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Geometria. — Levi equation and evolution of subsets of C2. Nota di ZBIGNIEW SLOD-

KOWSKI e GIUSEPPE TOMASSINI, presentata!") dal Socio E. Vesentini. 

ABSTRACT. — In this Note we state some results obtained studying the evolution of compact subsets of 

C2 by Levi curvature. This notion appears to be the natural extension to Complex Analysis of the notion of 

evolution by mean curvature. 

KEY WORDS: Pseudoconvex domains; Real submanifolds in complex manifolds; Parabolic equations and 
systems. 

RIASSUNTO. — Equazioni di Levi ed evoluzione di sottoinsiemi di C2. In questa Nota si enunciano alcuni ri­

sultati ottenuti nello studio dell'evoluzione di sottoinsiemi compatti di C2 secondo la curvatura di Levi. La 

nozione di evoluzione che qui si considera appare come la naturale estensione all'Analisi Complessa della 

nozione di evoluzione secondo la curvatura media. 

0. INTRODUCTION 

Let M be a real smooth hypersurface of C2 defined by g = 0. We denote by v = 

= \dQ\~l{Qï, Q2) the normal field along M and by 

f 0 QZl QZ2 

kL(M) = -\3Q\ " 3 de t g-Zl Q-Z1Z1 Q-ZlZ2, 

yQz2 Qz2Z\ Qz2Z2) 

the Levi curvature of M {ga = dg/dza, £ H = dg/dza, a = 1, 2, \dg\2 = |@i | 2 + 

+ l<?2 |2 ) . 
An interesting geometric interpretation of kL can be obtained by considering the 

exponential map expZo : B0 —» M, where z 0 e M and J50 is an open ball contained in the 

complex tangent line. Then kL{zo) equals the mean curvature of the surface 

exp,0(B0). 

Let us consider a smooth family {Mt}t ^Oo£ (smooth) hypersurfaces of a domain Q 

of C2 where Mt = {z e 1 2 : u{zy t) = 0} andM t D Mt> = 0 for t *• t'. Let us assume that 
U = U Mt is open and consider the vector field kLv on U. We will say that the level 

/ ^ 0 

sets Mt evolve according to their Levi curvature if for z e M ^ ^ O , the integral lines of 

kLv, st->z(s), z(0) = z satisfy z(s) ê M ; + J . This turns out to be equivalent to the follo­

wing assertion: u is a solution of the parabolic equation 

ut = £(u) = {ôap-UâUp/\du\2)ua-p. 

In the above situation we will also say that {M,}, ^ 0 is the evolution of Mo by Levi curva­

ture. In the light of what is preceding, this notion appears to be the natural extension to 

Complex Analysis of the notion of evolution of a smooth hypersurface by mean curva­

ture [3-5]. 

(*) Nella seduta del 13 giugno 1996. 



2 3 6 Z. SLODKOWSKI - G. TOMASSINI 

In general, given a compact subset KcC2, the zero set {g = 0} of a continuous 
function g: C2 —>R which is constant for \z\ » 0 , we consider the parabolic problem 
corresponding to g: ut = £{u) in C2 X (0, + oo )y u = g for t = 0 and u is constant for 
\z\ + t » 0. If u is a continuous weak solution of this problem (in the sense of viscosi­
ty [3-5]), we set Kt = {z e C2 : u{z, t) = 0}, for t > 0. The family {Kt}t => 0 , which does 
not depend on g but only on K, is called the evolution of K (by Levi curvature). 

In what follows we are going to give a short report of some results concerning the 
existence and the geometric properties of the evolution of compact subsets in C2 with 
special regards to boundaries of pseudoconvex domains. 

1. PROPERTIES OF WEAK SOLUTIONS. EXISTENCE 

1. Let U c C2 X (0, + oo ) be an open subset and u\ U —» R be an upper semi-
continuous function; u is said to be a weak subsolution of ut = £(u) if, for every 0 e 
e C00 (17) such that u — (j) has a local maximum at (z°, /°), one has 

0 / ^ (<5<tf- 050/*)0o0 
at (z°,/°) if S 0 ( z V o ) * O and 

for some fj œ C2 with | ^ | ^ 1, if 30(z°,/°) = 0; a lower semicontinuous function 
« : U —» 1? is said to be a #>#*£ supersolution if, for every 0 G C °° ( 17) such that u — (p has 
a local minimum at U°,/°) , one has 

0 / ^ (<5<tf- 0a0/?)0a£ 

at (z°,/°) if 3 0 ( z V ° ) * O and 

for some ?/ e C2 with |//| ^ 1, if d(p(z°, t°) = 0. 
A zmz& solution is a continuous function which is both a weak subsolution and a 

weak supersolution. If « is a weak solution oiut — £(u) and <P: R->R is continuous, 
then <P(u) is a weak solution as well. Uniform limits on compact subsets of sequences 
of weak subsolutions (weak super solutions) are weak subsolutions (weak supersolu­
tions). 

2. Let us consider the cylinder Q = Q X (0, h) in C2 X [0, +00), where Q is a 
bounded domain of C2 and let S = (Q X {0}) U (bQ X (0, A)). We have the follo­
wing comparison principle 

THEOREM 1.1. Let u,v eC°(Q) be respectively a weak subsolution and a weak superso­
lution in Q. If u ^v on Z then u ^ v on Q. 

As a consequence we obtain 

COROLLARY 1.2. Let u, v e C°(C2 X [0, + 00 )) be respectively a weak subsolution 
and a weak supersolution in C2 X (0, + 00 )? and suppose that u and v are constant for 
\z\ + t »0. If u ^v for t = 0 then u ^ v. 
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The above results permit us to use the Perron method to prove the following exi­
stence theorem 

THEOREM 1.3. Let g: C2 —> R be continuous and constant for \z\ » 0. Then the para­
bolic problem corresponding to g has a unique weak solution. 

2. EVOLUTION OF A COMPACT SUBSET: GEOMETRIC PROPERTIES 

1. Let X c C2 be a compact subset, the zero set {g — 0} of a continuous function 
g: C2 —» R (which is constant for \z\ »0),u a weak solution of the parabolic problem 
corresponding to g and {Kt}t^0 the evolution of X (by Levi curvature). We will also use 
the notation X, = Sf (X). Then the semigroup property 

&f,(8f(K)) = &f+AK) 

holds true and, by definition, there exists a time t*, called extinction time of X, such 
that &f (X) = 0 for t > t* . Moreover, if X and X ' are compact and X ç X ' , 8f(K)ç 
ç8>f(K') for all t^O. 

THEOREM 2.1. Let KcC2 be a compact subset. If U is a Stein neighbourhood ofK then 
8>f(K)cU for every t ^ 0. In particular: 

{a) if X is a Stein compact then Sf (X) cX for all t ^ 0; 

(b) if X belongs to a Stein analytic subset X, then &f(K) cX for all t ^ 0. 

2. Let us assume now that X is the boundary T0 of a bounded domain Q c C2 

and let {rt}t^ 0 be its evolution. We will say that the evolution is strictly contracting (re­
spectively contracting) if, for every t > 0, Tt c Q (respectively rtcQ). {rt}t^0 is said 
to be stationary if, for every t ^ 0, rt— {z e Q: v{z) = ~t} where v is a weak solution 
of the stationary problem associated with the evolution {rt}t^0: £{v) = 1 in Q and 
v = 0 on £,Q. 

For every weak solution of the stationary problem we have {z e Q: v(z) = — t} Ç 
çTt. Moreover 

PROPOSITION 2.2. Let v eCQ(Q) be a weak solution of the stationary problem and 
extend it by 0 on C2. Then 

f min(0,i;(z)+f) // (z, t) e Q X [0, + oo ), 
u(z,t) = \ „ _ 

[ 0 z/ (z, / )e(C2V2) x [0, +oo), 

/!y # zmz£ solution of ut = £(u) (and u = v for t = 0). 

COROLLARY 2.3. Le/ t> e C°(£2) &£ # zz;a#& solution of the stationary problem. Set 
Nt = {z e Q: v(z) = ~t}, t & 0. T*ew 

(# ) ybr ^ery t0y t > 0 

tf(N,0) = N, + A), 
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(b) for every t ^ 0 

Ntc8f(bQ) = 8f(N0). 

A partial converse of Proposition 2.2 is provided by the following 

PROPOSITION 2.4. Let u be the weak solution of the parabolic problem corresponding to g 
and let M be the zero set of' u. IfTtC\ Tt> = 9 fort ^ t', then M is the compact graph of a 
continuous function v\ X-^> ( - °o, 0], Xc C2 ,such that Q çXandv < 0 in Q,v = Oon 
bQ. Moreover v0 = v\Q is a weak solution of the stationary problem and Q is Stein. 

REMARK 2.1. The last part of this statement follows from [6]. 

We conjecture that if bQ is smooth but Q is not strictly pseudoconvex then Tt $Q 
for some t. 

3. STATIONARY EVOLUTION 

1. Let Q be a bounded domain defined by {Q < 0}, where Q is smooth and stric­
tly p.s.h. in a neighbourhood of Q and dç ^ 0 on bQ. 

THEOREM 3.1. Let g E C°(bQ). The Dirichlet problem £(u) = 1 in Q and u = g on 
bQ has a unique weak solution ueC°(Q). If g belongs to C2,a(bQ) then u e 
eLipÛJ). 

In order to prove the existence of a continuous weak solution the Perron method 
applies and in this case bQ is allowed to be P-regular [6]. To obtain the Lipschitz regu­
larity we prove that u is a uniform limit of a C ̂ bounded sequence of smooth solutions 
of perturbed elliptic boundary problems [6]. 

We also have estimates of solutions. In order to state this let us denote Xx (z) ^ 
^ X2 (z) the eigenvalues of the matrix {gaj (z)) at z e Q and set Ài = min Ai (z), X2 — 
= max A 2 (z) in Q. 

THEOREM 3.2. Let u e C°(Q) bea weak solution of£(u) = lin Q. Then the following 
estimate holds true: 

^f1 Q(Z) + minz/ ^ u(z) ^ X2~
1Q(z) + maxu . 

bQ bQ 

We finally derive the following 

THEOREM 3.3. The stationary problem £(u) — \ in Q and u — 0 on bQ has a unique 
solution u e Lip(£?) such that 

| |&| | ^Xïl\\dQ/dv\\bQ. 

2. Boundaries of strictly pseudoconvex domains evolve in stationary way. More 
o 

generally let Q be a bounded domain in C2 such that Q = Q and W an open neighbou­
rhood of Q. Assume that there exists a continuous function h: W\Q —» (0, + oo ) such 
that: h is weak subsolution of £(h) = 1, h(z) —> 0 as z—>z° and D + h(z°) = 
= limsup \z - z°\ ~1h(z) = + °° for every z° e bQ. 
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All these conditions are satisfied whenever hQ is strictly pseudoconvex. 
Under these hypotheses we have 

THEOREM 3.4. Let v e C° (Q) be a weak solution of the stationary problem and for every 
t^O let rt= {zeQ: v{z) + t = 0} and Qt = {z e Q: v(z) + t = 0}. TZw?» { A } ^ 0 

##*/ {fi /}^o ^ re respectively the evolution of ro = bQ and Q0 = Q. 

As for instantaneous disappearance we have 

THEOREM 3.5. Let KcC2 be a compact subset, K = 0 _ 1 (0) where (p is a non negative 
function on a neighbourhood UofK and such that £((p) ^ 1 in U (in the weak sense). Then 
the extinction time t* of K is 0, i.e. Sf (X) = 0 /or t ^ 0. 

This is the case of a compact subset of a totally real submanifold M c C 2 . 

The first author was partially supported by an NSF grant. 
Th second author was supported by the project 40% M.U.R.S.T. «Geometria reale e complessa». 
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