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Anal i s i matemat ica . — Sobolev spaces of integer order on compact homogeneous man­

ifolds and invariant differential operators. N o t a d i C R I S T I A N A B O N D I O L I , p resen ta ta (*) dal 

Socio E . Magenes . 

ABSTRACT. — Let M be a Riemannian manifold, which possesses a transitive Lie group G of isometries. 
We suppose that G, and therefore M, are compact and connected. We characterize the Sobolev spaces 
Wp ( M ) ( l < p < + ° ° ) b y means of the action of G on M. This characterization allows us to prove a regu­
larity result for the solution of a second order differential equation on M by global techniques. 

KEY WORDS: Compact homogeneous manifolds; Sobolev spaces; Invariant differential operators. 

RIASSUNTO. — Spazi dì Sobolev di ordine intero su varietà omogenee compatte e operatori differenziali inva­
rianti. Sia M una varietà riemanniana, dotata di un gruppo di Lie G transitivo di isometrie. Si suppone che 
G, e pertanto M, siano compatti e connessi. Si caratterizzano gli spazi di Sobolev Wp

l (M) ( 1 < p < + oo ) 
tramite l'azione di G su M. Questa caratterizzazione permette di dimostrare tramite tecniche globali un ri­
sultato di regolarità per la soluzione di un'equazione differenziale del secondo ordine su M. 

1. INTRODUCTION 

This paper is in some sense a continuation of our previous papers [5,6]. 
In [5] and in the first part of [6] we proved a characterization of a class of Nikol'skij 

spaces on a compact homogeneous manifold in terms of its isometries. This allowed us 
to establish in the second part of [6] a regularity result of Nikol'skij type for the sol­
ution of a non linear evolution equation on the manifold. 

As the Nikol'skij spaces on domains Q of R* were defined by Nikol'skij him­
self by a condition involving the translation group of W, so it is well known that 
the Sobolev spaces Wp{Q) (1 <p ^ + oo ) too can be characterized by means of 
the translations of R*. 

These considerations led us to examine here the relations between the Sobolev 
spaces of integer order on a homogeneous manifold and the isometries on it. 

Here we begin with the case of a compact homogeneous manifold. By compact ho­
mogeneous manifold we mean a compact Riemannian manifold M on which a Lie group 
G of isometries acts transitively. 

We prove a characterization for the Sobolev spaces Wp (M) by means of the ele­
ments of G, in such a way as to reflect the global character of M. This characterization 
seems to be meaningful in order to obtain regularity results for the solution of some 
PDE's on homogeneous manifolds by a direct technique. Usually (see, for in­
stance, [2]) regularity results of the kind we consider here are obtained on manifolds by 
local charts arguments, that is by reducing the regularity problem on the manifold to a 
regularity problem in W. q 

As an example we consider in § 8 the second order operator £ = 2 IX*]2, where 
/ = l 

(*) Nella seduta del 13 giugno 1996. 
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the X* are the vector fields on M induced by a basis {Xz \i = 1, ..., q] of the Lie alge­
bra g of G. If the operator £ is invariant under the group action (see, for instance, [9, 
Chapter II]), we globally recover the result that i f / is a function in W\ (M), then the 
weak solution u of u - £u -f is in W| + 2(M). 

It would be interesting to extend this kind of considerations also to non compact 
manifolds. In [3] we proved a characterization of the mentioned Sobolev and Nikol'-
skij spaces on R* by means of the motions of R*, without any assumption on the com­
pactness of the support of the involved functions. We expect that an analogous charac­
terization holds also for non compact homogeneous manifolds and could help us to ex­
tend to these manifolds the regularity result of this paper as well as the one 
of [6]. 

2. NOTATION 

We use standard notations: by a smooth function we always mean a C °° function. G 
stands for a ^-dimensional connected Lie group, whose Lie algebra we denote by g; 
then exp: g —» G has the usual meaning. If dg is a right-invariant Haar measure on G 
and 1 < p < + oo y it is clear what the function spaces Lp(G) mean. The letter M is re­
served for an /z-dimensional connected oriented C00 manifold equipped with a smooth 
Riemannian metric. If & is an atlas compatible with the orientation and {yx, ...,yn} is 
the coordinate system corresponding to the chart ( U , ^ ) e ( l , we denote by 
V\y\dyi A ... f\dyn the Riemannian volume element, i.e. \y\ stands for the absolute 
value of the determinant of the metric matrix; moreover, dm denotes the correspond­
ing Riemannian measure. Then also in this case the meaning of Lp (M) is clear. 

3. PRELIMINARIES 

In this section we collect some well known results that we will use later on. 

Let us first recall some basic facts on homogeneous manifolds. For references, see, 
for instance, [9, Chapter I, 1]; [11, Chapter IV, § 17]. 

Let G be a Lie group and M be a smooth manifold. Suppose that G is a Lie trans­
formation group of M, which acts transitively on M. Then M is called a homogeneous 
space of G or simply a homogeneous manifold. Let K = {g e G\g-o = o} be the 
isotropy subgroup at a point o of M. Then M and G/K = {gK\g e G} are diffeomor-
phic, so we will write M or G/K indifferently. 

Let JT be the natural map from G to G/K. If cp is a smooth function on G/Ky then 
ço jt is a smooth, right K-invariant function on G. For the sequel we will denote cpojt 
with £Rxp. Conversely, if 0 is a right X-invariant, smooth function on G, then £P<P de­
fined on G/K by [P<P{gK) = 0(g) is a smooth function on G/K. 

If G is connected and K is compact, then the homogeneous manifold M = G/K ad­
mits a G-invariant Riemannian metric. By the G-invariance of a Riemannian metric we 
mean that for every g G G, the transformation rg : G/K —» G/K, xg (g\K) = gg\Kis an 
isometry. 
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Let dgK = dm be the corresponding invariant Riemannian measure on G/K = M 
(which is unique up to a constant factor). We suppose that the right invariant measures 
dg on G and dk on K are suitably normalized so that 

\F(g)dg= \ l\F(gk)dk\dgK, FeCc(G), 
? G/K \K J 

(3.1) 
G 

\dk 
K 

We will use the same symbols 6icp, ^P^ as above also for functions in Lp(M) and 
LP(G). 

Moreover, denoting by La the left translations on G, let us consider for an arbitrary 
element X in g the one-parameter group {Lexp,x|^ e R}. Then the corresponding in­
finitesimal generator X is a right invariant smooth vector field on G. We recall that for 
every smooth function <P 

X<P(g) = lim r l [<2>(exp tX-g) - 0(g)]. 
t-*o 

Analogously {t*-*Texptx} is a one-parameter group of isometries of M, whose infinitesi­
mal generator we denote by X*, that is for every smooth function cp 

X* cp(m) = lim t~l [q)(exptX-m) - q)(m)] 

(here • denotes the action of G on M). The map X>-»X* is a linear map from g into the 
space of all smooth vector fields on M. 

Finally, a differential operator D on M is said to be invariant under the action of G 
if D(q)oTg) = {Dcp)oTg for all smooth functions cp and for all g G G. 

One can easily prove the following lemma, which will be useful for the 
sequel. 

LEMMA 3.1. Let G and M be as before, with dimG = ^ and dimM = /?. Let 
{Xi, ...,Xq} be a basis in g and {X*, ..., X* } be the corresponding vector fields on M. 
Then there exists an atlas {( Ua, ?/>«)} on M satisfying the condition: for every a, there are n 
fields among {X* , ..., X% } which generate the C œ-module of all vector fields on Ua. If G 
is compact {and therefore M is compact too), we can suppose that the atlas consists of a finite 
number of local charts {(U1? ipi), ...,{Ur, tpr)}. 

Now let us recall the definitions of Sobolev spaces of integer order on W, on Rie­
mannian manifolds and on Lie groups. Let 1 < p < +00 and let k be a positive 
integer. 

(I) We denote ^ ( R * ) = {u e Lp(W)\Dau e Lp(W) if \a\ ^ k} 
(here the derivatives must be understood in the sense of distributions), equipped with 
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the norm 

(3.2) ||«||*?(R"> = f ll«llt<m + , 2 WD^W^Y* . 
\ \a\^k J 

For references, see, for instance, [1,12,16]. 
(II) Let M be as in Section 2. For the definition of Wp (M) in its whole generality 

we refer to [2, Chapter 2] and [16, Chapter 7]. Since we are interested only in compact 
manifolds, we define the Sobolev spaces Wp (M) in the most natural way, namely via a 
finite number of local charts. More precisely, if M is compact, we fix a finite atlas 
{([//, ipi) |/ = 1, ..., r} on M and a corresponding smooth partition of unity \rji\l = 
= 1, ..., r} satisfying: for every /, there exists an open subset V/ of 17/ such that supp rji C 
çViçVtçUt. We denote 

Wp
k(M) = {ueLp(M)\ for every / = 1, . . . ,r , Vluoipr1 eW^ (Rn)} 

(here we assume rjiuoxp^1 = 0 outside îpi(Ui)), equipped with the norm 

/ r y/p 
(3.3) ll«llw*(M) = ( 2 hiu°VTllfy{K*)\ • 

Up to equivalence of the norms, the definition of Wp (M) is independent of the choice 
of the atlas and the corresponding partition of unity. 

(III) Let G be a ^-dimensional connected Lie group. We equip the Lie algebra 
g with a scalar product and we transfer the metric on G by means of the right transla­
tions. The corresponding Riemannian volume element generates a right invariant Haar 
measure on G, which we suppose satisfies (3.1). 

Let Xi, ..., Xq be a fixed orthonormal basis in g and let Xly ...,Xq be the corre­
sponding right invariant vector fields on G. Since later on we will need Sobolev spaces 
of the first order on G, we recall here only their definition. 

We denote 

WpHG) = {u e Lp(G) | for e v e r y / - 1, . . . ,# , %u eLp(G)} 

(here the derivatives must be understood in the sense of distributions), equipped with 
the norm 

(3.4) \\u\\wpHG) = \\\4LP(G) + .2 \\Xtu\\PLp(G) I • 

For references, see [16, Chapter 7, Section 7.6]. 

4. THE FUNCTION SPACES GLP{M) 

From now on we assume that G and M have the same meaning as in § 3, with the addi­
tional condition that G, and therefore M, are compact. 

In this section we define some function spaces on M by means of the compact group 
G, that is by means of the isometries of the compact homogeneous manifold M = 
= G/K. We will denote these function spaces by (3Lp (M). We will show that, up to equiva-
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lence of the norms, the spaces CLp (M) are the Sobolev spaces Wp
l (M). So we obtain a 

global characterization of the spaces Wp (M) by means of the isometries of M. 

Since G is compact, the exponential map from g to G is onto. 

For a function u s'Lp(M) (1 <p < + o° ) we define 

(4.1) ap(u)= sup | X | - 1 | | ^ o r e x p X - ^ | | L p ( M ) . 

Now we define the function spaces 

ap(M) = {ueLp(M)\ap(u)< +00} 

equipped with the norm 

(4.2) ll«IU(M) = (|l«irLp(M) + a?(«)) 1 / p -

In order to prove that Wp (M) = (3Lp (M) as Banach spaces, in the next sections we 
will give a characterization of the spaces Wp1 (M) by means of the vector fields 
X*, . . . ,X* induced by the basis {X1? ...,Xq} of g. 

5. THE FUNCTION SPACES &p(M) 

Let 1 < p < + 00 . We recall that dim G = q and dim M = n and that an orthonor­
mal basis {X1? ...,Xq} is fixed in g. It is natural to consider the following function 
spaces on M (see also [17, Chapter 5, 5.7] and [14, Part III, 16]): 

(5.1) &P(M) =\veLp(M)\\/i= 1, ...,q there exists hï G Lp{M) 

such that V</9 E C00 (M) \v(m)X* cp(m)dm = — \hi{m)cp(m)dm 
M M 

It is obvious that for / = 1, . . . ,# , h{ is unique and it can be easily verified that, if 
v E C00 (M), then h{ = X/Vz;. We will therefore denote Z?z- = X*v. 

If v e. &p(M), we define 

(5.2) liF(v) = lîjXrv\\{p{M)j/P and 

(5-3) l|f|k(M) = (||«'IIÌ(M) + ^ ( f ) ) 1 / p . -
With respect to this norm &p(M) is a Banach space. 

In the next section we will show that $ p (M) = W^1 (M). To this aim we prove here 
that the space C °° (M) is dense in £Bp (M). This result is standard, so we will only sketch 
the proof. We need in advance the following two lemmas, which can be proved by rou­
tine methods. 

LEMMA 5.1. Let V be a right K-invariant function in Wp
l (G) and let X he an element 

in g. Then XV is a right K-invariant function in Lp(G) satisfying &V&tBp(M) and 

x*&v = &(xv): 



2 2 4 C. BONDIOLI 

LEMMA 5.2. Let v be a function in $p(M) and let X be an element in g. 
Then Siv is a right K-invariant function in Wp (G) satisfying X(Slv) = 8i(X*v). 

THEOREM 5.1. The space Cœ (M) is dense in Œp(M). 

PROOF. Let s > 0 be fixed. If v E &p (M), then, by Lemma 5.2, {&v = V e Wp1 (G) 
and therefore there exists a function WeC00 (G) such that \\V — ^WwHG) < e-

We define a function <P on G by setting 0(g) = \ W(gk)dk, for every g E G. 0 is a 

right K-invariant function in C°°(G), satisfying x 

(5.4) (S>0)(gK) = jv(gk)dk, 
K 

(5.5) X*6>&(gK) = \xW(gk)dk, VX E g. 

Recalling (3.1), by the Schwarz-Hòlder inequality we obtain 

(5.6) \\v - Sxp\\p
Lp{M) ^ / ( / \V(&) - ngk)Ydk\dgK = 

G/K \K I 

= j \v(g) - w(g)Ydg = \\v- w\\p
Lp{G) < e*. 

G 

Similarly for every X{ in the fixed basis {Xly ...,Xq} of g by (5.5) we have 

\\X?v-X?&P\\p
hiM)= \ \X*v(gK)-\xtW(gk)dk\PdgK. 

G/K K 

Since by Lemma 5.2 8i(X*v) =X^Oiv =X{V, reasoning as above we obtain 

(5.7) Wv - Xf 3>&\\p
Lp{M) ^ ||X,-V - X,y\\PLp(G) < ep • 

So we have proved that \\v — tP&W® (M) ^ ( 1 + #)1//jp£> that is C00 (M) is dense in 
®P(M). 

We conclude this section with the following remarks. 

REMARK 5.1. Let us denote &P(M) = &P(M). Then for k = 2, 3, 4, ... it is 
natural to define the spaces 8$p by induction. Namely 

(5.8) &k
p(M) = {usLp(M)\XfueŒk

p-
1(M) for every / = 1, . . . ,#} 

equipped with the norm 

/ v \1/p 

(5.9) IMU(M) = IMIl(M) + Zi l l^^ l l^ -^M) / = 1 

Note that for p = 2 S 2 (M) = «S] (M) is a Hilbert space with respect to the 
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scalar product 

f q f 
(5.10) (uy )̂cg2(M) = \u(m)v{m)dm + 2 -X*u{m)X-k v(m)dm . 

M M 

The same remark holds for & > 1 (and p = 2). 

REMARK 5.2. Let us notice that in [15] the author defines Sobolev spaces of integer 
order on symmetric manifolds in a way similar to the approach we have exposed in this 
section. 

Symmetric manifolds are particular homogeneous manifolds. On them one has at 
his disposal the geodesic symmetries, which are particular isometries. So in [15] 
geodesic symmetries are used to construct suitable vector fields, which give rise to the 
definition of Sobolev spaces. 

6. ®p(M) = WpHM) 

In this section we show that the function spaces &p (M) introduced in § 5 are, up to 
equivalence of the norms, the classical Sobolev spaces Wp

l (M), whose definition was 
recalled in § 3. Since we have not found references to this result, for the sake of com­
pleteness we expose here the proof of it. 

THEOREM 6.1. There exist two positive constants cx and c2 such that for every smooth 
function cp on M the following inequalities hold 

(6.1) ^ilMk;(M) ^ IMU(M) ^ I M I W ^ M ) • 

PROOF. Let us prove the first inequality. Since G is compact, we select a finite atlas 
{(Uly Vi), . . . , (U r , ipr)} onM satisfying the conditions ofLemma 3.1. Let {rjly ..., rjr} 
be a corresponding partition of unity (i.e., supprji ç V / ç V / Ç U / , / = 1, ..., r, where V/ 
is an open set in U/). We denote with y^, ..., yin the coordinate system associated with 
the local chart {Uhipi). 

Let cp eC 0 0 (M); we consider the smooth function rjicp supported in V/ (/ = 
= 1, . . . , r ) . Then by definition we have 

r I 1 \p c I 

J — (m)(rii<p)\ dm = J | A ( ^ / ^ oipf1 ) |^- \T(x)dx 

where r denotes | y o ipf1 \. Since r(x) never vanishes, there is a constant c0 > 0 such 

that for every / = 1, ..., r and for every x e ^ / ( V / ) , \T{x) ^ c$l and therefore 

p 

dm . f 3 

(6.2) \\Di{riiq)oxpl
 l )\\p

Lp{W) ^ c0 J -g-(m)(rji(p) 

By Lemma 3.1 there are n vectors X/1? ..., X[„ in the basis of g (which - we recall -
is supposed to be orthonormal with respect to the fixed scalar product) and there are n 
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smooth functions b\\, ..., b\n defined on U/ such that 

r-0*)= Ì bUm)Xnm 
dyii y = i 

Therefore 

M 

f I 3 p f 
J -z—{m){rji(p) dm ^ I S \b.lj(m)Xif(m)(riiq>)\ 

y = i 
dw ^ 

Let 

Bi = max max max | b}j (m ) 
/ = 1, . . . , » y = 1, . . .- ,« m e Vi 

dm by (1). and let us denote ——(rn)(Wi<p) 
M 

So it follows 

(l)^»"'1Bj' 2 f Iç/X^ (»)?> +?)X^(»)J/,|P<AW ^ 

2 f p#o»M'<*w+ 2 [ l^Hx^»)! / / ! '^ 
J = ì J 7 = 1 J 

M M 

Let 

We obtain 

Ni = max max \Xy {m)rji\ . 
j = 1, ...,» OT6 V/ 

(l)^(2«F-1Bf Nf-»IMIl(M)+2 l i b i l i 
y = i 

(M) 

Now let B = max £/ and N = max N;. We have 
1=1 r 1=1,....r 

(D^(2«y- 1 5 ? W-nWvDLm+lJXfvWlM 

and therefore by (6.2) we conclude that for every / = 1 , . . . , r and every 
/ = ! , . . . , » 

y = i 
\\Di(yi<p°Vi MIIL^R") ^C 

with c = c0{2n)p"1Bp(nNp + 1). So summing up over / and / we conclude 

(6.3) E 2 ||A-(/;/^oV;rM|lt(R«)^^{||^||ip(M) + [^ (^)?} . 
/ = 1 1 = i 
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Reasoning as in (6.2) we also have that for every / = 1, :..,r 

(6.4) H t f / ^Vr l i ^R*) ^ o j \rji{m)cp{m)\pdm ^ c{)\\(p\\p
Lp{m . 

M 

r 

So adding 2 \vicPoXl)rl 111 (Rn) t 0 both sides of (6.3) we obtain 
i = i p 

\\(p\\wpHM) ^ nr{c + c0) | | ^ | | ^ ( M ) , 

thus the desired inequality is proved. 

The second inequality can be proved in the same way. We express locally every vec­
tor field X* as a linear combination of the vector fields 3/ dyn, ..., 3/dyin with smooth 
coefficients and we proceed as in the first part. We only notice that in this case the 
choice of an atlas verifying the conditions of Lemma 3.1 is not needed. 

Since C °° (M) is dense in both the Banach spaces $ p (M) and Wp
l (M), (6.1) leads to 

the following 

THEOREM 6.2. 8>p{M) = Wp1 (M) not only as sets, hut also as Banach spaces; i.e., there 
exist two positive constants cx and c2 such that for every u e Wp (M) the following inequali­
ties hold 

(6.5) £ilklli^(M) ^ IklL(M) ^ ci II* II whM) • 

7. A CHARACTERIZATION OF THE SPACE Wp1 (M) 

In this section we prove the characterization of the spaces Wp
l (M) by means of the 

spaces Cip(M). 

LEMMA 7.1. Let cp be a smooth function. Then 

(7.1) ap(cp)^qlIP'Pp{cp) 

(where \/p + \/p' = 1). 

PROOF. Let 7 e g , with \Y\ = 1. Since 

l 

cpiexp Y-m) - cp(m) = (Y* <p)(exp tY'm)dt, 
o 

by the Schwarz-Hòlder inequality we have 

l 

|<p(exp Y-m) - cp{m)\p ^ | \(Y* ç)(exptY*m) \p dt 
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and therefore, since exp/Y is an isometry 

ì 

(7.2) \\(poTexpY- <P\\LP(M) ^ \dt\ \(Y* (p)(exptY-m)\p dm = 

0 M 

= \\Yy(m)\*dm = \\Y*<p\\^m. 

(M)-

Now we express Y by means of the fixed orthonormal basis {Xl9 ...,Xq}, that is 

Y= 2 bjXj, where the b/s are real numbers wfth \bj\ ^ 1. So from (7.2) we 
j = i 

deduce 

(7.3) ||<?orexpy- ^||Ìp(M) ^ ||y*9>||Ì,(M,^(Ì l ^ f l ^ t t o ^ ^ - 1 ! : l i b i l i 

If X is now an arbitrary vector in g different from Q, we set Y = \X\~1 mX and from 
(7.2) we obtain 

\\<P°tcXpX-<p\\PLp(M)^ \X\P\\Y*(p\\P
LpiM). 

So, for X e g, X * 0, (7.3) leads to 

and so the lemma is proved. 

Now we are able to prove the announced characterization. 

THEOREM 7.1. A function u o/Lp (M) is in Wp (M) if and only ifap{u) < + o° . More­
over, there are two positive constants C\ and C2 such that for every u E Wp (M) 

(7.4) QII «II up/(M) ^ I M I ^ C M ) ^ ^ I M I w ^ M ) • 

PROOF. Let u E Wp (M); we recall that in Theorem 6.2 we proved the existence of a 
positive constant c2 such that ||«||«g (M) ^ 2̂ ll̂ llwMM) • 

The previous lemma implies that for every smooth function cp 

IML,(M) ^ ql/P' IMLp(M) ^ 4X/P' C2Ì\<P\\wpHM) • 

Since the space C°° (M) is dense in Wp (M), we obtain that every « in Tï̂ 1 (M) 
satisfies 

ll«ll<3p(M) ^ C 2 ll^llw^CM) , 

that is, one part of the theorem is proved with C2 = qx'p c2. 
Now let us suppose that u eLp{M) satisfies ap(u) < + °°. This means that for 

every X E g we have 

(7.5) \\uoTexpX-u\\LpiM) ^ap(u)\X\ . 
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Let cp be a smooth function on M. Since for every X G g 

[u(expX-m) — u{m)~\ cp{m)dm = u{m)[q)(zxp ( ~X)-m) — cp{m)]dm , 
M M 

we obtain that for every Xz- in the orthonormal basis of g and for every t in R 

u{m)[q)(exp tXj-m) — cp{m)1dm 
M 

So (7.5) leads to 

^ | | & o T e x p ( _ , x . ) -u\\Lp{M)\\(p\\Lp,{M) . 

\u{m)t~l [cp{exptXi*m) - cp(m)]dm 
M 

and letting t —> 0 we obtain 

^ ap(«)||<p||v (M) 

(7.6) \u{m)Xfcp(m)dm ^ ap(«)|kll^,(M) • 
M 

Formula (7.6) shows that the functional «cp*-> u(m)X* cp{m)dm» can be uniquely 
M 

extended to a linear continuous functional on Lp> (M). So there exists a unique function 
hi^Lp(M) satisfying: 

{ \u(m)X*cp{m)dm = - \hi{m)cp{m)dmi V ç 9 E C ° ° ( M ) , 

M M 

IIMIMM) ^ a P ( « ) , V /= 1, . . . , # . 

This means that ^ G &p(M) = Wp (M) with X/Vz/ = /?z- and therefore 

(7.8) pp(u)^q^pap(u). 
Recalling Theorem 6.2 we have proved Theorem 7.1 with, for instance, Cx = 

8. A REGULARITY RESULT 

In this section we will consider a linear differential equation on the compact homo-

geneous manifold G/K, connected with the second order operator £ = X(^/*)2-
i = i 

The proof we give here is suggested by the classical technique used in the case of 
PDE's in Kn and nowadays called «method of the translations» (see [13, § 4]). 

Let us suppose that £ is invariant under the isometries of G; as already said, this 
means that for every X E g and for every smooth function cp the equality (£cp) o rexpX = 
= £{cp o rexpx) holds. Such a situation occurs, for instance, if we fix a scalar product in g 
which is ADG-invariant. Moreover, if M is a rank one symmetric manifold, then £ is, up 
to a multiplicative constant, the Laplace-Beltrami operator of M. 

From now on let p = 2. For a better understanding of the proof, we will distinguish 
the spaces C12(M), $2(M), Wl{M) and their corresponding norms. We recall that 
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<S2 (M) = «̂ 2 (M) is a Hilbert space with respect to the scalar product defined in 
(5.10). 

Let / G L2(M). For the sake of simplicity, let us only consider the following 
problem: 

(P) u-£u=f. 

We call u a weak solution of (P) if u satisfies 

lu>v)cB2ÌM)= \f(m)v(m)dm Vv e &2{M). 
M 

From the Riesz representation theorem for functional on Hilbert spaces, we know 
that there exists one and only one weak solution u of (P) with ||&||$2(M) ^ II/ÌIL2(M)-

Now let us prove the following regularity result. 

THEOREM 8.1. If fé L2 (M), the weak solution u of (P) belongs to W2 (M) and there 
exists a constant C\ > 0 independent of f such that ||^||^2(M) ^ Q II/ÌIL2(M) • Moreover, if 
/ e W f ( M ) , u belongs to W2

 +2(M) and there exists a constant C2 > 0 such that 
lkllir| + 2(M) ^ C211/11 ^ ( M ) . 

PROOF. Let X be any element in Q. The definition of the space Œ2 (M), tjie density 
of C °° (M) in $2(M) and the invariance property of £ with respect to the isometries 
rexpx allow us to conclude that if u is the weak solution of problem (P), then u o rexpX is 
the weak solution of problem (P) with/substituted with/o rexpx on the right hand side 
of (P). 

For X ^ 0 in g and for h eL2(M), let us denote 

Dxh = \X\-1U,otapX-h]. 

From the above result we obtain that for every X ^ 0 in g 

(8.1) (Dxu, v)%2{M) = \Dxf{m)v(m)dm 
M 

holds for every v e &2(M). 
Since 

\T>xf{rn)v{m)dm = \f{m)D^xv^m)àmì 

M M 

let us choose v = Dxu e $ 2 (M) in (8.1). We obtain 

(8.2) | |DX«|| |2(M) ^ \\f\\L2(M)\\D-x(Dxu)\\L2{M) = 

= \\f\\L2(M)\\Dx(Dxu)\\L2{M) ^ \\f\\L2(M)^2(DXu) ^ \\f\\L2(M)\\DXu\\a2(M) • 

Now recalling the equivalence of the norms in $ 2 (M) and (3L2 (M), we have that there 
exists a constant c > 0 such that 

(8.3) ||DX«||C ^ a2(M) ^ c \\J \\L2(M) 
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and therefore, in particular 

(8.4) sup I7I" 1 \\(Dxu)orexpY-Dxu\\L2ÌM) *Mi/||L2(M) • 

Y e g , y * 0 

Since 

\\(Dxu) otexpY - Dxu\\L2ÌM) = 

sup 
<peC°°(M), <p*0 

\<P\\L2\M) n(Dxu) orexpY(m) -Dxu(m)]<p(m)dm 
M 

let us explicitly write the last integral. 
For every non zero elements X, Y in g we have 

(8.5) (\X\IY\)-1 ^[(Dxu)orexpY(m) -Dxu(m)](p(m)dm = 
M 

= {\X\\Y\)~1lu(m)[(p{cxp(-Y)txp(-X)'m) + 
M 

— <p(exp ( — Y)'tn) — <p(exp ( —X)*m) + cp{m)]dm . 

Now let us choose X = tXx with / > 0 in (8.5). Recall that \XX\ = 1. From (8.4) we 
obtain that for every Y ^ 0 in g, for every t > 0 and for every cp eC 0 0 (M) 

(8.6) t~l r«(w)[D_yÇ?(exp ;(,-/X1)w) -D^Ycp(m)]dm ^ 4/IIL2(M)IMIL2(M) 
M 

holds. Letting t—»0+, it follows that 

\u{m){ -X*D_Y(p)(m)dm = X*u{m){ \ - Y]'1 [<p(exp (-Y)-m) - ç(m)~i}dm = 
M M 

~_~ v \ v * . . / —M ™ / _ \ J.„ «̂  J l / l l II ~L 
\\L2(M) • 

= J | y | UXf &(exp y-w) - X{ u(m)]cp(m)dm ^ C|I/IIL2(M)IM 

M 

Therefore we have | |-DY(X*Z/)| |L2(M) ^ £ ||/||L2(M) a n ^ the arbitrariness of Y allows 
us to conclude that 

(8.7) a2(X?u)^c\\f\\L2{M). 
Now we proceed in the same way for every / = 2, ..., q. Consequently we deduce that 
X*u is in CX2 (M) for / = 1, ...,q. Substituting in (8.7) X* withX* and recalling formu­
la (7.8) we have 

(8-8) P2(XM*q1/2c\\A\wu). 
Since 

ll«lll|(M) = ll«ll^(M) + E PliXTu) 
1 = 1 

we finally obtain 

(8.9) lk l l^ (M)^( l+c 2 ^ 2 ) 1 / 2 | | / | | L 2 ( M). 

Therefore the first part of the theorem is proven. 
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Now let us suppose/e W\ (M) and let u be the corresponding weak solution of (P). 
If / G {1, ..., q] and cp e C00 (M), again by the invariance of £ with respect to the 
isometries of G, we obtain 

q f f 
2 \X*u(m)X*X*q)(m)dm= - u(m) £{X* cp){m)dm = 

7 = M M 

= - \u(m)X*(£q))(m)dm = - 2 X/X*u(m)X* cp{m)dm . 
M • ; ~ M 

Therefore it follows that 

f * f 
(X*u,cp)cB2ÌM)= - \ u(m)X* ç(m)dm - E \X* u{m)X*X* <p{m)dm = 

M • / _ M 

= -(#,X*ç?)ffl2(M) = - \f{m)X*cp(m)dm = J Xf f{m) cp{m)dm . 
M M 

Consequently, from the first part of the theorem we obtain that for every / = 1, ..., q 
X*ue®2

2(M) and that \\Xf u\\g}2{M) ^ ( 1 + c2q2)1/2\\X*f\\L2ÌM). 
Therefore we have proven that if / e W% (M) there exists a constant C > 0, inde­

pendent of/, such that ||»|| w%(M) ^ ^ 11/11 ^(M) • Reasoning as above, by induction on k, 
we obtain the desired result. 

By way of completeness let us conclude this section with the following two remarks. 

REMARK 8.1. In the very wide-ranging paper [14] sharp regularity results are proven for 
second order operators on a manifold, involving Sobolev spaces, Bessel-potential spaces 
and Lipschitz spaces (which in our nomenclature are called Nikol'skij spaces). 

By the extent of the argument treated in [14] the approach is clearly different from 
ours. 

REMARK 8.2. The manifolds we consider here are, like every compact Riemannian 
manifold, also spaces of homogeneous type according to the definition of R. R. Coif-
man and G. Weiss [8, p. 68]. Spaces of homogeneous type are currently being inten­
sively studied (see, for instance, [4 and the references therein]). However our ap­
proach is different: as in [5], here we focalize our attention on the group action. The 
definition we adopt agrees with the notion of homogeneous space as given in [9] and is 
in accordance, for example, with the point of view of Chapter 3 in the survey 
paper [10]. 

This research was partially supported by MURST and by «Programma Vigoni 1996». 
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