*0 

by (3.21), and 

r T 

lim ( « L e , 0 e ) + Ab(0e))<fr= f«Lo,0o> + A6(0o))<fc 
£ - » 0 J J 
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by (LIML) and (3.17), our conclusion follows if we show that 

(4.48) lim mi4>£(u£(T))^^0{u0(T)). 
£ - • 0 

To this aim, we choose v£sK(u£(T)) and, up to a subsequence, we can assume 
that 

v£ -»v0, %V£ ^%V0 in H. 

On the other hand 

di£v£ = dì£u£(T)-^dÌQU0(T) 

so that J0VQ = J0UQ. We conclude 

lim inf .0C(«C(T)) =lim inf (p£(v£) ^ <j)0(v0) ^ <p0(û0(T)). • 
£->0 £-*0 

5. PROOFS OF THE THEOREMS OF SECT. 1 AND 2 

We begin by writing a Fubini-type formula for integrable functions on Q2 (cf. [16, 
sect. 3]); the (sketches of the) proofs of this and other simple results are collected in 
the appendix. 

NOTATION 5.1. We set (cf. (1.13) and (G2) of section 2) 

(5.1) R(x):=I-dr(x)S(xr), r(x) := detR(x) 

and we denote by ju the measure r*Xl and by v the measure r~l*£on Q2. For every seg­
ment sx, x G r, and every Xl-measurable function f we have (cf. (2.9) and (2.10)) 

t{x) 

(5.2) ^fd/^:=^f(s)r(s)dXl(s) = j M ) ^ i x U ) , 
Sx sx 0 

whereas for every L1(Q2) function g we have 

(5.3) j^j^JlL 

Observe that r is bounded on Q2 and greater than rj > 0 by (G2). • 

LEMMA 5.2. Let f be a function of h 1(Q2); then for XN ~ l-a.e, x e r, the restriction f\s 

is Xx-measurable and 

(5.4) jf(x)dx=jdDCN'1(x)jfd/jiy 

Q2 r sx 

(5.5) \fdv= jdXN~1(x)^fdX1 . 
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The second property we need is to characterize L%(Q2) as the subspace of the 
L2(&2)-functions which are constant along (XN ~ ̂ almost) every segments sx, 
x e r. 

LEMMA 5.3. The linear space C1(Q2) T\Hl{Q2) is dense in Hl{Q2) and 

(5.6) L%(Q2) = {u GL2(Q2): u\Sx is constant for XN_1 -a. e. x e T}. 

In particular, the projection II n on L2(Q2) with respect to the weighted scalar product of 
LQ2(Q2) is given by 

(5.7) nnf(x) = jfd[Q2[i]:= ng2d[i\ 'jfg2dju, for a.e. x e Q7 . 

We begin now the Proofs of the «concrete» theorems. 
We observe that Theorem 1.5 and the related existence result of Proposition 1.1 

are almost already explained in section 1: they follow by applying the abstract results 
1-3 with the choices (1.21)-(1.25), and, for e = 0, (1.29), (1.30). We limit us to point 
out the simple technical links. 
• The definition of (/) is standard (see [5, Ex. 2.8.1, 2.8.3]): we introduce a primitive 
of /?, 

S 

(5.8) j t : R H > [ 0 , + OO[, jt(s) := j > , ( r ) d r , 

o 

and we set for every U ' = \ux, u2 ) e H 

(5.9) 0(U);= S \jl{uiM)Qi{x)dx(15). 

• (Af) follows from (1.4). 

• (AA,a) n°ld f° r t n e quadratic form 

(5.10) b(0):=cp\e\2
H 

thanks to (1.5) and to (1.3). 
• (ALUQ) are trivially satisfied since D(<p) = H. 
• Wcomp) holds also for e = 0. Of course, the projection 770 of H on H0 is given 
by 

n0{u):=(uunmu2), 

IIn being given by (5.7); therefore, it is sufficient to prove that 

\j2(nnu2(x))g2(x)dx ^ \j2(u2(x))Q2(x)dx 

(15) Pi are Lipschitz functions thanks to ••(1.5), so that D(<p) coincides with H. This assumption could 
be avoided, following the definitions of the quoted examples of [5]. 
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for every U2SLQ2(Q2). By applying (5.4) and Jensen's inequality, we have 

\ j2(nnu2(x))g2(x)dx = \ dXN~ 1 M jj2l ju2d(Q2ju)\d(g2ju) ^ 

jdD€N~1{x)j fj2(u2)d(Q2v) d(g2fi) = 

jdXN Hx) jj2(u2)Q2dju= jj2(u2(x))Q2(x)dx. 

• (LIML)UQ) are trivial. 
• (LIMa}A^) is stated by Proposition 1.6; also the uniformity follows by the increa­
sing property of Ct£. 
• (1.18) correponds to (3.18). 
• (3.19) is satisfied if the initial datum u0y 2 belongs to L2 (Q2 ). In this case, (3.20) gi­
ves the strong convergence of Q] in L2(0, T;H1(Qi)), the convergence in L2(Qj) 
being ensured by (3.7) and (5.10). • 

The proof of Theorem I is also almost complete: the following two results show the 
equivalence between wLPI and the weak formulation of the system of Theorem I given 
by Remark 2.3. 

LEMMA 5.4. Let us set 

(5.11) U(Q2;R
N):={vGL2(Q2;R

N):R(x)v(x)EL2(Q2;R
N)yn(x)'v(x) = 0}. 

Then for every u e Hi {Q2) we have Vu e LR(Q2\ RN)• 

LEMMA 5.5. The trace operator u*-*u = u\ris a linear isomorphism mapping Hi {Q2) 
onto Hl{T)y Ll(Q2) onto L2(D, and Ll(Q2;R

N) onto L2(T; RN). Furthermore, it 
satisfies 

and 

(5.12) 

(5.13) 

Vr(u) = (Vu)\ry VueHl(Q2) 

Q2uvdx - Q2u v dXN~l, Vu, v eLl(Q2), 
Q2 r 

[ A2 V0 Vvdx = f A2 Vre-Vrv dXN ~l , V0, v e HI (Q2 ) , 
r 

jf2(x,t)v(x)dx= jf2(xyt)ddXN-\ VveL2(Q2), 

Q2 r 

- N - 1 where, for X ^a.e. x s T 

(5.14) ..f2(x>t):=\A->t)d(*> Q2M:=jç2d/i9 Â(x):= jR-'AR"1 dp . 
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We conclude this section with the proof of Theorem II, which we divide into three 
steps: first of all, we operate a rescaling of the variables in Q2 in order to write a family 
of problems in the fixed domains Q i, Q2 • Then we apply the abstract results in a simi­
lar way as in the previous proof; finally, we employ Lemma 5.5 to come back to the fi­
nal formulation on Qly T. 

STEP 1 : RESCALING. Following the notation of the case LI, let us operate the change of 
variables 

(5.15) x:=GE(z), xeQ£
2, zeQ2. 

For every function v(x) defined on Q\, we denote by v(z) again the composition v o G£, 
when no misunderstanding are possible. If v denotes the measure r _ 1 (z)dz on Q2 and 
RE, r£ are given by 

(5.16) Re{z):=I-edr(z)S(zr), re{z) •= detRe(z), 

standard computations show 

LEMMA 5.6. The change of variables (5.15) defines a linear isomorphism between 
L2(Q\) and L2(Q2), Hl(Q2) and H1(Q2); the following formulae hold 

(5.11) I Q£
2(x)u(x)v(x)dx= lç£

2(z)u(z)v(z)dv(z), Va, veL2(Q£
2), 

(5.18) fAi(x)VxO(x)-VxvWdx= jA£
2(z)Vz0(z)-Vzv(z)Mz), V0, veHHQD, 

QE2 Q2 

where Vx and Vz are the gradient with respect to the variables x and z respectively, 

(5.19) jfi(x,t)v(x)dx= jf£
2(z,t)v(z)dv(z), VveL2(Q£

2), 
Q£2 Q2 

where 

(5.20) QE
2(z):=erE(z)Q£

2(z)y f\(z,t):= ere(z) f£
2 (z,t), 

and (in the rescaled variable z) 

(5.21) A\ := e^PRR-^IR-'RP + (rE/e)NA!N. 

Here, P = Pz is the tangent projection of (2.1), and N := Nz = n(z)nT(z) is the normal 
one; recall that R and R£ are symmetric matrices. 

It is immediate to see that the new unknowns in the z-variable (coupled with the old 
ones in Q i ) satisfy the same weak formulation of wPT in the fixed domains Q j , Q2 if 
we replace Q 2, A2, f2 by the corresponding functions Q2,A2,f2. We call RTPfi this re-
scaled version of PTfi. 
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STEP 2: APPLICATION OF THE ABSTRACT RESULTS. Now we can apply the abstract machi­
nery as before, setting (cf. with (1.21)) 

(5.22) H:=L2
Ql{Ql)xLl{Q2)y 

(5.23) a£{Q,v)\= [;41V01-Vf;1<&c+ [ A£
2V62-Vv2 dv(z), 

Qx Q2 

and, for E > 0, Ve as in (1.23). Unlike case I, the operators A£ are defined by 

(5.24) 0eAe(U)oO1W=Pl(u1M), 02{z) = P2(u2(z)/ g£
2(z)), 

and they are the subdifferentials in H of the convex functionals 

(5.25) 0 £ (U) := \jMW)dx+ \ QE
2(z)j2{u2{z)l g£

2(z))dv(z), 
Qx Q2 

where // are defined by (5.8). Finally, if 

(5.26) (Le(t),v):= J/i(x,f)M*)<fc + 

+ \g1(x,t)v1MdXN-1(x)+ \f£
2(z,t)v2(z)dv(z), 

r1 Q2 

then the same simple application of Lemma 5.6 gives the following statement. 

LEMMA 5.7. (0£ ,u£)i=i}2is the rescaled weak solution ofRTPfi if and only if the cou­
ple (<9£,Ue) given by 

(5.27) U£ := ( « f , e l « l ) , 0 £ : = (0Ï, 01), 

is the solution of V(ae> (j)E; L£,U0e) for the choices (5.22) -(5.26) and for the initial 
datum 

U0,s
 : = («o,i, £2*0,2). • 

Now we observe that 

(5.28) lim r£(z) = 1, lim R£(z) = I, lim gf (z) = Q2(Z) = £>r(zr) 
£ ^ 0 £-*0 £-»0 

uniformly in Q2. These limits lead us to set 

(5.29) 0 o ( u ) : = JyxC^^x) )^ + J Q2(z)j2(u2(z)/ Q2{z))dv(z), 
Qx Q2 

and, if y0 is defined as in (1.29), 

ao(0) := J* AlV01-W1 dx + J I 2 ( z ) V02-V02 <*v(z) V#: = (01 ? 02) G V0 , 
&! Q2 

where 

(5.30) A2(z) := PxR(z)Ar(zr)R(z)Px, Ar given by (1.36). 
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Similarly, we set 

(5.31) f2(z, t) : = fr(zr, t), u 0,2 (z) •= u0yr(zr) 

and we have 

(5.32) <L0(/),V>:= f / 1 f r , « t ; 1 M à + 

Jg1U,/)t;1(x)J5CN-1(x)+ J£(z, /)M*)<Mz), + 
r 

and 

(5.33) U0t0:= (u0ti9Q2(z)u0t2(z)). 

Again we can apply the abstract results of sect. 3; we omit the details, which are analog­
ous to the previous calculations, thanks to the limits (5.28). We observe that the crucial 
role is played by the following natural result: 

P R O P O S I T I O N 5 .8 . For every 0 ^ e < 1 let us define de, <j)e, L e , U 0 j £ according to 
(5.22), ..., (5.26), and to (5.29), ..., (5.33), and let us assume that (1.34), ..., (1.36) hold. 
Then as e goes to 0 , (Xe and (p £ M-converge to d0 and (p 0 in H, and L £ , U0j £ strongly conver­
ges to L 0 , U0>o accordingly to the Definition 3 .6 . 

PROOF. We only consider the simpler case (2.18), (2.19). 
• a€ M-converges to Ct0 on H. We check the first condition of Definition 3.5, the 
other one being trivial; furthermore, it is not restrictive to consider only the «^-con­
tribution» to a£ and a0, i.e. 

(5.34) a2j£(0):= j A£
2(z)Vz0(z)-Vz0(z)dv(z), Ve^O. 

Q2 

Let us given ^ e 6 H 1 ( û 2 ) , e > 0, with 

d£ > 0 ° in L2(Q2), and lim inf a2 A6E) < + oo . 
£-*0 

By (5.21) and (2.18) we get 

a2}E(0£)^aVj \R-1(z)R(z)PzVz0
£(z)\2dv(z)+ ^2. J" | §01 

Q2 Q2 

2 

dv(z). 

Since R(z) has a uniformly bounded inverse and R£(z) is uniformly bounded, we 
deduce 

lim inf ||^£||H1(^2) < + °° , lim inf 
e—»0 e-»0 • J 

96e 

dn 
dv{z) = 0, 

so that 0°eHl(Q2), 0e -6>° in H 1 (^ 2 ) . 
Since 

ve :=^eRe-
1RPz\z6

e ^RPzVzd° = i>°(z) in L2(Q2; RN), 
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and 

a 2 > £ (0 £ )£ JArv
e(z)-vE(z)dv(z), fore>0, 

we deduce 

l im in fa 2 e (0 Ê ) ^ l im in f f Arv
£ (z) - v£ (z) dv(z) > f Arv°(z)-v°(z)dv(z) = a2 0(0°). 

£-»0 ' £-»0 J J 

• 0eM-converges to 0O
 o n H. As before, we can consider the behaviour of 

</>2,eW'-=Qrj rE{z)j2(u
£ (z)/ Q rrs(z)) dv(z), 

Q2 

where u£ -^u° in L2(Q2). Being j 2 of quadratic growth, we write 

</>2,e(u£) ^ Qr \J2(u
£/Qrr£(z))dv(z) - C\\u£\\2

L2{Q2) sup | r e ( z ) - l | 

for a suitable positive constant C, independent of e. Since 

ue/(Qrre)^u°/Qr inL v
2 ( f l 2 ) , 

we conclude by the convexity and the lower semicontinuity of/2-

• The convergence of the data L£, UE are easy to check, since (1.34) and (1.35) 
entail 

/ 2 - > / 2 strongly in L 2 (Q 2 ) , u£
0)2-*u0}2 strongly in L2 ( £ 2 ) . • 

By the previous Proposition and Theorem 3, we deduce that the rescaled solutions 
{6£,uf) of Lemma 5.7 satisfy 

(5.35) 0,?->0,- stronglyin L2(0, T j H 1 ^ ) ) 

and, if ZJTW is now the orthogonal projection on L2 (fl2 ) with respect to the scalar pro­
duct of L2(£?2), 

( 5 . 3 6 ) « f O , * W i O , / ) , 77, ( pi (•) «1 ( • , / ) ) - e 2 ( - ) « 2 0 , 0 , weakly in L2 ( £ , ) , 

for every £ e [0, T], where <9 : = (#x, 62), U'.= (uiyQ2u2) are the unique solution of 
l?(a0y(p0;L0,U0}0) satisfying (3.14), i.e. Q2(*)u2(;t) eL2(Q2) for a.e. / E ] 0 , T[. 

STEP 3: FORMULATION ON T. It is clear that (5.35) implies (16) 

eu*) = J0l(z)dxHz)^02(x) = J02(z)dxHz) = 02\r(x)y 

(16) We neglect for simplicity the dependence on t. Observe that the mean value along the normal seg­
ments is not affected by the rescaling; its regularity on F depends on the regularity of the thikness 

fix). 
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strongly in L2(0, T;H1(r)). Regarding u2, we note that, (cf. Lemma 5.3) 

\uE
2{s)QE

2{s)dXl{s) 

nn(g
£
2u!)(z) =Sz- = iui(s) g£

2(s)dxHs) = 
\dxl{s) s! 

= Q2(Z)Û!(Z) + jui(s)[Qe
2(s) - Q2(s)idXHs)9 

so that by (5.36) and (5.28) we deduce 

lim i 

It follows that 

lim IIn(Q2U2 ) = lim Q2u2 , in the weak topology of L2(Q2) 
e—>0 e ->0 

u2 (x) = lim u\ (x) = u2\r(x), weakly in L 2 ( T ) . 

In order to write the weak formulation of the coupled system, as suggested by Remark 

2.3, we observe that (5.5) and Lemma 5.4, 5.5 entail 

(5.37) | g2(z)u(z)v(z)dv(z) = ^QruvdXN~\ Vu, veL2(Q2)y 

Q2 r 

(5.38) jA2(z)V0(z)Vv(z)dv(z) = jeArVre-VrvdXN-1 , V0, veH^(Q2)y 

Q2 r 

(5.39) jf2(z,t)v(z)dv(z) = jax)fr(x,t)v(x)dXN-1(x), \/vsL2(Q2). • 

Q2 r 

6. APPENDIX 

We list here some useful differential identities; we recall that xx • = x + Xn(x) solves 
the Cauchy problem 

(6.1) x0=x, dxx/dX = n(xx). 

LEMMA 6.1. For every point x e Q2 we have 

(6.2) S(x)n(x) = 0 , nT{x)S(x) = 0 , 

(6.3) xx E Q2=>S{xx)(I - XS(x)) = S(x), (I + XS(xx)) = (I - XS(x))'1. 

Moreover, setting 

(6.4) R(x) : = (I + dr{x)S{x))-1 = I - dr(x)S(xr), r(x) := de tR(x ) , 

we have 

(6.5) dr(x)/dn = - (trS(x)) r(x) = divn(x) r(x). 

The Proof follows by differentiating the identity 

n{xx ) = n{x), Vx, xx e Q2 

and by the application of Liouville Theorem to (6.1). • 
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LEMMA 6.2. Let 0 be the mapping 

(6.6) 0: Q2 H > R N X R , ®(x) := (xr, dr(x)) . 

Then 

(6.7) [J<P(x)f := det[(D<2>(x))rD<2>(x)] = r " 2 (x ) . 

PROOF. We shall see that (cf. (6.3)) 

(6.8) (D0(x))TD0(x) = (I + dr(x)S(x))2 . 

Since 

Dxr = I — n(x)nT{x) + dr(x)S(x) = Px + dr(x)S(x), 

we have for every t> e RN 

D0(x)v = ( P ^ + dr(x)S(x)v, Nxv) e RN X R , 

and 

|D#(x)*|2 = |PX*|2 + |N**|2 + MrU)^U)^ | 2 + 2dr(x)vTS(x)v = 

= \v + dr(x)S(x)v\2 . 

Since we are dealing with symmetric matrices, this is equivalent to (6.8). • 

PROOF OF LEMMA 5.2. Let us observe that 0 is a C1 diffeomorphism of Q2 onto 
3>(£2 ) c r X R, which satisfies 

<P{xx ) = (x, X), Vx e r , xxe Q2 . 

By the change of variable formula (see [19]) we write 

= J dXN - l (x) J" f(xx ) r(xA ) <& = J" i ^ N " * (x) ̂ /(s)dpt(s). • 
r . o r sx 

Our aim is now to show that L2 (Q2 ) is given by the functions of L2 (£?2 ) which are 
constant along 3CN ~ ^a.e. segment sx. 

For x e Q2 let us define 

&(x) := »(x)/r(x), which satisfies div&(#) = 0 in Q2 , è(x) = n(x) on T 

by (6.5), and let us call sx
+ the part of sx joining x with T2. We have 

COROLLARY 6.3. Let v be a C1 function with compact support in Q2 and let us 
define 

(6.9) v(x):= -b(x) lvd/i. 

sx
+ 

Then 

div v — v . 
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PROOF. Being b a divergence free vector field, we have 

àxvv{x) — — -T— \ vdu = —— v(x)r(x) = v{x). • 
r(x) an J r(x) 

sx
+ 

COROLLARY 6.4. Let u G Hi (Q2); then 

u\Sx = u(xr) for XN~X-a.e. xeT. 

PROOF. Let us fix v as in the previous corollary; then we calculate by the Green's 

formula 

\u(x)v{x)dx = \ u(x)(divv(x))dx = 

= - [ Vu(x)-v(x)dx- lu\r(x)v(x)-n(x)dXN~l(x), 

Q2 r 

since v vanishes on F2. By definition of Hl(Q2)>
 w e know that 

Vwv = (l/r)Vwn = 0 , 

so that by (6.9) 

u(x)v(x)dx = \ u\r(x)dXN~1(x) \vdju = u(xr)v(x)dx . 
Q2 r sx Q2 

Since v is arbitrary, we conclude. • 

P R O O F OF LEMMA 5.3. Let unsC1(Q2)he a sequence converging to u G Hi (Q2 ) in 

the strong topology of H1(Q2). It is easy to check that 

u„ (xj = Tlun (x) : = \un dX1 

is a C 1 function in Hi (Q2 ); since the linear operator 77 defined above is bounded in 

H1(Q2) and IJu =u, we conclude. • 

Lemma 5.4 and 55 follow easily; it is sufficient to work with C 1 functions and to ap­

ply (6.4) to 

u{xx ) = u{x) => (I - ÀS(x)) Vu(xx ) = Vu(x). 

We make explicit the last elementary computation for Lemma 5.6. 

L E M M A 6.5. Let G8 he defined as in (1 .32) , JR.£, r£ as in (5 .16) ; then 

DGE(z)v = R-1(z)R£(z)Pzv + eNzv, detDGe(z) = ere(z)/iiz). 

PROOF. We know that 

Ge(z)=z-(l-s)dr(z)n(z), 
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so that by (6.3) 

DGe(z)v = I - (1 - e)n(z)nT(z) + ( 1 - e)dr(z)S(z) = 

= £NZ* + [J + dr(z)S(z) - edr(z)S(z)]Pzv = 

= eNzï> + (J + J r(z)$(z))[I - edAz)(I + ^ ( z ) ^ ) ) - 1 ^ ) ] ? ^ =. 

= sNzv + (I - ^ ( z ) ^ ) ) " 1 [I - edr(z)S(zr)]Pzv. • 
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