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Fisica matemat ica . — A perturbation problem in the presence of affine symmetries. 

N o t a di T U L L I O V A L E N T , p resen ta ta (*) dal Socio G . Grioli . 

ABSTRACT. — An approach to a local analysis of solutions of a perturbation problem is proposed when 
the unperturbed operator has affine symmetries. The main result is a local theorem on existence, unique­
ness, and analytic dependence on a parameter. 

KEY WORDS: Perturbation problems; Affine symmetries for operators; Existence theorems. 

RIASSUNTO. — Un problema di perturbazione in presenza di simmetrie affini. Si propone un approccio ad 

un'analisi locale delle soluzioni di un problema di perturbazione dove l'operatore imperturbato possiede 

delle simmetrie di tipo affine. Il risultato principale è un teorema locale di esistenza, unicità e dipendenza 

analitica di un parametro. 

PREFACE 

We consider a (perturbation) problem of the form A(x) + eB{x) = 0, with A and B 
given operators from an open subset U of a Banach space X into a Banach space Y and 
e a parameter, and suppose that the (unperturbed) operator A has affine symmetries of 
the type studied in Valent [4]. These symmetries are described by means of affine re­
presentations of a Lie group G on X and on Y connected by a linear mapping from X 
into Y. 

We observe, as an example, that the perturbation problems arising in nonlinear, or 
linear, elastostatics when the loads depend on the unknown deformation in a general 
way are included in our abstract perturbation scheme. 

The presence of symmetries for A leads to compatibility conditions on A, B, e, 
which give rise to serious difficulties in pursuit of local existence theorems. The aim of 
this paper is to present a strategy for making a local analysis of solutions of the pertur­
bation problem. To this end a crucial role is played by Lemma 4.1. In Section 5 we 
show that it is possible to associate to the operator B, at any pair (£0,g0) e U X G, so­
me linear subspaces of the tangent space to G at its identity element which serve to di­
stinguish the situations of essential singularity from those in which the singularity is 
apparent. 

A first achievement obtained by following the ideas exposed in Sections 4 and 5 is a 
theorem of local existence, uniqueness, and analytic dependence on s (see Theorem 
6.1). 

• 1 . D E S C R I P T I O N O F A N A B S T R A C T S E T T I N G 

Let (X, || • ||x) and (Y, \\ • \\Y) be real Banach spaces. Following Valent [4], we deno­
te by d(X) the (Banach) space of continuous, affine mapping from X into itself equip­
ped with the norm ip«-».||tp(0)\\x + sup{||^U) - ip(0)\\x; IHIx ^ 1}, and by £(X) the 

(*) Nella seduta del 13 giugno 1996. 
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subspace of <3L(X) whose elements are (continuous) linear mappings. GL(Y) and £{Y) 
have an analogous meaning. Moreover, let G be a Lie group, and let g^Qg and g^Qg 

be affine representations of G on X and on Y, respectively (i.e. homomorphisms of the 
group G into the group of invertible elements of cl(X), and into the group of invertible 
elements of &(Y), respectively). The mappings gt-*Qg and g^Qg are supposed to be 
analytic; their differentials at the identity element e of the group G will be denoted by 
v^Rv and v*->Rv, respectively. For any g e G, let us denote by lg the linear part of Qg 

and by lg the linear part of Qg; thus Qg(x) = lg(x) + Qg(0) Yx EX and Qg(y) = lg(y) + 
+: Qg(0)\/y e. Y: Moreover, let v >->Lv and v >->Ly be the differentials at e of the mappings 

g »-»/g and g^lg, respectively; so the mappings v^R», v '^R», v^Lv, v^Lv send the 
tangent space TeG dXe to the manifold G into &(X), CL(Y), £(X)y £(Y)y respectively. It 
is easily seen that 

Rv(x)=Lv(x)+Rv{0), Rv(y)=Lv(y)+RA0) 

for all v E T^G, x e l , and j £ 7 . Finally, we set 

01= {Rv:v<=TeG}y à={Rv: veTeG}, 

and, for any x eX and y eY, 

Sl(x) = {Rv (x): v E TeG} , «(?) = R (y): ^ T , G } , 

REMARK 1.1. For any g E G we have 

(1.1) R ' o f t : z, E TeG} = {lg oRv:v<= TeG} . 

Consequently, 

u e 6l^>lg-i ouoQge 81 V g e G . 

PROOF. Let v &TeGy and for every A E I? let gx = exp ( At> ). To the curve X ̂ >gx in G 
we associate the curve X^gx in G defined by putting^ = g ~lgxg, and we consider the 
element v of TeG defined by v = ((d/dX)gx)x = o- Our proof is ended if we prove that 
Rp o Q = I o R-. In order to do this, it suffices to observe that, since 

Rv \diQgx)x=0' R~v \dxQlkY=*y 

we have 

= ( Ix {Qg °eâ))-A-o = 4 ° ( ^ ^ ) A = O = 4 oR* • 

The penultimate equality is true because Qg oQgx — gg OQ-Q = lg(ggx ~ Qg0)-
 m 

2 . A PERTURBATION PROBLEM. ASSUMPTIONS ON THE UNPERTURBED OPERATOR 

Let X, Y be real Banach spaces, U an open subset of X, A: U ^>Y and B: U —>Y 
smooth operators, and e a real parameter. We shall deal with the problem of finding 
XEU such that A(x) + sB(x) = 0. 
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As regards the operator A we assume that it has the symmetries expressed by the 
following property: an affine representation gv~^Qgofa Lie group G on X, an affine repre­
sentation g^QgOf G on Yy a one-to-one, continuous, linear mapping r: X—> Y, and an in­
ner product (yi9y2)ir~*yi*y2 on Y ex^st suc^ that Qg{U) ç U Vg G G, and 

(2.1) QgoT = ToQg Vg e G 

(2.2) A(Qg(x))=Tg(A(x)) V g e G andVxeU, 

(2.3) A(x)-Rv(r{x)) = 0 VveTeG andVxeU. 

We emphasize the fact (proved in Valent [4, Theorem 3.2]) that, under suitable hypo­
theses on the operatore and the representations g*~>Qg and g*-*Qg of G, condition (2.3) 
follows from ((2.1), (2.2)). 

We note that (2.1) easily get Ry or = ToRv for all v e TeG, and so (2.3) takes the 
form 

(2.3)' A(X)-T{RV(X)) = 0 VvsTeG a n d V x e U , 

namely the form 

(2.3)" A(x)eM(x)° V X E U , 

where N(x) = #t(r(x)), i.e. 

M(x) = {àv(z(x)): v e TeG} = {{r(Rv(x))): v e TeG} , 

and N(x)° denotes the orthogonal of K(x) in the Hausdorff pre-Hilbert space 

ttV). 
We further suppose that there is §0

 G U s u c n t n a t 

(2.4) i4(So) = 0 , 

(2.5) Keri4'(É0)Ç&(êo), 

(2.6) dim KerA ' <£0) ^ codim 1mA' ( | 0 ) , 

where A' (£0) denotes the differential of A at £0 . 
From ((2.2), (2.4)) it follows without difficulty that KerA' (£0) 2 &(£o)- Then, 

combining (2.2), (2.4) and (2.5), we get 

(2.7) KerA'(§o) = ^ ( ^ o ) . 

On the other hand ((2.3), (2.4)) implies A' (£0)(*) e iï(Ç0)° VxeX, namely 
ImA ' (£0) Ç «NX§o)° ; tnen> a s dim>f(§0) = dim 5t(ê0). < + °° , it is easily seen, by using 
(2.5) and (2.6), that 1mA' (£<>) = Wlo) 0 , and hence that 

(2.8) y = ^ o ) e i m i 4 ' ( ê o ) . 
This fact is generalized by 

REMARK 2.1. Let the hypotheses (2.1), (2.2), (2.3), (2.4), (2.5), (2.6) be satisfied. Then 

for any geG we have 

(2.9) Y = M{Qg(Ç0)) 0 lmA'(Qg(Ç0)), 

#«J ^ suhspaces N{Qg{ï;o)) and 1mA' (Qg(^0)) of Y are orthogonal for the inner,pro­
duct • on Y. 
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PROOF. We fix g e G. From (2.8) it follows that, for each y e.Y there are £ e X and 
v eTeG, with £ and Ry uniquely determined, such that 

y=i4 ' (£ 0 ) (É) + ( r ° J U ! o ) . 

Then, putting x = Qg(£), we have 

y = A' (ÇQ)(Qg-i(x)) + (rolg-i o(lgoRv))(Ç0). 

On the other hand, in view of Remark 1.1, there is v eTeG such that 

lg oRv = R-oQg . 

Therefore 

y = i 4 ' ( ^ o % - ' ( * ) ) + (r° / t-0( /?5(é t(^o))) . 

Now, we observe that from (2.2) it easily follows that 

A'(Qg{Ç0))oQt = 7toA'(ë0). 

Then 

Tt{y)=A'(Qg(i0))M + (ÇoTo/4-.)to( f t(!0))), 

namely, as lgotolg-i = r, 

ïg(y) = A' (Qg(Ç0))(x) + (ToR-v)(6g(Ç0)). 

Thus (2.9) is true, because lg is a bijection of Y onto itself. Finally, in order to prove 
that N(Qg(£0)) and ImA' (çg(Ç0)) are orthogonal, it suffices to observe that ((2.2), 
(2.4)) implies A(çg(Ç0)) = 0, and hence from (2.3) it follows that A1 (^(£o))(£) be­
longs to J % ( ê o ) ) ° V£ E X. • 

>V -k /V 

Let us fix vx,..., vr G T̂  G such that (Rjjl,..., R$r) is a base of ^ and consider the 
mapping 7: X X Y-^Rr defined by putting 

y(x,y) = (yRj.(T(x)))j=it_>r, namely y(x,y) = (yr(R^(x)))J = h_>r, 

for any ( x j ) e l x 7. The mapping 7, which will have an important role, actually de­
pends on the choice of the base (R^1,..., R$r) of 61, but the points where y vanishes are 
independent of the choice of the base of 81; we emphasize the fact that we are intere­
sted to such points and not to the particular function y vanishing at them. Clearly, 7 is 
continuous, linear in y, and affine in x. We observe that from the definition of 7 it im­
mediately follows that 

y(x,y) = 0<^>y EM(X)° . 

Later, we shall suppose that, for ( X J ) G X X 7 , 

(2.10) Y(x,y) = 0=>Y(QgW,7g(y)) = 0 V ^ e G . 

REMARK 2.2. Condition (2.10) is satisfied provided, for yl9 y2 e Y, 

(2.11) yi-y2 = 0=>lg(y1)-7g(y2) = 0 V ^ G G . 
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PROOF. Suppose that (2.11) holds, and let (x, y) e X X Y be such that y(x, y) = 0, 
i.e. 

r r ( i ^ . ( x ) ) = 0 V y = l , . . . , r , 

where (Rv)j=i,...,r *s a base of 61. Then, in view of (2.11), 

ïg(y)'ïg(r(R-Vj(x))) = 0 V / = l , . . . , r , 

namely, by (2.1), 

Tg(y)-T(lg(R-Vj(x)))=0 V / = l , . . . , r . 

Therefore, since in view of Remark 1.1 there are v 1 ? . . . ,vr e TeG such that 

R .̂ = 4 o R - o ^ - i ? 

we have 

7g(y)-T(Rv.(Qg(x))) = 0 V / = l , . . . , r , 

which means y(@g (#), /g (3O) = 0, because it is easy to see that (Rv.)J-= i>t..)r, as well as 
(K?.)y=i,...,r, is a base of 51. • 

3 . T W O EXAMPLES FROM FINITE AND LINEAR ELASTOSTATICS 

Let us take out from the finite and linear elastostatics two examples of operators 
A: X->Y having the properties (2.1)-(2.6). As in Valent [4, Sect. 5], we take Y = 
= Yi X Y2 and we make the following two choices (within Sobolev and Schauder spaces) 
of the Banach spaces X, YÌ9 Y2: 

\ X= Wm + 2'p(Q,Rn) 
(3.1) 

[ y1 = TJP^(fl,R»); Y2 = Wm + 1-1/p>p(dQ,R") 

(X = Cm + 2>x(â,Rn) 

j y 1 = Cw 'A(fl,JP ,) ; Y2 = Cm + 1>x(dG,Rn), 

where Q is a smooth, bounded, open subset of Rn, 342 is its boundary, 1 < p e R, 
X e]0, 1[, and/>(w + 1) > «. For the definitions and properties of these spaces we re­
fer to Valent [3]. 

For both choices of X and Y, we take as t: X —> Y the function defined by r(x) = 
= (x>x\dQ)> a n d consider the inner product • induced on Y by the usual inner product 
on L2(Q,Rn) X L2(dQyR

n). Furthermore, we take as U the set of elements of X 
that are orientation-preserving diffeomorphism of Q onto a subset of Rn. Since X is 
continuously embedded in C1(Q,Rn), U is an open subset of X (see, for instance, 
Hirsch [1, Ch. 2, Th. 1.4]). _ 

As a first example, let (t, Z)^s{t, Z) be a given function from Q X M^ into M„, 
where Mn is the set of n X n real matrices and M^ = {Z e M r detZ > 0}, and consi-
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der the (^-dimensional version of the) finite elastostatics operator A: U—> Y defined 
by 

(3.3) A{x) = {-àivS(x),S{x)\3Qv), _ 

where v is the outward, unit normal to dû, and S(x) is the function from Û into M„ de­
fined by setting 

(3.4) _ S(x)(t)=s(t,dx(t)) 

for all / e 42. Here dx{t) denotes the gradient at t of the function x: Q ->Rn. We sup­
pose that 

(3.5) s(t, RZ) = Rs(t, Z) V(/, Z, R) e Q X M+ X 0+ , 

(3.6) j ( f ,Z)Z T e Sym* V(f, Z) e fl X Af+, 

where Z r is the transpose of the matrix Z, 0^+ denotes the set of Z e Mj" such that 
ZT = Z~l, and Sym„ denotes the set of symmetric elements of M„ . In the physical con­
text: Q represents a reference configuration of an elastic body, the function x represen­
ts a deformation of the body, the function s is the response function for the first Piola-
Kirchhoff stress, the symmetry (3.5) follows from the material frame indifference, whi­
le (3.6) is a consequence of the balance of angular momentum. On the function s we 
make the further two hypotheses: 

(3.7) s(t,I) = 0 V / E A , 

(3.8) Ì dZhks{tJ)ZhkZ{j>0 VteQ and VZ E Sym,\{0}, 
i,j,h,k = i 

where I is the unit element of the ring Mn. Note that I = dtQ, where tQ denotes the 
identity function from Q into Rn. Thus (3.7) and (3.8) concerns the behaviour of the 
function s at the deformation tQ, namely at the reference configuration: (3.7) means 
that the reference configuration is unstressed, and (3.8) is usually assumed when (3.7) 
holds. It is not difficult to see that if (3.5) and (3.6) holds, then the operator A defined by 
((3.3), (3.4)) has the properties (2.1), (2.2), (2.3) when G is the group of isometries of Rn 

{i.e., function from Rn onto Rn of the type y >-><: + Ryy with e e Rn and Re.0*) and Qg, 
Qg are defined by putting 

Qg(x) =gox, Qg(ylfy2) = (goyl9goy2) 

for all x s X, y i s Y1 and y2 e Y2. (Cf. Valent [4]). Furthermore, it is possible to prove 
(see Valent [3, Chapter III]) that, under hypotheses (3.5)-(3.8), if Q is of class Cm + 2 

and se.Cm + 2(Q XMn,M„) [respectively Q of class Cm + 2>x and seCm + 3{Qx 
X Mn, M„)], then A is a Cw-mapping whenX, Y1,Y2 are defined by (3.1) [respectively by 
(3.2)], and moreover 

KerA ' UQ) = Mio), 1mA ' (iQ) = X(iQ)° , 
whence 

Y=X(iQ)®ImA'(iQ), 

or, more in.general, 

Y = N(QMQ))@ImA'(QgUQ)) 
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for any isometry g ofRn (by Remark 2.1). It is interesting to observe that, for a suitable 
choice of the base of SI, we have 

(3.9) Y(x,y)(t) = \ I71+ fy 2 r+ l | * A ? i + \xAy2\t, t e~Q, \yi+ \y2 ]+ j x A j i + J*Ay2)f, t< 
\Q dQ J \Q dQ J 

for any x e.X and y = (yi, y2) e Y, where x A y\ and x /\y2 are pointwise defined, na­
mely (x Ayi)(t) = x(t) A y1 (t) Vt eQ and (x/\y2)(t) = x(t) Ay2 (t) V* G 3fi, with A 
the external product on Rn. 

The second example concerns the (#-dimensional version of the) linear elastostatics. 
In this case the operator A has the form (3.3), with S(x) defined by 

S(x) = 2 sijhkdkxh\. . 
\ M=l Jt,j = l,...,n 

where the s^k are given real-valued functions defined on £2 and x̂  is the h-th compo­
nent of the Rn-valued function x. In Valent [4] it has been remarked that, // 

$ijhk $hkij Sjihk ) 

then A has the properties (2.1), (2.2), (2.3) when G is the tangent space at the identity fun­
ction on Rn to the manifold of isometries ofRn (i.e., G is the set of functions g: Rn —> Rn 

of the type g{t) = c + Wt, t eRn, with c eRn and W a skewsymmetfic element of M„) 
and Qgy Qg are defined by putting 

Qg (x) = x + g I Q , Qg(y\,y2) = (y + g\o,y + g\aa) -

If, in addition, 

Ì stJhk(t)ZtJZhk>0 VteQ and VZESym, \{0} , 
/, y, h,k = i 

it is known (see Valent [3]) that 

Y=X(0)®TmA'(0) ( = {(g\Q,g\do): geG}®lmA) . 

Finally, we observe that a suitable choice of the base of SI leads to 

\yi+ \ji + J*oAyi + \ i3Q/\: 
Q dQ J \Q dQ 

Y(*>y)(t) = \ J3>i + I 3̂2 I + I h f lA3>i+ I i s o A ^ I ' , ^ e Û , 

for all x e X and y = ( j i , j 2 ) e.Y, where £5£ denotes the identity function from dQ 
into R*. 

We observe that, in the context of elastostatics, the operator B has the meaning of a 
loading operator. Since here B is an arbitrary smooth mapping, our results applie to an 
arbitrary loading operator (depending on the deformation x in a quite general manner). 
For some concrete examples of loading operators we refer to Valent [4, Sect. 7], or 
Valent [3]. 

4 . A BASIC LEMMA AND PRELIMINARY REMARKS 

Let lo e X be such that (2.4), (2.5) and (2.6) hold. In view of ((2.2), (2.4)) we have, 
for any ̂ 0 E G, A(çg (£0)) = 0- Thus, for any g0 e G, the equation A(x) + eB(x) = 0 is 
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satisfied withx = gg0 (£0) and e = 0. We observe that a direct application of the implicit 
function theorem to this equation in order to express x as a function of e near 
(gg0 (§o)> 0) is n o t possible because, by Remark 2.1, the partial differential with respect 
tox at (gg0 (£0), 0) of the mapping (x, £) ^v4(x) + sB(x) takes its values in N(ggQ (£o))° > 
while y4(x) + £JB(X) does not belong to N(gg0 (|0))° • We also remark that the condition 
A{x) + sB{x) G X(gg0{§0))°, i.e. y(gg0(t;0),A(x) + £J3(x)) = 0, involves the parameter 
£, while, by virtue of (2.3)", the condition 

A(x) + eB(x)eMx)°, e*0, 

is satisfied if and only if B{x) G K{X)° and hence does not involve e. For this reason the 
following lemma will be important. 

LEMMA 4.1. For each x e X there is a neighborhood U^ of x in X such that 

X(x) H Mix)0 = {0} VxeUx. 

PROOF. M(X) is a linear subspace of Y of (finite) dimension r; therefore it is closed. 
For any x G X let a(x) be the (continuous, linear) mapping from M(x) into Rr defined by 
putting 

a(x)(y) = y(xyy) 

for every y e M(x). Note that a(x) is one-to-one (and hence an isomorphism of X(x) on­
to Rr for the structures of topological linear space), because the condition a(x)(y) = 0 
means y G N(x)°, and so if a(x)(y) = 0 with}; G N(X) then y = 0. It is easy to show that 
x*->a(x) is a continuous mapping from X into the space of all continuous, linear map­
pings from N(x) into Rr endowed with the bounded convergence topology. Therefore, 
as the set of invertible elements of this space is open in it, there is a neighborhood U% of 
x in X such that a(x) is one-to-one Vx G U^. Consequently, from y G N(X) O M(X)° with 
x G Ux it follows y = 0, because the condition 3; G M(X)° can be written in the form 
a(x)(y) = 0. • 

Now, we observe that if g e G and Ç = gg-i (x), then from (2.2) it follows that the 
equality A(x) + eB(x) = 0 is true if and only if 

A(Ç) + eïg-iB(Qt(Ç)) = 0 . 

Then, with Lemma 4.1 in mind, our aim will be to see whether for some g0 e G it occurs 
that for any £ near £0 in X there is an element g(f ) of G near g0 such that 

këriB(Qm(ë))emî)0, 
namely 

y(UìiìrlB(Qm(m = 0. 
In this case, if E^0 denotes a topologically supplementary subspace of Sl(^0) in X andp^0 

denotes the projection of Y onto its (closed) subspace JVX£0)° ( = ItnA' (£0))>
 t n e n 

setting for (rj, e) eE^0X R 

(4.1) A(q, e) =pçQ(A(Ç0 + rj) + e ^ | 0 + l7)-iB(ft<É0+ *)(£<> + ? ) ) ) , 
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the implicit function thorem applies to the equation A(t-, e) = 0. Indeed, A takes its 
values in N(£0)° and, by ((2.7), (2.8)), its partial differential with respect to 7] at (0, 0) 
is a bijection from EçQ onto <Af(§0)

0-

5 . SUBSPACES OF TeG ASSOCIATED TO THE OPERATOR B AT ANY ( £ 0 , g 0 ) e X X G 

Let us define, for any § e U, a function Mg: G —» SI by putting 

Mçig) = Y(Qg(è), B(Qg(Ç)) 

for all g e G. For any g0e G, the differential at e of the translation g*->ggo of G will be 

denoted by g0; so go Is a continuous, linear mapping from TeG into the tangent space 

7^ G to G at g0. 

DEFINITION 5.1. Let (£o>&o) e U x G and let 0 ^ v e TeG. We will say that v is 
critical at (^o, go) for B if the differential Mg0 (g0) of A |̂0

 a t &o vanishes at the element 
g0(v).:ot Tg0G. 

DEFINITION 5.2. Let ( , ) be the inner product on Si carried by the inner product of 
Rr when the base of SI is that one used for defining y. For any dj0 > go) G U X G we will 
denote by Di^0>g0 (B) any maximal element of the set of linear subspaces Di of Si having 
the following property: «if B^ e Di and (Rv, y(x, B(x))) = 0 for every x belonging to so­
me neighborhood of Qg0(£o) then R^ = 0». 

In order to clarifying the meaning of the definition of the subspaces 9iç0tg0 (B) of Si 
it is useful to observe that, if (RVl,..., RVr) is a base of Si and J is a maximal element of 
the family of subsets / of { l , . . . , r } such that the set of the functions 

x^(2^. ,y(x ,B(x)) ) , jej, 

is linearly independent on every neighborhood of Qg0(^0) in X, then X RRV is a 
JeJ 

Xç0>g0(B). Conversely, any Di^0yg0(B) is of this type for a suitable choice of the base 
(Rvl,...,RV2) of St. 

LEMMA 5.3. Let (t;0yg0)e.XxGbesuch that M^0(g0) and let T be a linear subspace 
of TeG such that the set {Rv : v e T} contains some DiçQyg0(B). Suppose that (2.10) holds, 
that B is of class Cm [respectively is analytic at Qg (%0)~\, and that no element ^ 0 of T is 
critical for B at (£0 , g0). Then neighborhoods V0 of §0 i>

n U an^ W0 ofg0 in G exist such 
that for each £ e V0 there is a unique element g(%) of W0 H (exp T)g0 ( = W0 D 
H {(exp^)g0: v eT}) such that 

(5.1) y{Cjm-iB(Qm(£))) = 0. 

V0 and W0 can be chosen such that the mapping %^g(£;) is of class Cm [respectively is ana­
lytic at §0]. 

PROOF. Let X = {R^ : v eT}, and let it be the proiection of Si onto Di with respect 
to the inner product ( , ). For any (v, £) e T X U we set 

r (p , £) = (^oy)(^(expy)^o(§), B{Q{expv)g0(f;))) , 

and we note that r(v, §0) = (^°M£0)((exp*;)g0). Tis a Cw mapping from T X U into 
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X: it is analytic at (0, £0) provided B is analytic at gg0(£0). Since Mç0(g0) = 0 we have 
T(0, £0) = 0. The differential at 0 of the mapping v*-+r(v, £0) is the mapping fromT 
into 6i 

v^(jtoMç0(g0))(g0(v)). 

As X contains some 3Lç0>g0 (B ), from the definition of 9iç0>g0 (B ) it follows that there is a 
linear mapping L: X—»#t such that 

(5.2) yU,B'(x)) = (LojToy)(x,B(x)) 

for every x belonging to a suitable neighborhood U0 of QgQ(^0) in U. Then, choosing a 
neighborhood UP of g0 in G such that Qg(C0) eU0 Vg E W, we have 

M |o(g) = (Lo7r)(M^0(g)) V g e l F . 

Therefore, if the differential at 0 of the mapping v^T{vy £0) vanishes at v0 eT we have 
Mç0(g0)(g0(v0)), which implies t>0

 = 0 because no element ^ 0 of T is critical for 5 at 
(£o>£o)- Thus the differential at 0 of the mapping v*-^r(v, £0) is a one-to-one (linear) 
mapping from T into 5C; hence, as dim Di ^ dim T, we have dim 51 = dim T and the 
mapping v ̂ ^F{v, £0) is a bisection from T onto X Then, in view of the implicit fun­
ction theorem applied to the equation T{v, £) = 0, open neighborhoods V of §0 in U 
and N of 0 in Te G exist such that for each J E V there is one and only one element v( £ ) 
of TON such that /"(?(£), £) = 0. Moreover, V and N can be chosen such that the 
mapping £»-»?(£) is of class Cw , and analytic at §0 if 5 is analytic at ^ 0 (§ 0 ) . Note that 
the equality T(?(£), £) = 0 implies 

(^°y)(e(expt?(^ 0 (^ ^(^(exp^))^^))) = °-

Hence, if V0 is a neighborhood of £0 i*1 ^ contained in V and such that 

(expd(Ç))g0eW V ^ E V O , 

then, in view of (5.2), we have 

y(e>(exp^))g0(£), ^ ( e x p ^ ) ) ^ ) ) ) = 0 V £ £ ^O , 

and this implies, by (2.10), 

Therefore, to conclude the proof it suffices to set, for every £ e V0, 

g(£) = (exp ?(!;))&> , 

and take as W0 a neighborhood of g0 contained in W and such that v eN whenever 
v eT and (exp v)g0 E W0. • 

6. LOCAL EXISTENCE, UNIQUENESS, AND ANALYTIC DEPENDENCE ON £ 

We are now in a position to prove a local theorem on existence, uniqueness, and 
analytic dependence on the parameter e for the equation A(x) 4- eB(x) = 0. 
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THEOREM 6.1. Suppose that A and B are of class Cm, that (2.1), (2.2), (2.3), (2.10) 
hold, that there is (lo,go) in UxG such that (2.4), (2.5), (2.6) are satisfied and 
M^0 (g0)

 = 0> that there is a linear suhspace T of TeG such that the set {Rv: v G T} con­
tains some 3t|0,g0 (-B ) and no element ^OofT is critical for B at (%0,g0). Fix a topological 
supplementary E^0 of KerAf ( |0) in X, and set x0 = QgQ(^o) an^ 

Dto,JTi= U e ^ t o t è o + Eio)-
v e 1 

7%e« # neighborhood V of %Qin X and a neighborhood W ofg0 in G exist such that for each 
£ G JR with I £ I sufficiently small there are a unique | £ />z V fl ( | 0 + £^0) and a unique gE 

in W H (exp T)g0 such that putting xE = £ & ( | £ ) we have 

(6.1) A(xE) + eB{xE) = 0. 

Consequently, if the mapping (^,g)^Qg{^)from ( | 0 + I}£0) X (exp T)g0onto D^^gQ{T) 
is a local homeomorphism at ( | 0 , g0), rf?e# # neighborhood U0 ofx0 in U exists such that for 
each £ ^ 0 , w;tó | e | sufficiently small, there is a unique xE in U0 fi D^QygQ(T) satisfying 
(6.1). The mapping £«->xe, defined also for e = 0 by assuming that its value at 0 is x0, is of 
class Cm in a suitable neighborhood o/O; it is analytic at 0 provided A is analytic at | 0 tfWB 
«• analytic at x0. 

PROOF. Let V0, W0 and g be as in the statement of Lemma 5.3, and let V^ be a nei­
ghborhood of §o in X such that N( | 0 ) fi «NX£)° = {0} V | E V^O (see Lemma 4.1). For 

o 

any e G R and 77 G E^ with 7/ + | 0 G V0 we define A(rj, s) as in (4.1). AisaCm mapping 
o 

from the open subset ((V0 — | 0 ) D Eç0) X J? of the Banach space Eç0 X R into the clo­
sed subspace 1mA' ( |0) of Y. By (2.4) we have yl(0, 0) = 0. Moreover, the differen­
tial at 0 of the mapping rj>->A(r}, 0) is ; 4 ' ( | 0 ) , which is a bijection of E^Q onto 
JmA ' (|o)- Therefore, in view of the implicit function theorem applied to the equation 
A(rj, e) = 0, there is a neighborhood Vi of 0 in X contained in V0 — | 0 such that for 
any s with | e | sufficiently small a unique 77 £ exists in V\ fl £ |0 such that A(rje, e) = 0 
and the mapping 77 •-> 77 £ is of class Cm ; this mapping is analytic at 0 provided A is ana­
lytic at | 0 and B is analytic at x0, because in this case A is analytic at ( 0, 0). We set | £ = 
= lo + Ve a n d observe that, since y ( | e , A(£e)) = 0 by virtue of (2.3)", from Lemma 5.3 
it follows that 

y ( | £ , A ( | £ ) + e / ^ e ) - i B ( ^ l e ) ( | e ) ) ) = 0, 

namely 

Note that the condition A(rje> e) = 0 means that 

^ ( ^ ) + £ 4 l w - i B ( ^ ( W ( | £ ) ) e ^ ( ^ o ) . 

Then, taking V^ ç Vç0 - £0 and using Lemma 4.1, we deduce that 
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Hence, setting 

in view of (2.2) we have A(xe) + eB(xE) = 0. To conclude it suffices to take W = W0, 
and recall that g is of class Cm and it is analytic at §0 provided B is analytic at x0 

7. A N APPLICATION TO THE UVE TRACTION PROBLEM IN FINITE ELASTOSTATICS 

Let us go back to the finite elastostatics operator introduced in Section 3, in order 
to make explicit a consequence of Theorem 6.1 in such a context. The loading operator 
B will be an arbitrary mapping from X into Y1 X Y2, with X, Yx, Y2 chosen as in (3.1) 
or (3.2). The two components of B will be denoted by B1 and B2. We recall that, here, 
G k the group of isometries of Rn that U is the open subset oï X whose elements are 
the orientation preserving diffeomorphisms of Q onto a subset of Rn, and that Qg{x) — 
— g ox V(x, g) eU X G. We observe that TeG is the set of infinitesimal rigid deforma­
tions of Rn, i.e. the set of functions v : Rn -> Rn of the type v{t) = c + Wif, (/ e Rn), with 
c G Rn and W G Skew^, that Rv(x) =vox V(x, v) <=U X TeG, and that #1 can be identi­
fied with TeG through the mapping v^Rv. We fix a base of 61 such that y(x,y) has the 
form (3.9); thus for any (£, g) e 17 X G and / G fi,'we have 

AW(/ )= J51(^(§))+ J J B 2 ( ^ ( | ) ) + 

+ J <?,(£) A Bi (<?*(£)) + J e,(£) A B2 ((?*(£)) U-
\& as / 

Therefore Diç0,g0(B) can be regarded as a maximal element of the set of linear subspa-
ces X of TeG having the following property: «if v: t*-*c + Wt is an element of Di 
and 

c-l J B ì ( X ) + JB 2 (* ) +WM J*ABi(*) + J*AB2(*)) = 0 
\ £ d£ / \Q- dQ ) 

for all x belonging to some neighborhood of g0 o £0 in X, then t> = 0». 
We remark that a topological supplementary EiQ of SI(LQ) [= KerA'U^)] in X is 

(x e X : x = 0, 3x G Sym„ 
Q Q 

For a proof of this fact we refer to Valent [3, Ch. Ill, Sect. 1]. Finally we point out 

the following result which can easily deduced from Lemma 4.4 in [3, Ch. V]: the map­

ping (%>g)i^>Qg(£) is a homeomorphism of the set of those elements (£, (exptOgo) °f 

{LQ + ElQ) X (exp T)g such that d£ is positive definite onto the set of elements x of X 
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such that det \ dx > 0 and the rigid deformation of Rn 

Q 

belongs to exp T; here Rx is the element of 0„ such that the matrix Bj x is symmetric 
and positive definite, and Rg0 has an analogous meaning. Q 

We are now in a position to state a consequence of Theorem 6.1 for the general live 
traction problem in finite elastostatics; in order to simplify the statement we take 

THEOREM 7.1. Let A: X^YixY2be defined by ((3.3), (3.4)), with X, Ylt Y2 as in 
(3.1), let Q be of class Cm + 2ands<= Cm + 2(Q X M+ ,Mn) satisfying (3.3), (3.6), (3.7), 
(3.8). Let B: X—>Y1X Y2 of class Cm and let g0 he an isometry of Rn such that 

JB1{g0)+ \B2(g0) = 0, jg0AB1(g0) + \goAB2(g0) = 0. 
3Q Q 3Q 

Suppose that there is a linear subspace TofTeG containing some ^Q,g0(B) and such that no 
element ^OofTis critical for B at (iQ,go). Then for each e ^ 0 with \ e \ small enough 
there is one and only one deformation xE of Q belonging to a suitable neighborhood ofg0 \Q 
in Wm + 2,p (Q, Rn) that satisfy (6.1) and such that the rigid deformation 

\\^-KKgo)\ + (KR> 

of Rn belongs to exp T. The mapping e ̂ x £ , defined also for e = 0 by assuming that its 
value at 0 is g0\-Q, is of class Cm in a suitable neighborhood of 0. 

REMARK 7.2. In the statement of Theorem 7.1, if T = TeG then (7.1) obviously be­
longs to exp T, and thus we have local uniqueness near g0 | Q for the traction problem 
A(x) + eB(x) = 0. 

REMARK 7.3. In the very particular case when S is a constant operator (dead loading 
operator) T cannot be equal to TeG because each constant function t*->c from Rn into 
Rn is critical for B at (iQ,go). Therefore T must be a space of infinitesimal rigid rota­
tions, i.e. mappings from Rn into Rn of the type t^>Wt, with We. Skew«. Moreover, 
when n = 3, one can prove (see Valent [3, Ch. V]) that the infinitesimal rigid rotation 
t*->Wt is critical for B at (iQ , g0) if and only if the axis of W is an «axis of equilibrium» for 

the loading at go I Q > 

REMARK 7.4. A simple example of live traction problem to which Theorem 7.1 trivial­
ly applies is the elastic «balloon problem» with zero body forces. (A local existence theo­
rem for this problem was obtained by Le Dret [2]). In this case Q = Qe\Qj with Qe 
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and Q{ open subsets of Rn and Q;CQe; moreover 

' B1(x) = 0 in Q , 

(7.2) J B2(x)(t)= -Jte(x) coi dx(t)v(t) VtedQe, 

h B2(x)(t)= -JT;(x)coidx(t)v(t) VtedQj, 

where cof dx{t) is the matrix of cofactors of the matrix dx(t), and Jte, JT; are smooth 
R+-valued functionals of the deformation x. It is not difficult to verify that MlQ (g) = 0 
\fgsG; therefore ^iQ,g0(B) = { 0} Yg0 G G, and any element ^ 0 of Te G is critical for 
-B at Ua,go)- It follows that, for all g0

 G G, {0} is the only linear subspace T of TeG 
containing ^iQig0(B) and such that no element ^ 0 of T is critical for B at Ua,go)-
Then, a consequence of Theorem 7.1 is the following: if the operator A is as in the state­
ment of Theorem 7.1 and B is defined by (7.2), then, fixed arbitrarily an isometry 
go : t*->CQ + R0t ofRn,for each e ^ 0 with \ e \ small enough there is one and only one de­
formation xe of Q belonging to a suitable neighborhood of g0 \Q in Wm + 2,p (Q, Rn) such 

that A(x) + eB(x) = 0 and RXE = R0, ïxe(t)dt = \tdt. 
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